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Abstract: In this paper, we study the phase space portrait of homogeneous and isotropic universe
by taking different coupling functions between dark energy models and bulk viscous dark matter.
The dimensionless quantities are introduced to establish an autonomous set of equations. To analyze the
stability of the cosmos, we evaluate critical points and respective eigenvalues for different dynamical
quantities. For bulk viscous matter and radiation in tachyon coupled field, these points show stable
evolution when γ� δ but accelerated expansion of the universe for δ > 1

9 . The stability of the universe
increases for some stationary points which may correspond to the late-time expansion for the coupled
phantom field.
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1. Introduction

Recent astronomical observations such as type Ia supernova and cosmic microwave background
radiations appear to be fairly compatible with the current cosmic accelerated expansion.
These observational pieces of evidence have categorized the universe into four basic epochs. In the
vacuum energy era, Planck magnitude of the universe transformed to a macroscopic immensity through
a rapid expansion named as inflation. Upon reducing the temperature up to 103 K, the universe underwent
matter-dominated epoch followed by the cosmic radiation state. Ultimately, in the current de Sitter era,
the universe is in the phase of accelerating expansion. According to the latest statistics, our cosmos is
composed of 95% dark sectors (dark energy (DE) and dark matter) and 5% baryonic matter [1,2]. We can
observe the baryonic matter with the naked eye while the gravitational effects of other cosmic components
confirm their presence.

Dark energy as an anti-gravitational force tends to accelerate the expansion of the cosmos. It has
huge negative pressure with very low energy density in contrast to other cosmic components. The hidden
characteristics of these dark sectors are still unknown even after the appropriate results of the ΛCDM
model. There are two alternative DE model—one is to modify the geometric part of the Einstein–Hilbert
action while the other one is to allocate the appropriate form of the energy-momentum tensor like scalar
field models [3–7]. Another technique for cosmic evolution can be achieved through the transformation of
the barotropic equation of state in Chaplygin gas [8].

Although a ΛCDM model is compatible with current cosmic observations but still no satisfactory
argument has been achieved for the coincidence problem. Interaction of DE with dark matter is the
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novel technique that might address this issue. The interacting DE models have been proposed by several
authors [9–13]. It has been found that the interaction between dark matter and DE models can assist to
elaborate on the current cosmic evolution. If the DE models have ΩDE

ΩDM
of the order 1 and an accelerated

stable solution, then the coincidence problem can be alleviated. The non-interacting DE models [14–16]
showed late-time accelerated attractors with ΩDE = 1, which did not provide an appropriate solution
for the coincidence problem. For the coupling, there does not exist any elementary theory that decides
a particle form of interaction. It has been shown [17,18] that the coincidence problem can be resolved by
selecting the appropriate coupling factors. There are two forms of coupling in the literature named as
local and non-local coupling terms. In the local form of interactions, energy density has a direct relation
with it [19], whereas non-local forms are directly proportional to Hubble parameter H and energy density.
Yang et al. [20] investigated the observational consequences of stable interacting DE models in the light of
recent cosmological data.

In the field of cosmology, the autonomous system is another notable technique to study the evolution
of the universe. However, this approach does not provide any proper solution but measures the stability
of the system efficiently [21]. Phase space analysis also plays a vital role in the inspection of stability for
different models by describing momentum as well as a position at each point of the system. Xiao and
Zhu [22] investigated dynamical properties of DE models through barotropic fluid in the background of
quantum gravity. Shahalam et al. [23] analyzed the stability as well as accelerated behavior of the universe
through the interaction of scalar field models with dark matter in the gravitational background of the FRW
universe. We have extended their work to study the impact of nonlinear electrodynamics on the stability
of FRW universe model through phase space portrait [24]. Recently, Sharif and Mumtaz [25] studied the
phase space analysis of locally rotationally symmetric (LRS) Bianchi type I universe by taking different
coupling functions between DE models and dark matter. In the present work, we study the effect of bulk
viscosity on the stability as well as the expansion of the cosmos by using the dimensionless quantities.

The insertion of the bulk viscosity coefficient in the matter has become a focus of attention due to
its remarkable consequences in astrophysics. This is a continuation of the idea of fluid velocity in the
surrounding of dissipation and is accepted as a favorable phenomenon in inflation [26–28]. It has also been
contemplated that bulk viscous fluid as a source of accelerated expansion can account for dark matter as
well as late-time expansion of the universe [29]. The cosmological aspects of viscosity can be observed as
a measure of the pressure required to reinstate equilibrium position when the expansion of fluids occurs in
an expanding universe. Acquaviva and Beesham [30] analyzed the stability of FRW universe dominated
by nonlinear bulk viscous matter. Sasidharan and Mathew [31] discussed the asymptotic properties of
the FRW universe for three different bulk viscous coefficients and predicted the current cosmic expansion
through their solutions. Sharif and Mumtaz [32] studied the effects of viscosity on the expansion of LRS
Bianchi type I universe through phase space analysis.

In this paper, we explore stability as well as expanding behavior of FRW universe, by considering
the interaction of DE models with bulk viscous dark matter, through phase space analysis. The paper
is organized as follows. In Section 2, we provide a basic formalism for dynamical equations and bulk
viscous parameter. We establish an autonomous set of equations through the dimensionless variables to
analyze the pattern of cosmic evolution. Section 3 contains the phase space portrait of three specific forms
of interaction between phantom energy and bulk viscous fluid. The characteristics of tachyon field with
Q = γσ̇φ is discussed in Section 4. In the final section, we summarize the results.
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2. Dynamical Equations

In this section, we compute dynamical equations for bulk viscous matter and DE in the background
of isotropic and homogeneous model of universe given by

ds2 = −dt2 + a2(t)(dr2 + r2dθ2 + r2 sin2 θdφ2), (1)

such that a(t) depicts the scale factor. The viscous energy-momentum tensor [33] has the form

Tµν = σuµuν + (p− ζ∇γCγ)(gµν + uµuν), (2)

where σ, p, ζ and Cγ correspond to the energy density, pressure, bulk viscosity and dynamical velocity
(canonical momentum) of the fluid, respectively. The dynamical velocity is defined by Cγ = ξuγ and ξ is
named as specific enthalpy of a fluid element,

ξ =
σ + p

ψ
,

with ψ its rest mass density. The dynamical velocity has been contemplated as a generalization of the
fluid’s velocity in the presence of dissipation [34]. The bulk viscosity can be measured by ∇γCγ which is
compatible with the idea that it vanishes for an incompressible fluid, i.e., ∇γCγ = 0. Moreover, the rest
mass density remains conserved along the lines of flow, i.e., ∇γ(ψuγ) = 0 such that ψ = ψ0a−3, where ψ0

is an integration constant.
Now, we consider the interaction between the phantom field and the dark matter through the coupling

Q. This will be helpful to analyze how interaction terms can influence the qualitative behavior of models
containing scalar fields and bulk viscous matter. These terms have been studied widely in literature in the
context of reheating and inflation [35,36]. The density of the universe remains preserved throughout the
evolution, but, for each constituent, it does not hold the conservation law:

σ̇m(1− 3Hζa3) + 3H(σm)(1− 6Hζa3) = Q, (3)

σ̇φ(1− 3Hζa3) + 3H(σφ + pφ)(1− 6Hζa3)− 3Hζa3 ṗφ = −Q, (4)

σ̇tot + 3H(σtot + ptot)− 3Hζa3[σ̇tot + ṗtot + 6H(σtot + ptot)] = 0, (5)

where H = ȧ
a , while dot represents the temporal derivative. In addition, pφ, pm correspond to pressure and

σφ and σm exhibit the energy density of phantom field and matter (dust), respectively with σtot = σm + σφ

and ptot = pm + pφ. In the considered framework, the energy between the components can transform in
both ways depending upon the signature of the coupling function. For Q > 0, the energy outflows from
the matter part towards the phantom field and vice versa. In literature, several interaction terms have
been studied to observe their effect on the cosmological issues [37–40].

The field equations, in a spatially flat FRW universe, take the form

H2 =
κ2

3
(σm + σφ), (6)

2Ḣ + 3H2 = −κ2[pφ +
σ̇tot

3H
+ (σtot + pφ)(1− 6Hζa3)], (7)
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where κ2 = 8πG, σφ = − 1
2 φ̇2 + V(φ) and pφ = − 1

2 φ̇2 −V(φ) [41]. To transform a set of equations into
autonomous system, we introduce the dimensionless quantities as

x =
κφ̇√
6H

, y =
κ
√

V√
3H

, l = − V
′

κV
, (8)

which satisfy the following relations

dx
dU

= x
(

φ̈

Hφ̇
− Ḣ

H2

)
, (9)

dy
dU

= −y

(√
3
2

lx +
Ḣ
H2

)
, (10)

where U = ln a. Through exponential potential, the parameter l becomes a constant value. In this scenario,
Equations (4) and (7) can be expressed as

Ḣ
H2 =

3
2
(x2 + y2 − 1)(1− 3Hζa3), (11)

φ̈

Hφ̇
= −3 +

(
−
√

3
2

ly2

x
+

Q
Hφ̇2

)(
1

(1− 6Hζa3)

)
. (12)

The effective equation of state (EoS) and field density parameter [41] are given by

ωe f f = −1− 2Ḣ
3H2 , (13)

ΩDE =
κ2σφ

3H2 = −(x2 − y2). (14)

3. Coupled Phantom Field

In this section, we examine the impact of different interaction terms (between viscous dark matter
and phantom field) on the stability of FRW universe.

3.1. Coupling Q = γσ̇m

We take the coupling function Q = γσ̇m, where γ is an arbitrary constant. For this coupling,
Equation (12) leads to

φ̈

Hφ̇
=

(
1 +

3γδ

(1− 3δ− γ)(1− 6δ)

){[
γ

1− 3δ− γ

(
3

2x2 (−1 + x2 + y2) (15)

× (1− 3δ)2 − 3
√

3δly2
√

2x
− 3(1− 6b)

)
−
√

3
2

ly2

x

](
1

1− 6δ

)
− 3

}
,

where δ = Hζa3 is the viscosity factor. The autonomous Equations (9) and (10) reduce to
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dx
dU

= x
(

1 +
3γδ

(1− 3δ− γ)(1− 6δ)

){[
γ

1− 3δ− γ

(
3

2x2 (−1 + x2 + y2)

× (1− 3δ)2 − 3
√

3δly2
√

2x
− 3(1− 6b)

)
−
√

3
2

ly2

x

](
1

1− 6δ

)
− 3

}
(16)

− 3x
2
(x2 + y2 − 1)(1− 3δ),

dy
dU

= −y

(√
3
2

lx +
3(x2 + y2 − 1)

2
(1− 3δ)

)
. (17)

To analyze the stability around a critical point, we evaluate its Eigenvalues (EVs) by converting
the autonomous set of equations into a Jacobian matrix. Eigenvalues with negative or positive real
part correspond to the sink/stable or source/unstable critical nodes, respectively, whereas the EVs with
different signatures correspond to the saddle points.

For the stationary node C1 = (x, 0), with

x =
1√
2
(15γ2δ2 + 162γδ3 + 324δ4 − 2γ2δ− 1− 15γδ2 − 108δ3 − 8γδ

− 27δ2 + γ + 12δ + (3249(δ2 − 22
57

δ +
2
57

)2γ4 + (30780δ5 − 30906δ4

+ 13068δ3 − 2782δ2 + 292δ− 12)γ3 + (109836δ6 − 119556δ5 + 64107δ4

− 20064δ3 + 3604δ2 − 340δ + 13)γ2 + (174960(δ3 − 7
45

δ2 +
17

135
δ

− 1
45

)(δ− 1
6
)3(−1

3
+ δ)γ + 104976(δ− 1

6
)4(−1

3
+ δ)2(δ +

1
3
)2)

1
2 ))

1
2

× ((−1 + 6δ)(−1 + 3δ + γ))−1,

the respective EVs are not given due to lengthy expressions. To analyze the impact of γ, δ and l on
the stability of stationary points, we portray their dynamical characteristics in Figures 1 and 2 by taking
different values of the model parameters. When l > 0, C1 shows stable behavior for δ < 0 along with all
values of γ as both of its EVs become negative for this range of parameters. This critical point depicts
unstable behavior for other possible values of γ and δ as shown in Figure 1. It is mentioned here that the
universe experiences accelerated expansion when the relation (3δ + 1)x2 > 1

3(1+9δ)
is satisfied. Figure 2

represents oscillation of the model between unstable and saddle nodes for l < 0.
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Figure 1. Phase plane portrait of phantom universe for Q = δσ̇m and l > 0 with C1 (black), C2 (purple), C3

(green), C4 (red).
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Figure 2. Phase plane portrait of phantom universe for Q = δσ̇m with l < 0.
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For C2 = (x, 0) with

x = − 1√
2
(15γ2δ2 + 162γδ3 + 324δ4 − 2γ2δ− 1− 15γδ2 − 108δ3 − 8γδ

− 27δ2 + γ + 12δ + (3249(δ2 − 22
57

δ +
2
57

)2γ4 + (30780δ5 − 30906δ4

+ 13068δ3 − 2782δ2 + 292δ− 12)γ3 + (109836δ6 − 119556δ5 + 64107δ4

− 20064δ3 + 3604δ2 − 340δ + 13)γ2 + (174960(δ3 − 7
45

δ2 +
17

135
δ

− 1
45

)(δ− 1
6
)3(−1

3
+ δ)γ + 104976(δ− 1

6
)4(−1

3
+ δ)2(δ +

1
3
)2)

1
2 ))

1
2

× ((−1 + 6δ)(−1 + 3δ + γ))−1,

the EVs correspond to the stable node for negative values of δ and l as all the EVs have negative signature.
For positive values of δ and l, this point fluctuates between the unstable and saddle points. When C3 =

(x, 0) with

x =
1√
2
(15γ2δ2 + 162γδ3 + 324δ4 − 2γ2δ− 1− 15γδ2 − 108δ3 − 8γδ

− 27δ2 + γ + 12δ− (3249(δ2 − 22
57

δ +
2
57

)2γ4 + (30780δ5 − 30906δ4

+ 13068δ3 − 2782δ2 + 292δ− 12)γ3 + (109836δ6 − 119556δ5 + 64107δ4

− 20064δ3 + 3604δ2 − 340δ + 13)γ2 + (174960(δ3 − 7
45

δ2 +
17

135
δ

− 1
45

)(δ− 1
6
)3(−1

3
+ δ)γ + 104976(δ− 1

6
)4(−1

3
+ δ)2(δ +

1
3
)2)

1
2 ))

1
2

× ((−1 + 6δ)(−1 + 3δ + γ))−1.

It is noted that, for negative values of δ, C3 depicts stable results for positive as well as negative values
of γ. For l < 0, we get a stable scenario for the positive values of δ.

When C4 = (x, 0) with

x = − 1√
2
(15γ2δ2 + 162γδ3 + 324δ4 − 2γ2δ− 1− 15γδ2 − 108δ3 − 8γδ

− 27δ2 + γ + 12δ− (3249(δ2 − 22
57

δ +
2
57

)2γ4 + (30780δ5 − 30906δ4

+ 13068δ3 − 2782δ2 + 292δ− 12)γ3 + (109836δ6 − 119556δ5 + 64107δ4

− 20064δ3 + 3604δ2 − 340δ + 13)γ2 + (174960(δ3 − 7
45

δ2 +
17

135
δ

− 1
45

)(δ− 1
6
)3(−1

3
+ δ)γ + 104976(δ− 1

6
)4(−1

3
+ δ)2(δ +

1
3
)2)

1
2 ))

1
2

× ((−1 + 6δ)(−1 + 3δ + γ))−1,

the point gives the opposite results to the point C3. We achieve more stable results as well as an accelerating
era for particular values of parameters as compared to [23]. Most of the stationary points behave as the
stable nodes for diverse ranges of parameters as displayed in Figures 1 and 2. It is mentioned that the
coincidence problem cannot be resolved through the considered coupling function as density parameter
does not attain the proper value, i.e., ΩDE < 0. The evolutionary results are summarized in Table 1 and
acceleration phenomenon is discussed for the parameters γ = ±20 and δ = ±1.
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Table 1. Stability analysis of phantom universe for Q = γσ̇m.

Ranges of Model Parameters Stability Acceleration

For (l > 0), C1

γ < 0, δ > 0 unstable Yes

γ < 0, δ < 0 stable Yes

γ > 0, δ < 0 stable Yes

γ > 0, δ > 0 unstable Yes

C2

γ < 0, δ > 0 saddle Yes

γ < 0, δ < 0 saddle Yes

γ > 0, δ < 0 saddle Yes

γ > 0, δ > 0 unstable Yes

C3

γ < 0, δ > 0 unstable Yes

γ < 0, δ < 0 stable No

γ > 0, δ < 0 stable No

γ > 0, δ > 0 unstable Yes

C4

γ < 0, δ > 0 stable Yes

γ < 0, δ < 0 unstable No

γ > 0, δ < 0 unstable No

γ > 0, δ > 0 stable Yes

For (l < 0), C1

γ < 0, δ > 0 unstable Yes

γ < 0, δ < 0 saddle Yes

γ > 0, δ < 0 saddle Yes

γ > 0, δ > 0 unstable Yes

C2

γ < 0, δ > 0 unstable Yes

γ < 0, δ < 0 stable Yes

γ > 0, δ < 0 stable Yes

γ > 0, δ > 0 unstable Yes

C3

γ < 0, δ > 0 stable Yes

γ < 0, δ < 0 unstable No

γ > 0, δ < 0 unstable No

γ > 0, δ > 0 stable Yes
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Table 1. Cont.

Ranges of Model Parameters Stability Acceleration

C4

γ < 0, δ > 0 unstable Yes

γ < 0, δ < 0 stable No

γ > 0, δ < 0 stable No

γ > 0, δ > 0 unstable Yes

3.2. Coupling Q = γσ̇φ

In this scenario, Equation (12) reduces to

φ̈

Hφ̇
= −3 +

[
−
√

3
2

ly2

x
+

3γ

2x2(1− 3δ + γ)

(
(−1 + x2 + y2)(1− 3δ)2

+ (1 + x2 − y2)(1− 6δ)
)] 1

1− 6δ
. (18)

A system of autonomous Equations (9) and (10) takes the form

dx
dU

= x

{
−3 +

[
−
√

3
2

ly2

x
+

3γ

2x2(1− 3δ + γ)

(
(−1 + x2 + y2)(1− 3δ)2

+ (1 + x2 − y2)(1− 6δ)
)] 1

1− 6δ
− 3x

2
(x2 + y2 − 1)(1− 3δ)

}
, (19)

dy
dU

= −y

(√
3
2

lx +
3(x2 + y2 − 1)

2
(1− 3δ)

)
. (20)

For the stationary node C1 = (x, 0) with

x =

√
3

2
(

1
27

(2916δ6 + (−972γ− 972)δ5 + (−162γ + 81γ2 − 567)δ4

+
1
2
(216 + 486γ− 162γ2)δ3 + (99γ2 − 180γ + 18)δ2 + (−18γ2 + 30γ

− 12)δ + (γ− 1)2)
1
2 − 2δ3 + (γ +

1
3
)δ2 + (−1

3
γ +

2
9
)δ− 1

27
+

1
27

γ)
1
2

× ((δ− 1
6
)(−3δ + 1 + γ)(δ− 1

3
))−

1
2 ,

we get stable solutions for positive as well as negative values of γ and δ under some restrictions. For the
positive values of dynamical quantities, stable nodes can be achieved with the condition δ � γ while,
for negative values, the condition is just reversed. It is noted that, for positive values of parameters,
we cannot determine the accelerating phase of the universe as the value of effective EoS becomes complex
for γ = 20 and δ = 1. It is observed that this critical point can alleviate the coincidence problem as the
density parameter fulfills the criterion, i.e., ΩDE

ΩDM
= O(1) for γ < 0, δ > 0 and γ > 0, δ < 0.
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When C2 = (x, 0) with

x = −
√

3
2

(
1

27
(2916δ6 + (−972γ− 972)δ5 + (−162γ + 81γ2 − 567)δ4

+
1
2
(216 + 486γ− 162γ2)δ3 + (99γ2 − 180γ + 18)δ2 + (−18γ2 + 30γ

− 12)δ + (γ− 1)2)
1
2 − 2δ3 + (γ +

1
3
)δ2 + (−1

3
γ +

2
9
)δ− 1

27
+

1
27

γ)
1
2

× ((δ− 1
6
)(−3δ + 1 + γ)(δ− 1

3
))−

1
2 ,

the system fluctuates between the unstable and saddle points for negative values of δ, whereas the stable
results can be evaluated for δ > 0 corresponding to all values of l and γ. By increasing the parameter δ,
we find more negative EVs depicting stable future attractor. For C3 = (x, 0), where

x =

√
3

2
(− 1

27
(2916δ6 + (−972γ− 972)δ5 + (−162γ + 81γ2 − 567)δ4

+
1
2
(216 + 486γ− 162γ2)δ3 + (99γ2 − 180γ + 18)δ2 + (−18γ2 + 30γ

− 12)δ + (γ− 1)2)
1
2 − 2δ3 + (γ +

1
3
)δ2 + (−1

3
γ +

2
9
)δ− 1

27
+

1
27

γ)
1
2

× ((δ− 1
6
)(−3δ + 1 + γ)(δ− 1

3
))−

1
2 .

This fixed point shows unstable or saddle trends except for γ, δ > 0 and l > 0 with γ � δ. In this
case, the universe undergoes accelerated expansion for negative values of γ. When C4 = (x, 0) with

x = −
√

3
2

(− 1
27

(2916δ6 + (−972γ− 972)δ5 + (−162γ + 81γ2 − 567)δ4

+
1
2
(216 + 486γ− 162γ2)δ3 + (99γ2 − 180γ + 18)δ2 + (−18γ2 + 30γ

− 12)δ + (γ− 1)2)
1
2 − 2δ3 + (γ +

1
3
)δ2 + (−1

3
γ +

2
9
)δ− 1

27
+

1
27

γ)
1
2

× ((δ− 1
6
)(−3δ + 1 + γ)(δ− 1

3
))−

1
2 ,

the system shows varying behavior. When l > 0, saddle trends can be observed for several combination of
the parameters. The results are shown in Figures 3 and 4 and collective behavior in Table 2. The acceleration
phenomenon is discussed for the parameters γ = ±20 and δ = ±1. For some choices of model
parameters, the critical points become imaginary which can not be displayed on the phase portrait;
therefore, their results are summarized in Table 2.
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Figure 3. Phase plane portrait of phantom universe for Q = γσ̇φ with l > 0.
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Figure 4. Phase plane portrait of phantom universe for Q = γσ̇φ with l < 0.



Universe 2019, 5, 185 12 of 22

Table 2. Stability analysis of phantom universe for Q = γσ̇φ.

Ranges of Model Parameters Stability Acceleration

For (l > 0), C1

γ < 0, δ > 0 stable Yes

γ < 0, δ < 0 stable if |δ| � γ No

γ > 0, δ < 0 stable if |δ| � γ Yes

γ > 0, δ > 0 stable for δ� γ -

C2

γ < 0, δ > 0 stable Yes

γ < 0, δ < 0 unstable for δ� γ No
saddle for γ� δ

γ > 0, δ < 0 saddle Yes

γ > 0, δ > 0 stable -

C3

γ < 0, δ > 0 saddle Yes

γ < 0, δ < 0 saddle Yes

γ > 0, δ < 0 unstable No

γ > 0, δ > 0 stable for γ� δ, -

C4

γ < 0, δ > 0 saddle Yes

γ < 0, δ < 0 saddle Yes

γ > 0, δ < 0 unstable No

γ > 0, δ > 0 stable for γ� δ, -

For (l < 0), C1

γ < 0, δ > 0 stable Yes

γ < 0, δ < 0 unstable for δ� γ No
saddle for γ� δ

γ > 0, δ < 0 saddle Yes

γ > 0, δ > 0 stable for δ� γ, -
saddle for γ� δ

C2

γ < 0, δ > 0 stable Yes

γ < 0, δ < 0 stable for γ� δ, No

γ > 0, δ < 0 stable Yes

γ > 0, δ > 0 stable -
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Table 2. Cont.

Ranges of Model Parameters Stability Acceleration

C3

γ < 0, δ > 0 saddle Yes

γ < 0, δ < 0 stable for δ� γ, Yes
unstable for γ� δ

γ > 0, δ < 0 unstable No

γ > 0, δ > 0 stable for γ� δ -

C4

γ < 0, δ > 0 saddle Yes

γ < 0, δ < 0 saddle Yes

γ > 0, δ < 0 unstable No

γ > 0, δ > 0 stable for γ� δ, -

3.3. Coupling Q = γ(σ̇m + σ̇φ)

Now, we take the coupling as a linear function of σ̇m and σ̇φ which reduces Equation (12) to

φ̈

Hφ̇
=

(
1 +

3γδ

(1− 3δ− γ)(1− 6δ)

){
−3 +

[
3γ

2x2(1− 3δ + γ)

(
(−1 + x2

+ y2)(1− 3δ)2 + (1 + x2 − y2)(1− 6δ)
)
−
√

3
2

ly2

x

](
1

1− 6δ

)
(21)

+
γ

(1− 6δ)(1− 3δ− γ)

[
3

2x2 (−1 + x2 + y2)(1− 3δ)2 − 3
√

3δly2
√

2x

− 3(1− 6δ)]} .

The autonomous system becomes

dx
dU

= x
(

1 +
3γδ

(1− 3δ− γ)(1− 6δ)

){
−3 +

[
3γ

2x2(1− 3δ + γ)

(
(−1 + x2

+ y2)(1− 3δ)2 + (1 + x2 − y2)(1− 6δ)
)
−
√

3
2

ly2

x

](
1

1− 6δ

)
(22)

+
γ

(1− 6δ)(1− 3δ− γ)

[
3

2x2 (−1 + x2 + y2)(1− 3δ)2 − 3
√

3δly2
√

2x

− 3(1− 6δ)]} − 3x
2
(x2 + y2 − 1)(1− 3δ),

dy
dU

= −y

(√
3
2

lx +
3(x2 + y2 − 1)

2
(1− 3δ)

)
. (23)

For the critical point C1 = (x1, 0), the value of x1 is not given due to lengthy-expression.
The corresponding EVs show stable solutions for the positive values of δ and l while the accelerating
behavior cannot be determined as the effective EoS gives complex values. However, we obtain the stable
as well as saddle zones for l < 0 and δ < 0 corresponding to complete range of γ. For γ < 0 and δ < 0,
we find the accelerated expansion of the universe with oscillating behavior between unstable and saddle
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nodes. For C2 = (x2, 0), the critical point varies between the unstable and saddle points for negative
values of δ with γ > 0 as well as γ < 0 while the cosmic expansion has been observed in the latter case
only. For δ > 0, the system moves towards more stability corresponding to l > 0 and l < 0.

When C3 = (x3, 0), we observe mostly saddle and an unstable trend for the positive vales of l, whereas
dynamical stability of C3 corresponds to l < 0. We get a stable node for δ, l < 0 and γ > 0 which also lies
in the accelerating phase. For C4 = (x4, 0), the conditions are totally reversed as that of C3. Here, we have
stable solutions for l > 0 while the negative values of l lead the universe towards instability. The analysis
is summarized in Table 3 and the numerical plots are given in Figures 5 and 6.
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Figure 5. Phase plane portrait of phantom universe for Q = γ(σ̇m + σ̇φ) with l > 0.
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Figure 6. Phase plane portrait of phantom universe for Q = γ(σ̇m + σ̇φ) with l < 0.

Table 3. Stability analysis of the phantom universe for Q = γ(σ̇m + σ̇φ).

Ranges of Model Parameters Stability Acceleration

For (l > 0), C1

γ < 0, δ > 0 stable -

γ < 0, δ < 0 stable for δ� γ, Yes

γ > 0, δ < 0 saddle/unstable No

γ > 0, δ > 0 stable -

C2

γ < 0, δ > 0 stable -

γ < 0, δ < 0 saddle/unstable Yes

γ > 0, δ < 0 saddle/unstable No

γ > 0, δ > 0 stable -

C3

γ < 0, δ > 0 unstable -

γ < 0, δ < 0 saddle/unstable No

γ > 0, δ < 0 saddle Yes

γ > 0, δ > 0 stable for δ� γ, -
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Table 3. Cont.

Ranges of Model Parameters Stability Acceleration

C4

γ < 0, δ > 0 saddle -

γ < 0, δ < 0 stable No

γ > 0, δ < 0 stable Yes

γ > 0, δ > 0 stable for γ� δ -

For (l < 0), C1

γ < 0, δ > 0 stable -

γ < 0, δ < 0 stable/saddle Yes

γ > 0, δ < 0 saddle No

γ > 0, δ > 0 stable -

C2

γ < 0, δ > 0 stable -

γ < 0, δ < 0 stable Yes

γ > 0, δ < 0 saddle/unstable No

γ > 0, δ > 0 stable -

C3

γ < 0, δ > 0 saddle -

γ < 0, δ < 0 stable for δ� γ, No

γ > 0, δ < 0 stable Yes

γ > 0, δ > 0 stable for δ� γ, -

C4

γ < 0, δ > 0 unstable -

γ < 0, δ < 0 saddle/unstable No

γ > 0, δ < 0 saddle Yes

γ > 0, δ > 0 stable/saddle -

4. Coupled Tachyon Dynamics

In this section, we consider tachyon field as a DE source and interact it with bulk viscous dark matter.
In this scenario, the conservation equations turn out to be

σ̇m(1− 3Hζa3) + 3H(σm)(1− 6Hζa3) = Q, (24)

σ̇φ(1− 3Hζa3) + 3H(σφ + pφ)(1− 6Hζa3)− 3Hζa3 ṗφ = −Q, (25)

where σφ = V(φ)√
1−φ̇2

and pφ = −V(φ)
√

1− φ̇2 [42]. The evolution equations become

H2 =
κ2

3

(
V(φ)√
1− φ̇2

+ σm

)
, (26)



Universe 2019, 5, 185 17 of 22

−Q
√

1− φ̇2

φ̇V(φ)
= −3δ

[
φ̇2V

′
(φ)

V(φ)
+ φ̈(

2− φ̇2

1− φ̇2 )

]
+

φ̈

(1− φ̇2)
+ 3Hφ̇(1− 6δ)

+
V
′
(φ)

V(φ)
. (27)

Introducing the dimensionless quantities

x = φ̇, y =
κ
√

V√
3H

, l =
V
′

κV
√

V
, (28)

such that the autonomous set of equations turn out to be

dx
dU

=
φ̈

Hφ̇
x, (29)

dy
dU

= −
√

3
2

ly2x− y
Ḣ
H2 . (30)

For the inverse square potential, the parameter l represents a constant value. We consider the
interaction term Q = δσ̇φ which reduces Equations (26) and (27) to

Ḣ
H2 =

3
2
(y2
√

1− x2 − 1)(1− 3δ), (31)

φ̈

Hφ̇
=

(
−1 + 3δ + γ

(−1 + 3δ + γ)(−1 + 3δ(2− x2))− 3γδ(1− x2)

){
−γ

1− 3δ + γ

×
[

3
√

3δyl(1− x2)2

x
− 3(1− x2)(1− 6δ)

]
+
√

3ly(1− x2)(−3δx (32)

+
1
x
)− 3(1− x2)(1− 6δ)

}
.

The effective EoS is given by

ωe f f = −1− 2Ḣ
3H2 . (33)

For C1 = (0, 0), the corresponding EVs are

P1 = (
1
4
)(9((−18δ3 + (3γ + 3)δ2 + (−5γ + γ2 + 2)δ− (

1
3
)(γ− 1)2)2

× (γ− 1 + 6δ)2)
1
2 + 972δ4 − 1620δ3 + (−378γ + 783− 81γ2)δ2 (34)

+ (−9γ3 + 153γ− 144)δ + 9 + 3γ2 − 15γ + 3γ3)

× ((γ + 1− 3δ)(γ− 1 + 6δ)2)−1,

P2 = (
1
4
)(−9((−18δ3 + (3γ + 3)δ2 + (−5γ + γ2 + 2)δ− (

1
3
)(γ− 1)2)2

× (γ− 1 + 6δ)2)
1
2 + 972δ4 − 1620δ3 + (−378γ + 783− 81γ2)δ2 (35)

+ (−9γ3 + 153γ− 144)δ + 9 + 3γ2 − 15γ + 3γ3)

× ((γ + 1− 3δ)(γ− 1 + 6δ)2)−1.

It is found that EVs indicate a stable zone only for positive values of γ and δ with the restriction γ� δ,
while, for the reverse condition, the system moves gradually towards the saddle zone (Figures 7 and 8).
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Moreover, the effective EoS becomes negative for δ > 1
9 , which corresponds to the accelerated expanding

phase of the cosmos, but still the coincidence problem can not be resolved. It is also noticed that this
critical point has no dependence on l and shows saddle and unstable trends for other possible values

of parameters. When C2 = (±1, 0) and C3 = (±1,± (−1+3δ)
√

3
l ), the metric is indeterminant. We cannot

evaluate the corresponding EVs as the system becomes undefined at these fixed points for interacting
tachyon field model. The results are given in Table 4.
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Figure 7. Phase plane portrait of tachyon universe for Q = δσ̇φ with l > 0.

Table 4. Stability analysis of tachyon universe for Q = δσ̇φ.

Ranges of Model Parameters Stability Acceleration

C1

γ < 0, δ > 0 saddle Yes for δ > 1
9

γ < 0, δ < 0 saddle/unstable for No

γ > 0, δ < 0 unstable No

γ > 0, δ > 0 saddle for δ� γ, Yes for δ > 1
9

stable for γ� δ
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Figure 8. Phase plane portrait of tachyon universe for Q = δσ̇φ with l < 0.

5. Conclusions

In this paper, the impact of bulk viscosity on the stability of FRW universe has been examined through
different coupling functions between dark matter and DE models. We have constructed an autonomous set
of equations by using dimensionless quantities to inspect the stability of the prescribed system. We have
evaluated the stationary nodes by setting x́ = ý = 0 and their respective EVs to explore the effects of γ, δ

and l on the stability as well as expansion of the universe.
Firstly, the interaction of dark matter with phantom field has been investigated through EVs for

diverse range of parameters (Figures 1–6). We analyze the dynamical behavior of three different coupling
functions through phase space analysis. For Q = γσ̇m, C1 and C2 depict a stable DE model for δ < 0
corresponding to l > 0 and l < 0, respectively, followed by late accelerated expansion of the cosmos.
The critical points C3 and C4 correspond to stable points for δ < 0 and δ > 0, respectively, for all values of
γ which completely lie in the DE dominated era as we f f < − 1

3 . For this DE model, all points lie in the de
Sitter cosmic phase if the condition (3δ + 1)x2 > 1

3(1+9δ)
is satisfied. For the second coupling Q = γσ̇φ,

the critical point C1 shows accelerated stable evolution for γ < 0, δ > 0 and γ > 0, δ < 0 which can also
alleviate the coincidence problem.

When Q = γ(σ̇m + σ̇φ), we have found stable solutions of C1 and C2 for positive values of δ. Finally,
for the coupled tachyon field with Q = δσ̇φ, the cosmic portrait represents the stable behavior for positive
values of γ and δ when γ � δ. It is worth mentioning here that these nodes belong to the accelerating
phase of the universe if δ > 1

9 . We conclude that the inclusion of a bulk viscosity coefficient in the
coupling of dark sectors makes the FRW universe dynamically more stable as compared to [24]. For all
the considered couplings, our analysis shows that the coincidence problem can be resolved through the
interaction term Q = γσ̇φ in the coupled phantom field model in contrast to [23]. In [23], for the coupling
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Q = γσ̇φ, a stable fixed point has been found which behaves as an attractive node but did not depict the
accelerating phase of the universe and hence did not solve the coincidence problem. In our work, for the
same coupling, the critical point C1 can alleviate the coincidence problem as it shows the accelerated stable
evolution and density parameter fulfills the criterion, i.e., ΩDE

ΩDM
= O(1) for γ < 0, δ > 0 and γ > 0, δ < 0.

The coupling Q = γσ̇φ alleviates the coincidence problem which shows the compatibility of our
results with the current cosmological observations. For future directions, we can adopt this specific form of
coupling for other cosmological issues like tension on the determination of H0 via low-redshift analysis [43]
and σ8 [44], cosmic microwave background anomalies [45] in the light of recent cosmological data.
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