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Abstract: The momentum-independent Casimir operators of the homogeneous spin-Lorentz group
are employed in the construction of covariant projector operators, which can decompose anyone of its
reducible finite-dimensional representation spaces into irreducible components. One of the benefits
from such operators is that any one of the finite-dimensional carrier spaces of the Lorentz group
representations can be equipped with Lorentz vector indices because any such space can be embedded
in a Lorentz tensor of a properly-designed rank and then be unambiguously found by a projector.
In particular, all the carrier spaces of the single-spin-valued Lorentz group representations, which so
far have been described as 2(2j + 1) column vectors, can now be described in terms of Lorentz
tensors for bosons or Lorentz tensors with the Dirac spinor component, for fermions. This approach
facilitates the construct of covariant interactions of high spins with external fields in so far as they
can be obtained by simple contractions of the relevant SO(1, 3) indices. Examples of Lorentz group
projector operators for spins varying from 1/2–2 and belonging to distinct product spaces are
explicitly worked out. The decomposition of multiple-spin-valued product spaces into irreducible
sectors suggests that not only the highest spin, but all the spins contained in an irreducible carrier
space could correspond to physical degrees of freedom.

Keywords: homogenous Lorentz group; high spins; covariant projectors; decomposition of
tensor products

1. Introduction

Particles of high-spins j ≥ 1, be they massive or mass-less, play a significant role in field theories.
In the physics of hadrons, such fields appear as real resonances whose spins can vary from 1/2–17/2
for baryons and from 0–6 for mesons [1]. At hadron colliders, they can emerge as intermediate
resonances in a variety of processes, while in gravity, deformations of the metric tensor caused by its
coupling to high-spin bosons are of interest [2]. In addition, high spins are fundamental to the physics
of rotating black holes [3], not to forget gravitational interactions between high-spin fermions [4].
The traditional methods in the description of high-spin fields were developed in the period between
1939 and 1964 (see [5,6] for recent reviews and [7] for a standard textbook) and are based on the use
of carrier (representation) spaces of finite-dimensional representations of the homogeneous Lorentz
group. They are associated with the names of Fierz and Pauli (FP) [8], Rarita and Schwinger (RS) [9],
Laporte and Uhlenbeck (LU) [10], Cap and Donnert (CD) [11–13], Bargmann and Wigner (BW) [14],
as well as to those of Joos [15] and Weinberg [16] (JW). Each one of them has some advantages over
the others, which however are as a rule gained at the cost of some specific problems. The key point in
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all the methods employed for high-spin description concerns the choice for the representation of the
Lorentz group that embeds the spin of interest. In the literature, there are two qualitatively distinct
kinds of finite-dimensional representations of the Lorentz group in use, those containing multiple spins
as parts of reducible tensor products and those containing one sole spin and represented by irreducible
column vectors. The tensor basis characteristic for the former case represents a significant advantage
over the latter as it enables construction of covariant interactions with external fields by simple
contractions of the SO(1, 3) indices. A disadvantage is the necessity to impose on such carrier space
conditions, termed as “auxiliary”, and supposed to remove the unwanted spin content, an expectation
that is met for free fields, but becomes problematic at the level of interactions. In the current work,
we present the technique of the covariant spin-Lorentz group projectors, which allows equipping
by Lorentz indices any finite-dimensional irreducible representation space through embedding in
properly-designed tensor products. Our special interest concerns representation spaces containing one
sole spin, in which case the problematic auxiliary conditions can be avoided, though it is applicable
to any type of representations. Our study is basically addressed to practitioners interested in speedy
calculations of cross-sections involving high spins, which can be executed by the aid of such symbolic
software as FeynCalc and based on Lorentz index contractions.

The paper is organized as follows. In the next section, we bring a glossary of the methods for
the high-spin description, which we classify according to the type of representation spaces used,
and briefly discuss their virtues and problems. In Section 3, we turn our attention to the spin-Lorentz
group projectors, the main subject of this article. Sections 4 and 5 contain examples of explicitly worked
out covariant projectors on spins varying from 1/2–2. The text closes with a brief summary.

2. Glossary of Methods for High Spin Description: Virtues and Problems

2.1. Multiple-Spin Valued Representations with Lorentz Tensors as Carrier Spaces

2.1.1. Methods Based on Auxiliary Conditions

• The method by Fierz and Pauli: So far, the most popular representations for spin-j boson
description are those of multiple spins, whose carrier spaces are Lorentz tensors of rank-j for spin
j bosons (Fierz–Pauli (FP) [8]),

Sym Φµ1 ...µj '
(

j
2

,
j
2

)
,

Jπ = 0+, 1−, . . . , j(−1)2j
. (1)

Here, Jπ stands for the spin-values contained in the Lorentz tensor, while π = ± denotes the
parity. The wave equations in the Fierz-Pauli approach to high-spin-j bosons read,

(∂2 + m2)Sym Φµ1 ...µi ...µj = 0,

tr Sym Φµ1 ...µi ...µj = 0,

∂µi Sym Φµ1 ...µi ...µj = 0. (2)

An example for an FP carrier space is given by the four-vector, (1/2, 1/2), which contains the two
spins 0+ and 1−:

Aµ '
(

1
2

,
1
2

)
,

Jπ ∈ 0+, 1−. (3)
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• The method by Rarita and Schwinger: Fermions of spin-j are interpreted according to the work
by Rarita and Schwinger [9] as the highest spin in a Lorentz tensor, Aµ1 ...µj−1/2 , of rank-(j− 1/2)
with Dirac spinor, ψ, components as,

Sym ψµ1 ...µ
j− 1

2
= Aµ1 ...µ

j− 1
2
⊗ ψ

'
(

j− 1
2

2
,

j− 1
2

2

)
⊗
[(

1
2

, 0
)
⊕
(

0,
1
2

)]
,

Jπ =
1
2

+

,
1
2

−
, . . . , (j− 1)+ , (j− 1)− , j(−1)(2j)

, (4)

where ψ ' (1/2, 0)⊕ (0, 1/2) is the standard notation for a Dirac spinor. The wave equations of
this approach are cast as,

(i∂/−m)Sym ψµ1 ...µi ...µj− 1
2

= 0,

γµi Sym ψµ1 ...µi ...µj− 1
2

= 0,

∂µi Sym ψµ1 ...µi ...µj− 1
2

= 0. (5)

The role of the auxiliary conditions is to remove all the lower spin degrees of freedom and
guarantee only those corresponding to the maximal spin. An example for an RS field is the
four-vector spinor, ψµ, the direct product of the four vector Aµ ' (1/2, 1/2) in (3) with the Dirac
spinor, ψ ' (1/2, 0)⊕ (0, 1/2), which is used for the description of spin-3/2,

ψµ = Aµ ⊗ ψ

'
(

1
2

,
1
2

)
⊗
[(

1
2

, 0
)
⊕
(

0,
1
2

)]
,

Jπ ∈ 1
2

+

;
1
2

−
,

3
2

−
. (6)

The two spin-(1/2)± sectors of opposite parities are supposed to be removed by the
auxiliary conditions.

The advantages of the above two methods are (i) the labeling of the representations by Lorentz
(four-vector) indices, which facilitates the construction of interactions with external fields by index
contractions, and (ii) the linear character of the differential equations for fermions.

However, the value of the aforementioned advantages is significantly diminished by the problems
that plague the above two approaches and that are caused by the fact that neat auxiliary conditions
can be formulated only for the case of free particles. For particles interacting with external fields, the
auxiliary conditions no longer serve their purpose, and inconsistencies such as acausal propagation of
the wave fronts of the solutions in the background of electromagnetic fields can occur, the so-called
Velo–Zwanziger problem [17]. Problems of this kind represent furthermore serious obstacles toward
the formulation of consistent quantum field theories for high spins [18] and even question the existence
of such particles as fundamental objects beyond the experimentally-verified constituent level.

2.1.2. Methods Based on Poincar é Group Spin and Mass Projectors and without Auxiliary Conditions

The auxiliary conditions in the use of multiple-spin valued representations can be avoided
by admitting for high-order differential equations. Such a case can emerge for example from
projector operators constructed from the two Casimir invariants of the in-homogeneous Lorentz
group, the Poincaré group, which are the squared linear momentum, p2, and the square,W2, of the
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Pauli–Lubanski pseudovector,Wµ, a method considered by Aurilia and Umezawa (AU) [19]. TheWµ

andW2 operators are defined as:

Wµ = −1
2

εµνρτ Mνρ pτ , (7)

W2 = −1
2

SµνSµν p2 + SµνSµλ pν pλ, (8)

where Sµν and Mµν are in turn the generators in a given representation (not necessarily reducible) of
the homogeneous and inhomogeneous Lorentz groups, discussed in more detail in the opening of
Section 3 below, while pµ are the generators of translations in the external spacetime.

• The method by Aurilia and Umezawa: The action of the p2 andW2 invariants on carrier spaces
of Lorentz group representations, here generically denoted by ψ(j1,j2)⊕(j2,j1), is as follows,

p2ψ(j1,j2)⊕(j2,j1) = m2ψ(j1,j2)⊕(j2,j1), (9)

W2ψ(j1,j2)⊕(j2,j1) = −p2 J(J + 1)ψ(j1,j2)⊕(j2,j1), J = |j1 − j2|, . . . , (j1 + j2). (10)

The two Casimir invariants can now be employed in the construction of projector operators on
spin-J and mass m, here denoted by P (m,J), exploiting the following properties,

P (m,J)ψ(j1,j2)⊕(j2,j1) = ψJ∈(j1,j2)⊕(j2,j1), (11)

P (m,J)ψ J̃∈(j1,j2)⊕(j2,j1) = 0, for J̃ 6= J. (12)

The AU method is best illustrated on the example of the particularly simple case of a representation
containing two spins, J and (J− 1), as is for example the four-vector spinor in (6). The most general
two-spin representation is

(
1
2 , j
)
⊕
(

j, 1
2

)
with J = j± 1/2, and has been considered by Hurley

in [20] as a 4(2j + 1) component column vector satisfying a Dirac-type linear differential equation.

Notice that this carrier space, containing spin-1/2± and spin-3/2−, is reducible according to:

ψµ '
(

1
2

,
1
2

)
⊗
[(

1
2

, 0
)
⊕
(

0,
1
2

)]
−→

[(
1
2

, 0
)
⊕
(

0,
1
2

)]
⊕
[(

1,
1
2

)
⊕
(

1
2

, 1
)]

' ψ
(1/2,0)⊕(0,1/2)
µ ⊕ ψ

(1,1/2)⊕(1/2,1)
µ . (13)

In this case, the two operators, P (m,J)(p), and P (m,(J−1))(p), in turn defined as,

P (m,J)(p) = − 1
2J

(
W2

m2 + J(J − 1)
p2

m2

)
, (14)

P (m,(J−1))(p) =
1
2J

(
W2

m2 + J(J + 1)
p2

m2

)
, (15)
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act as covariant spin and mass projectors on the irreducible sectors of ψµ as follows:

P (m,3/2)(p)ψ(1,1/2)⊕(1/2,1)
µ = −m2 3

2

(
3
2
+ 1
)

ψ
3/2−∈(1,1/2)⊕(1/2,1)
µ , (16)

P (m,1/2)(p)ψ(1,1/2)⊕(1/2,1)
µ = −m2 1

2

(
1
2
+ 1
)

ψ
1/2−∈(1,1/2)⊕(1/2,1)
µ , (17)

P (m,1/2)(p)ψ(1/2,0)⊕(0,1/2)
µ = −m2 1

2

(
1
2
+ 1
)

ψ
1/2+∈(1/2,0)⊕(0,1/2)
µ , (18)

P (m,1/2)(p)ψ3/2−∈(1,1/2)⊕(1/2,1)
µ = 0, (19)

P (m,3/2)(p)ψ1/2−∈(1,1/2)⊕(1/2,1)
µ = 0, (20)

P (m,3/2)(p)ψ1/2+∈(1/2,0)⊕(0,1/2)
µ = 0. (21)

The principle advantage of the covariant spin and mass projector method over the method by
Rarita and Schwinger lies in the absence of auxiliary conditions.

The disadvantages are (i) the increase of the order in the momenta of the wave equations like
p2n, with n being the number of the distinct redundant spins needed to be removed and (ii) the
undetermined parities of the solutions to the projector operators for fermions. The second
disadvantage is due to the fact that, while the spin-projector operators are of the order p2n in the
momenta, the covariant parity operators are of the order p2J . There are though cases in which the
equality p2n = p2J can be reached. Such is the case of spin-1− as part of the four-vector, (1/2, 1/2),
where only one spin, namely, spin-0+, has to be removed, a reason for which Proca’s equation
defined by the covariant projector on negative parity coincides with the equation following from
the spin-1− projector [21]. Furthermore, for the case of spin-2+ as part of (1, 1), a space from
which the two spins 0+ and 1− need to be removed will be of the fourth order in the derivatives,
the same as the order prescribed by the relevant parity projector. For fractional spins, in view
of the fact that 2n is always even, while 2J is always odd, p2n 6= p2J , and one faces the loss
of parity. Nonetheless, in [22,23], the P (m,J)(p)-based wave equations for spin-1 and spin-3/2,
both of second order in the momenta, have been shown to provide a very convenient point of
departure toward a more elaborate scheme, specifically well suited for the realistic description of
the couplings of such particles to an external electromagnetic field.

• The method by Napsuciale, Kirchbach, and Rodriguez for spin-3/2:

In [24], the Poincaré group projector method was introduced by the authors Napsuciale, Kirchbach,
and Rodriguez (NKR), anew and independently of [19], as an alternative to the Rarita–Schwinger
framework. There, the projector operator P (m,3/2)(p) was explicitly constructed and critically
analyzed. It has been observed that the only anti-symmetric term contained in it that couples to
the anti-commutator of two derivatives, [∂µ, ∂ν], is (−i)Mµν/3, where Mµν are the generators of
the homogeneous Lorentz group in the four-vector spinor representation. Upon gauging, this
term prescribes the gyromagnetic factor g 3

2
of the spin-3/2 particle to take the nonphysical value

of g 3
2
= 1/3. Such a case occurs because the squared Pauli–Lubanski operator does not contain

the full set of anti-symmetric terms (vanishing at the non-interacting level) and allowed by the
Lorentz symmetry to participate in the wave equation. Such terms acquire importance only upon
gauging because of:

[∂µ, ∂ν]→ [Dµ, Dν] = ieFµν, Dµ = ∂µ − ieAµ, (22)

where Fµν is the electromagnetic field strength tensor. Stated differently, the space-time
symmetries alone are insufficient to predict all the possible couplings to external fields required
by the dynamics. In order to remove this ambiguity, the strategy pursued in [24] has been to
include at the free particle level all the possible anti-symmetric terms compatible with Lorentz
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invariance, weight them by free parameters, and fix the latter by physical arguments. In so
doing, the following minimally-gauged wave equation for spin-3/2 transforming within ψµ has
been obtained:(

(π2−m2)gαβ− ig3
2

(
σµνπµπν

2
gαβ− eFαβ

)
+

1
3
(γαπ/−4πα)πβ +

1
3

(
παπ/−γαπ2

)
γβ

)
ψβ = 0, (23)

where πµ = pµ + eAµ and g 3
2

is a free parameter. In requiring this equation to satisfy the
Current–Hilbert criterion for having solutions whose wave fronts are causally propagating, the g 3

2
parameter could be fixed to g 3

2
= 2, a value that in addition ensures the unitarity of the forward

Compton scattering cross-sections [23]. In this fashion, the compatibility of the Poincaré group
projectors with minimal gauging has been demonstrated, and the major Velo–Zwanziger problem
of the Rarita–Schwinger framework could be avoided in the NKR method.

The natural way out of the problems of representations of multiple spins is turning one’s attention
to single-spin-valued representations.

2.2. Single-Spin-Valued Representations with Column Vectors as Carrier Spaces

The first time that a carrier space of a single-spin-valued bosonic representation has been
considered refers to spin-one and is due to work by Laporte and Uhlenbeck [10], who provided
an explicit construct of the (1, 0)⊕ (0, 1) Lorentz group representation space as a totally symmetric
tensor of rank-two with SL(2, C) spinor indices, also termed as Weyl spinor indices, and applied it to
the description of the electromagnetic field in Maxwell’s theory. Later, Cap and Donnert generalized
the method of Laporte and Uhlenbeck to the description of any spin j by means of totally symmetric
rank-2j multispinors. Unfortunately, these works remained largely unknown to the community and
will be presented in due place below.

The Method of Joos and Weinberg

So far, the method of single spins of the widest spread is due to Joos [15] and Weinberg [16],
and the bases of the irreducible representations are described in terms of column-vectors of 2(2j + 1)
components, the carries spaces of the (j, 0)⊕ (0, j) representations of the Lorentz group,

Ψ(j)
B ' (j, 0)⊕ (0, j) =



ψ
(j)
1

. . .

ψ
(j)
2j+1

ψ
(j)
(2j+1)+1

. . .

ψ
(j)
2(2j+1)


, B ∈ [1, 2(2j + 1)] . (24)

The first advantage of the JW method lies in the absence of auxiliary conditions, and the second
is that the solutions of (24) are of well-defined parity, this being because the equations have been
obtained from the covariant parity projectors on the representation spaces under consideration.

Yet, the idea of switching from multiple- to single-spin-valued representations has not been
quite prolific, indeed partly because of the loss of Lorentz indices in the labeling of the latter spaces,
which rules out the comfortable construction of interaction vertices through Lorentz index contractions,
habitual for the FP and RS methods.
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Moreover, differently from the RS approach, the 2(2j + 1)-component wave function, Ψ(j)
B ,

satisfies one sole differential equation, which is however of the high-order ∂2j according to:(
i2j
[
γµ1µ2 ...µ2j

]
AB

∂µ1 ∂µ2 . . . ∂µ2j −m2jδAB

)
Ψ(j)

B (x) = 0. (25)

Here,
[
γµ1µ2···−µ2j

]
AB

are the elements of the generalized Dirac Hermitian matrices of

dimensionality [2(2j + 1)]× [2(2j + 1)], which transform as Lorentz tensors of rank-2j. Differential
equations of orders higher than two can present various pathologies, among them the so-called
Ostrogradsky instability, and allow unwanted nonphysical solutions to exist [25], all problems that
motivate searches for different schemes. The Joos–Weinberg column vectors, the only irreducible
representation spaces of the homogeneous Lorentz group, are parity invariant and can only be
employed in the description of a pair of particles with opposite spatial parities. While for fermions, the
opposite parities are associated with particles and anti-particles, in the boson sector, parity doubling
is not the rule, despite some isolated examples known for constituent mesons. So far, only the
single-spin-one representation space, (1, 0) ⊕ (0, 1), enjoys lasting popularity as the field strength
tensor for spin-one gauge bosons.

2.3. Single-Spin-Valued Representations with Multispinors as Carrier Spaces

2.3.1. The Method of Laporte and Uhlenbeck for Spin-One

A different approach to single-spin-valued representation spaces has been pioneered by Laporte
and Uhlenbeck [10], and it refers to the carrier space of the (1, 0)⊕ (0, 1) Lorentz group representation.
There, the (1, 0) part is described as,

(1, 0) : f11 = ξ1ξ1, f22 = ξ2ξ2,

f12 = f21 =
1
2
(ξ1ξ2 + ξ2ξ1) , (26)

while the (0, 1) part is associated with:

(0, 1) : f
•
1
•
1 = η•

1
η•

1
, f

•
2
•
2 = η•

2
η•

2
,

f
•
1
•
2 = f

•
2
•
1 =

1
2

(
η•

1
η•

2
+ η•

2
η•

1

)
. (27)

Here, a two-dimensional vector, ξ, whose complex components are ξα with α = 1, 2, termed as
the Weyl spinor, has been introduced as one of the two nonequivalent fundamental representations
of the SL(2, C) group, the universal covering of the Lorentz group. The carrier space of the other

fundamental SL(2, C) representation is defined by the so-called co-spinor, here denoted by
•
η, whose

components are η•
β
, with

•
β=
•
1,
•
2. The two spinors under discussion correspond in turn to the carrier

spaces of the left- and (1/2, 0) and right-handed (0, 1/2) representations,(
0,

1
2

)
: ξ =

(
ξ1

ξ2

)
,

(
1
2

, 0
)

:
•
η=

(
η•

1
η•

2

)
. (28)
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They are related by charge conjugation according to [26,27],(
η•

1
η•

2

)
= C

(
η1

η2

)∗
, C =

(
0 1
−1 0

)
, (29)

where C is the metric tensor in spinor space, while “∗” denotes complex conjugation. The C matrix
(equal to the two-dimensional Levi–Civita tensor εαβ = εαβ) serves to raise and lower indices in

spinor/co-spinor space according to ξα = εαβξβ, ξ
•
α = ε

•
α
•
βξ •

β
, amounting to:

ξ1 = ε12ξ2 = ξ2, ξ2 = ε21ξ1 = −ξ1, (30)

η•
1
= η

•
2 η•

2
= −η

•
1. (31)

Correspondingly, a four-derivative with spinor indices is introduced on the basis of the
four-derivative ∂µ as:

i∂µ −→ i∂α
•
β = i

(
∂0 + ∂3 ∂1 − i∂2

∂1 + i∂2 ∂0 − ∂3

)
= i∂0 σ0 + i ∑

i
∂iσ

i = p0σ0 + ~p ·~σ,

i∂µ = i
∂

∂xµ ⇒ pµ, (32)

i∂µ −→ i∂
α
•
β

= i

(
∂0 + ∂3 ∂1 + i∂2

∂1 − i∂2 ∂0 − ∂3

)
= i∂0[σ0

]T
+ ∑

i
i∂i[σi]T

= p0σ0 − ~p ·~σT ,

i∂µ = i
∂

∂xµ
⇒ pµ, (33)

where the upper script T stands for “transpose”, and we use metric signature (+,−,−,−).
Spinors and co-spinors then satisfy the following kinematic equations,

i∂α
•
βη•

β
= mξα, (34)

i∂
α
•
β
ξα = mη•

β
, (35)

where m is a constant mass. According to the LU approach, the Maxwell equations are encoded by the
following equations,

i∂α
•
β f •

β
•
γ

= µ0 Jα •
γ

, Jα
•
γ =

(
J0 − J3 −J1 + i J2

−J1 − i J2 J0 + J3

)
, (36)

where Jα •
γ

defines the four-current in spinor space and transforms according to the carrier space

of the (1/2, 1/2) representation. Notice that the latter can be written as (j− 1/2, 1/2) for j = 1/2,
an observation to become relevant in what follows. Similarly, for the (0, 1) part,

i∂α
•
β fαδ = µ0 J

•
β

δ, (37)

holds valid.

2.3.2. The Method of Cap and Donnert for Charged Particles of Any Spin

The Laporte–Uhlenbeck method to single-spin-one has been generalized to any single-spin-j by
Cap and Donnert. The carrier spaces of the single-spin-valued (j, 0)⊕ (0, j) representations have been
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described in [11–13] in terms of four types of spinor-tensors. The first two are the totally symmetric
rank-2j tensors,

(j, 0) : fν1 ...ν2j = Sym ξν1 ξν2 . . . ξν2j ,

(0, j) : f
•
µ1···

•
µ2j = Sym η

•
µ1 η

•
µ2 . . . η

•
µ2j , (38)

and the third and the fourth spinor tensors are auxiliary and assumed as:(
j− 1

2
,

1
2

)
: J

•
µ1

ν2 ...ν2j ,(
1
2

, j− 1
2

)
: J

•
µ2···

•
µ2j

ν1 , (39)

here in contemporary notations. Then, the wave equations are extensions of the linear Dirac spinor
equation and are given by:

∂
•
µ1ν1 J

•
µ2···

•
µ2j

ν1 = i
mc
h̄

f
•
µ1···

•
µ2j , (40)

∂•
µ1ν1

f
•
µ1
•
µ2···

•
µ2j = i

mc
h̄

J
•
µ2···

•
µ2j

ν1 , (41)

and:

∂•
µ1ν1

J
•
µ1

ν2 ...ν2j = i
mc
h̄

fν1 ...ν2j , (42)

∂
•
µ1ν1 fν1ν2 ...ν2j = i

mc
h̄

J
•
µ1

ν2 ...ν2j , (43)

correspondingly, where m is the mass parameter. The suggestion is to eliminate the generalized
currents and end up with the following two second order differential equations,(

�− m2c2

h̄2

)
fν1ν2 ...ν2j = 0, (44)(

�− m2c2

h̄2

)
f
•
µ1
•
µ2···

•
µ2j = 0, (45)

where � is the D’Alembertian. The virtue of this framework is that it does not suffer at the classical
level the pathology of the Fierz–Pauli and Rarita–Schwinger methods, because upon gauging, it is
transformed to: (

DµDµ − m2c2

h̄2

)
fν1ν2 ...ν2j =

e
h̄c

(
~S · ~F

)
fν1ν2 ...ν2j ,(

DνDν − m2c2

h̄2

)
f
•
µ1
•
µ2···

•
µ2j =

e
h̄c

(
~S · ~F

)
f
•
µ1
•
µ2···

•
µ2j ,

Dµ = ∂µ +
ie
h̄c

Aµ, ~F = ~H − i~E. (46)

Here, Aµ stands for the electromagnetic gauge field, Dµ is the covariant derivative, while ~H and
~E denote in turn the magnetic and electric field strengths. The components of the spin vector ~S are
(2j + 1)× (2j + 1) matrices, which represent the generators of spin in (j, 0) and (0, j). Equations of this
type are currently known as “generalized Feynman–Gell-Mann” equations in reference to a popular
work by Feynman and Gell-Mann [28], in which the square of the gauged Dirac equation was shown
to be shaped after (46). Second order equations of this type have well-behaved solutions whose wave
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fronts satisfy the criterion of causal propagation (see [21] for a recent reference). Moreover, the method
is quite promising to avoid inconsistencies also at the quantum level.

Indeed, a Lagrangian for the fν1 ...ν2j tensor can be considered along the lines of [29,30] and
given by:

L = a ∂µ1 f †
ν̇1 ν̇2 ...ν̇2j

σµ1 ν̇1ν1 σµ2 ν̇2ν2 . . . σµ2j ν̇2jν2j ∂µ2 . . . ∂µ2j fν1ν2 ...ν2j + b, ∂µ f ν1ν2 ...ν2j ∂µ fν1ν2 ...ν2j

+ terms with less or equal number of derivatives + m2j f ν1ν2 ...ν2j fν1ν2 ...ν2j

+ Hermitian conjugate terms, (47)

where σµ
•
αα = (σ0,−~σ),~σ =

(
σx, σy, σz

)
, σx, σy and σz are the Pauli matrices, and a and b are constant

parameters. In [30], the Laporte–Uhlenbeck case of a tensor-spinor of second rank was worked out
along the lines of (47) by means of the canonical constraint Hamiltonian quantization procedure,
and there, it could be shown that for a + b = 1, the Hamiltonian is free from negative energy solutions
and presents itself diagonal in the particle creation and annihilation operators. In comparison to
the (j, 0)⊕ (0, j) ∼ ΦB column-vector field in (25), the Lagrangian in (47) has the advantage that the
corresponding equation contains more terms and thus provides more possibilities to avoid instabilities
of the Hamiltonian through favorable cancellations in the calculations of Dirac brackets, despite its
high order in the derivatives, an observation reported in [30].

2.4. Single-Spin-Valued Representations with Dirac Spinor-Tensors as Carrier Spaces: The Bargmann–Wigner Framework

A further option for spin-j description is given by the totally-symmetric product, of n = 2j copies
of a Dirac spinor, ψ ' (1/2, 0)⊕ (0, 1/2), where (1/2, 0) and (0, 1/2) are the right- and left-handed
Weyl–Van der Waerden two-component spinors corresponding to the two nonequivalent fundamental
SL(2, C) representation spaces, also known as “spinor” (ξ) and “co-spinor” (η̇),

Sym Ψ(n)
b1···j ···n = Sym ψb1 . . . ψbn ' Sym

[(
1
2

, 0
)
⊕
(

0,
1
2

)]
1
⊗ · · · ⊗

[(
1
2

, 0
)
⊕
(

0,
1
2

)]
n

, (48)

where bi = 1, 2, 3, 4, a scheme known as the Bargmann–Wigner (BW) method [14]. The BW rank-n
spinor [14] satisfies also a high-order differential equation, which reads,(

γµ pµ −m
)a1b1 . . . (γµ pµ −m)aibi . . .

(
γµ pµ −m

)anbn Sym Ψb1···i ···n = 0. (49)

This method is very similar to the Joos–Weinberg approach and shares with the latter almost all
the advantages and disadvantages. There is though a distinction, which will be pointed out in the
concluding section.

2.5. Single-Spin-Valued Representations with Lorentz Tensors as Carrier Spaces

A method for a single-spin-valued description that is distinct from all the previous ones
was suggested by Acosta, Guzmán, and Kirchbach (AGK) [22], where it was shown how carrier
spaces of (j, 0) ⊕ (0, j) representations can be equipped by SO(1, 3) vector indices. In this way,
single-spin-valued representations could be upgraded by one of the main advantages of the
multiple-spin-valued representations.
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The Method of Acosta, Guzmán, and Kirchbach

In one of the possibilities, a bosonic (j, 0)⊕ (0, j) carrier space can be embedded by direct products
of j copies of the totally anti-symmetric Lorentz tensor of second rank, B[µν], according to,

(j, 0)⊕ (0, j) : Ψ(j,0)⊕(0,j)
[µ1ν1]...[µjνj]

∈ B[µ1ν1]
⊗ · · · ⊗ B[µjνj]

,

B[µ1ν1]
' (1, 0)⊕ (0, 1) , (50)

where the brackets indicate index anti-symmetrization. Another option is to embed it into direct
products of totally-symmetric Lorentz tensors of second rank, G{µν}, as:

(j, 0)⊕ (0, j) : Ψ(j,0)⊕(0,j)
{µ1ν1}...{µjνj}

∈ G{µ1ν1} ⊗ · · · ⊗ G{µjνj},

G{µiνi} ' (1, 1), (51)

where the curly brackets indicate index symmetrization. The direct product of the tensors, be it in (50) or
(51) with a Dirac spinor, can then be employed in the description of fermionic (j± 1/2, 0)⊕ (0, j± 1/2)
fields. Take as an illustrative example the simplest case of embedding (3/2, 0)⊕ (0, 3/2) in B[µν] ⊗ ψ.
Direct products of such types are reducible, and specifically, the latter one decomposes into irreducible
sectors according to:

ψ
(3/2,0)⊕(0,3/2)
[µν]

∈ B[µν] ⊗ ψ

= ψ
(3/2,0)⊕(0,3/2)
[µν]

⊕ ψ
(1/2,1)⊕(1,1/2)
[µν]

⊕ ψ
(1/2,0)⊕(0,1/2)
[µν]

'
[(

3
2

, 0
)
⊕
(

0,
3
2

)]
⊕
[(

1
2

, 1
)
⊕
(

1,
1
2

)]
⊕
[(

1
2

, 0
)
⊕
(

0,
1
2

)]
. (52)

The carrier space under discussion contains the pure spin-3/2, and if there were to exist
a possibility to reduce this space without loosing the Lorentz index labeling, it would become possible
to describe (3/2, 0)⊕ (0, 3/2) by means of ψ

(3/2,0)⊕(0,3/2)
[µν]

. Such a possibility does indeed exists and is

provided by a momentum-independent projector, here denoted by P (3/2,0)⊕(0,3/2)
F . The procedure for

the construction of such projector operators is the subject of Section 3 and will be presented in more
detail there. Wave equations can then be designed in the simplest way, be it in employing the spin and
mass projector, P (m,3/2), or by just setting ψ

(3/2,0)⊕(0,3/2)
[µ,ν] on its mass shell according to,

�
[
P (3/2,0)⊕(0,3/2)

F

]
[µ,ν]

[η,ρ]
a

b
[
ψ
(3/2,0)⊕(0,3/2)
[η,ρ]

]
b
= m2

[
ψ
(3/2,0)⊕(0,3/2)
[µν]

]
a

, (53)

where a is the Dirac spinor index. The advantage of the method under discussion consists of
(i) adapting one of the advantages of the multiple-spin valued representation spaces, namely their
labeling by SO(1, 3) vector indices, to those of single spins, and (ii) lowering the order in the
momenta of the Joos–Weinberg equations from p2j to the universal p2. In this scheme, otherwise
cumbersome procedures such as vertex constructions and calculations of scattering amplitudes are
significantly simplified.

It needs to be noted that the glossary presented above is highly incomplete, indeed both as
regards the variety of methods and the multitude of problems. In particular, the important work by
Bhabha [31] on multicomponent linear equations has remained out of the scope of the present work.
Moreover, the problems of Lagrangian description and quantization of field theories including high
spins, among them seminal works by Singh and Hagen [32], could not be duly attended. The path taken
here by us was chosen on the one side for the sake of keeping the presentation of the manuscript more
focused on its prime goal concerning the promotion of the representation reduction algorithm and, on
the other, for the purpose of avoiding repetitions of material already contained in such exhaustive
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reviews on the subject, as is the text in [33]. Specifically in the last reference, the interested reader may
find many illuminating discussions on the various aspects of high spin field theories and possibly
encounter some inspiring suggestions regarding further developments.

3. Casimir Invariants of the Homogeneous Spin Lorentz Group and Representation Reduction
through Covariant Projector Operators

The Lorentz group, which transforms the internal spin degrees of freedom, termed as the
spin-Lorentz group and denoted by, L, is a subgroup of the full Lorentz group, which acts as well on
the spin as on the external space-time degrees of freedom. The respective L generators, denoted by Sµν,
are quadratic d× d constant matrices, where d is an integer that determines the finite-dimensionality
of the internal representation space and encodes the spin value. For the particular case of a single
spin, dimensionality and spin are related as d = 2(2j + 1), while for representations of multiple
spins, relations of the type d = ∑i(2ji + 1), or, d = 2 ∑i(2ji + 1), can hold valid. The algebra of the
spin-Lorentz group, termed as the homogeneous spin-Lorenz group (HSLG), reads [34],

L :
[
Sµν, Sρσ

]
= i(gµρSνσ − gνρSµσ + gµσSρν − gνσSρµ). (54)

It has two Casimir invariants, here denoted by F and G, respectively, and defined as,

FAB =
1
4
[Sµν]AD

[
Sµν

]
DB , GAB =

1
8

εµν
αβ [Sµν]AC

[
Sαβ

]
CB , A, B, C, D, · · · = 1, . . . , d. (55)

The Sµν matrices, in being coordinate independent, commute with the generators of external
translations, Pµ, and therefore also with the generators of external boosts and rotations, Lµν,
The generators of the complete homogeneous Lorentz group operating in the internal and external
spacetimes are then defined as:

Mµν = Lµν + Sµν. (56)

As a consequence of (54), the HSLG Casimir invariants being independent of the external
coordinates commute with Lµν and pµ without being Casimir invariants of the Poincaré group.
This subtle virtue qualifies them as very useful identification tools of finite-dimensional representations
by providing their labelings according to (j1, j2)⊕ (j2, j1), where j1 and j2 are termed as right- and
left-handed spins [34]. As an important detail, one has to take care that the Casimir operators in (55)
are always diagonal in the decomposition into irreducible sectors of the direct product spaces of the
types in (50)–(52).

With that in mind, the F operator in (55) unambiguously identifies through its eigenvalues
within any direct product space a given irreducible finite-dimensional representation space, here
generically denoted by, ψ(j1,j2)⊕(j2,j1) = φ

(j1,j2)
R ⊕ φ

(j2,j1)
L , where φ

(j1,j2)
R and φ

(j2,j1)
L are in turn its right-

and left-handed chiral components, according to,

F ψ(j1,j2)⊕(j2,j1) = c(j1,j2)ψ
(j1,j2)⊕(j2,j1),

c(j1,j2) =
1
2

(
K(K + 2) + M2

)
,

K = j1 + j2, M = |j1 − j2|. (57)

Afterward, by the aid of the G invariant, the chiral parts can be identified as,

G φ
(j1,j2)
R = r(j1,j2)φ

(j1,j2)
R , G φ

(j2,j1)
L = r(j2 j1)φ

(j2,j1)
L , (58)

r(j1,j2) = −r(j2 j1) = i(K + 1)M. (59)
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In [22], the idea was developed to use the Casimir invariant F in the construction of momentum
independent (static) projectors on reflection symmetric irreducible sectors of the Lorentz tensor-spinor
in (52) and to explore the consequences.

Such a projector, here denoted by P (3/2,0)⊕(0,3/2)
F , which identifies the irreducible

(3/2, 0)⊕ (0, 3/2) representation space in (52), has been constructed from F in (57) as:

P (3/2,0)⊕(0,3/2)
F =

(
F− c(1,1/2)

c(3/2,0) − c(1,1/2)

)(
F− c(1/2,0)

c(3/2,0) − c(1/2,0)

)
,

c(1/2,0) =
3
4

, c(3/2,0) =
15
4

, c(1,1/2) =
11
4

. (60)

Equation (60) reveals how the operator P (3/2,0)⊕(0,3/2)
F nullifies any irreducible representation

space, which is different from (3/2, 0)⊕ (0, 3/2). At the same time, for (3/2, 0)⊕ (0, 3/2), it acts as
the identity operator, which means that P (3/2,0)⊕(0,3/2)

F is a projector on this very space. In recalling

the notation of the spin-3/2 wave function,
[
ψ
(3/2,0)⊕(0,3/2)
[µ,ν]

]
a
, we find:

[
P (3/2,0)⊕(0,3/2)

F

]
[µ,ν]

[η,ρ]
a

b
[
ψ
(3/2,0)⊕(0,3/2)
[η,ρ]

]
b
=
[
ψ
(3/2,0)⊕(0,3/2)
[µ,ν]

]
a

. (61)

The covariant form of this projector (before mentioned in (53)) has been elaborated in [22]
and reads, [

P (3/2,0)⊕(0,3/2)
F

]
αβ;γδ

=
1
8
(
σαβσγδ + σγδσαβ

)
− 1

12
σαβσγδ, (62)

with σµν standing for σµν = i
[
γµ, γν

]
/2, where γµ are the Dirac matrices.

4. Decomposition of the Product Space Tµν ' (1/2, 1/2)⊗ (1/2, 1/2) by Spin-Lorentz Group
Projectors: A Template Example

The direct product space of two four-vectors, Tµν = Aµ ⊗ Aν ' (1/2, 1/2)⊗ (1/2, 1/2), is well
studied, and its reduction is textbook knowledge. Namely, it decomposes into the following three
irreducible parity-invariant representation spaces:

(1/2, 1/2)⊗ (1/2, 1/2) = (0, 0)⊕ [(1, 0)⊕ (0, 1)]⊕ (1, 1). (63)

According to Chapter 33 in [29], the covariant form of the latter equation reads,

Tµν =
1
4

gµνT α
α +

[
TA
]

µν
+
[

TS
]

µν
, (64)

where the symmetric
[
TS]

µν
and antisymmetric

[
TA]

µν
are given by,

[
TA
]

µν
=

1
2
(
Tµν − Tνµ

)
, (65)[

TS
]

µν
=

1
2
(
Tµν + Tνµ

)
− 1

4
gµνT α

α , (66)

respectively, while Tα
α stands for the trace. More specifically,

1
4

gµνTα
α,
[
TS]

µν
, and

[
TA]

µν
transform

in turn as (0, 0), (1, 1), and (1, 0)⊕ (0, 1). In the following, we shall demonstrate how this result can be
reproduced by means of spin-Lorentz group projectors.
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4.1. Projectors on Reflection Symmetric Spaces

The spin-Lorentz group projectors on reflection symmetric (parity-invariant) irreducible carrier
spaces are built up from the Casimir invariant in (57) using the general expression,

P (j1,j2)⊕(j2,j1)
F = ∏

k,l 6=j1,j2

(
F− c(jk ,jl)

c(j1,j2) − c(jk ,jl )

)
, (67)

where c(j1,j2) are defined according to (57), which equivalently is rewritten as:

Fψ(j1,j2)⊕(j2.j1) = c(j1,j2)ψ
(j1,j2)⊕(j2,j1), c(j1,j2) = j1(j1 + 1) + j2(j2 + 1). (68)

Executing the prescription of Equation (67), we constrict below the
[
P (0,0)

F

]
αβγδ

,
[
P (1,0)⊕(0,1)

F

]
αβγδ

,

and
[
P (1,1)

F

]
αβγδ

projector operators. As a first step toward the construction of the spin-Lorentz

projectors, one has to calculate the generators,
[
ST

µν

]
αβγδ

, in the Tµν product space, which are obtained

from the generators,
[
SV

µν

]
αβ

, of the four-vector representation space, (1/2, 1/2), as:

[
ST

µν

]
αβγδ

=
[
SV

µν

]
αγ

gβδ +
[
SV

µν

]
βδ

gαγ. (69)

From that, the Casimir invariants F and G emerge as:

Fαβγδ = 3gαγgβδ + gβγgαδ − gδγgαβ, (70)

Gαβγδ = −εαβδγ, (71)

and their respective eigenvalues are:

c(0,0) = 0, c(1,0) = 2, c(1,0) = 4, (72)

r(1,0) = −r(0,1) = 2i. (73)

Using (70)–(73), we obtain that the spin-Lorentz projectors for the the second rank tensor space are:

[
P (0,0)

F

]
αβγδ

=

(
Fαβσρ − c(1,0)1αβσρ

c(0,0) − c(1,0)

)(
Fσργδ − c(1,1)1σργδ

c(0,0) − c(1,1)

)

=
1
4

gαβgδγ, (74)[
P (1,0)⊕(0,1)

F

]
αβγδ

=

(
Fαβσρ − c(0,0)1αβσρ

c(1,0) − c(0,0)

)(
Fσργδ − c(1,1)1σργδ

c(1,0) − c(1,1)

)

=
1
2
(

gαγgβδ − gβγgαδ

)
, (75)[

P (1,1)
F

]
αβγδ

=

(
Fαβσρ − c(0,0)1αβσρ

c(1,1) − c(0,0)

)(
Fσργδ − c(1,0)1σργδ

c(1,1) − c(1,0)

)

=
1
2
(

gαγgβδ + gβγgαδ

)
− 1

4
gαβgδγ. (76)

Here, we defined the identity 1αβγδ for the second rank tensor space as:

1αβγδ = gαγgβδ, (77)

and in such a way that 1αβγδ has the proper ordering in the indices to carry out the contractions.
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Applying the spin-Lorentz projectors
[
P (0,0)

F

]
αβγδ

,
[
P (1,0)⊕(0,1)

F

]
αβγδ

, and
[
P (1,1)

F

]
αβγδ

to Tµν

amounts to the following decomposition,

Tµν = 1µναβTαβ,

=

([
P (0,0)

F

]
µναβ

+
[
P (1,0)⊕(0,1)

F

]
µναβ

+
[
P (1,1)

F

]
µναβ

)
Tαβ,

=
1
4

gµνT +
[

TA
]

µν
+
[

TS
]

µν
. (78)

Here, T is the trace of Tµν, and
[
TA]

µν
is an antisymmetric tensor of second rank, while

[
TS]

µν
is

a symmetric traceless second rank tensor. With that, Equations (64)–(66) were reproduced, as expected.

4.2. Chiral Projectors

The parity-invariant irreducible representations are composed by two chiral components, given
in more detail in Equations (94) and (95) below, which can be separated by two projectors, denoted by
P (j1,j2)

G and P (j2,j1)
G , which are based on the G invariant in (59). These projectors are defined in parallel

to (67) and are given by,

P (j1,j2)
G =

G− r(j2,j1)

r(j1,j2) − r(j2,j1)
, (79)

P (j2,j1)
G =

G− r(j1,j2)

r(j2,j1) − r(j1,j2)
. (80)

Through their action on ψ(j1,j2)⊕(j2,j1),

P (j1,j2)
G ψ(j1,j2)⊕(j2,j1) = φ

(j1,j2)
R ,

P (j2,j1)
G ψ(j1,j2)⊕(j2,j1) = φ

(j2,j1)
L , (81)

the left- and right-handed chiral components, introduced in (58), are singled out.
Along this line, in the particular case under consideration, the parity-invariant antisymmetric

tensor, (1, 0)⊕ (0, 1), can further be reduced into its right- and left-handed components by the chiral
spin-Lorentz projectors,

[
P (1,0)

G

]
αβγδ

and
[
P (0,1)

G

]
αβγδ

, in turn given by:

[
P (0,1)

G

]
αβγδ

=

(
Gαβγδ − r(1,0)1αβγδ

r(0,1) − r(1,0)

)
,

=
1
2

gαγgβδ +
1
4

iεαβγδ, (82)[
P (1,0)

G

]
αβγδ

=

(
Gαβγδ − r(0,1)1αβγδ

r(1,0) − r(0,1)

)
,

=
1
2

gαγgβδ −
1
4

iεαβγδ. (83)

Now, applying
[
P (1,0)

G

]
αβγδ

and
[
P (0,1)

G

]
αβγδ

to
[
TA]

µν
amounts to:

[
TA
]

µν
= 1µναβ

[
TA
]αβ

,

=

([
P (1,0)

G

]
µναβ

+
[
P (0,1)

G

]
µναβ

) [
TA
]αβ

,

= Dµν + D̃µν. (84)
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Here, Dµν is a self-dual tensor, which transforms according to (1, 0), and D̃µν is an anti-self dual
tensor transforming according to (0, 1), which are calculated as:

Dµν =
1
2

[
TA
]µν
− i

4
εµναβ

[
TA
]αβ

, (85)

D̃µν =
1
2

[
TA
]µν

+
i
4

εµναβ

[
TA
]αβ

, (86)

and in accord with Chapter 34 in [29]. This template example shows that the spin-Lorentz
group projector technique suggested in [22,35] and advocated here provides results equivalent to
representation reductions based on index symmetrization and anti-symmetrization. In the subsequent
section, we shall decompose the direct product space of a four-vector with a Dirac spinor.

5. Decomposition of the Four-Vector Spinor ψµ by Spin-Lorentz Group Projectors

The four-vector spinor space, ψµ, decomposes into the two irreducible parity-invariant
representation space given in the above Equation (13).

5.1. Projectors on the Reflection Symmetric Carrier Spaces

The aforementioned two sectors can be separated by spin-Lorentz projectors, denoted by[
P (0,1/2)⊕(0,1/2)

F

]
αβ

and
[
P (1,1/2)⊕(1/2,1)

F

]
αβ

. In the case of our interest, the four-vector-spinor space,

the generators are [24,35]: [
Sµν

]
αβ;ab =

[
SV

µν

]
αβ

δ1b + gαβ

[
Sµν

]
ab , (87)

where
[
SV

µν

]
αβ

are the generators of the four-vector space, (1/2, 1/2), while
[
Sµν

]
ab are the generators

in the Dirac spinor space, (1/2, 0)⊕ (0, 1/2). The expressions are well known [35] and read,[
SV

µν

]
αβ

= i
(

gαµgβν − gανgβµ

)
, (88)

Sµν =
1
2

σµν =
i
4
[
γµ, γν

]
. (89)

Then, the F Casimir in (57) emerges as:

Fαβ =
9
4

gαβ +
i
2

σαβ, (90)

and its eigenvalues for the decomposition in (13), which follow from (68), are found as:

c(1/2,0) =
3
4

, c(1,1/2) =
11
4

. (91)

Substituting of (91) and (90) in (67), the spin-Lorentz group projectors under discussion are now
calculated as: [

P (0,1/2)⊕(1/2,0)
F

]
αβ

=
1
4

γαγβ, (92)[
P (1,1/2)⊕(1/2,1)

F

]
αβ

= gαβ −
1
4

γαγβ, (93)
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a result due to [35]. When they are contracted with any general four-vector spinor ψβ, the resulting
states transform according to,[

P (0,1/2)⊕(1/2,0)
F

]
αβ

ψβ =
1
4

γαγ · ψ = ψ
(0,1/2)⊕(1/2,0)
α , (94)[

P (1,1/2)⊕(1/2,1)
F

]
αβ

ψβ = ψα −
1
4

γαγ · ψ = ψ
(1,1/2)⊕(1/2,1)
α . (95)

In order to make Equation (94) more transparent, more details on ψ need to be given. Besides the
spin-3/2− spinors, there are two sorts of spin-1/2 momentum space spinors that span ψµ. The first is
denoted by USS

α and the second by UVS
α . In [35], they were expressed as:

[
USS

]α
(

p, Jπ =
1
2

+

,±1
2

)
=

pα

m
u±

(
p,±1

2

)
, (96)[

UVS
]α
(

p, Jπ =
1
2

−
,±1

2

)
=

1√
3m

(−pα + γα p/) u±

(
p,±1

2

)
, (97)

respectively, where u+ and u− are in turn the shorthand for Dirac’s u and v spinors. Let us apply on
each one of them the

[
P (0,1/2)⊕(1/2,0)

F

]
αβ

projectors. In so doing, one arrives at:

[
P (0,1/2)⊕(1/2,0)

F

]
αβ

[
USS

]α
(

p, Jπ =
1
2

+

,±1
2

)
=

1
4m

γα p/u±

(
p,±1

2

)
,[

P (0,1/2)⊕(1/2,0)
F

]
αβ

[
UVS

]α
(

p, Jπ =
1
2

+

,±1
2

)
=

√
3

4m
γα p/u±

(
p,±1

2

)
. (98)

The latter equations show that each one of the two spin-1/2 Rarita–Schwinger spinors USS
α ,

and UVS
α contains the spinor:

1
4m

γα p/u±

(
p,±1

2

)
= ψ

(0,1/2)⊕(1/2,0)
α . (99)

This spinor has four independent components, and it is obvious that a contraction by γα amounts
to p/u±/m, the solution of the Dirac equation,

γ · ψ(0,1/2)⊕(1/2,0) =
p/
m

u±

(
p,±1

2

)
= u±

(
p,±1

2

)
. (100)

This is the proof that the P (0,1/2)
F projector correctly identifies the Dirac space in ψµ. Moreover,

in [35], the spinor in (99) was employed in the calculation of Compton scattering off a spin-1/2 particle,
and the precise cross-sections typical for the traditional Dirac spinor were reproduced, thus providing
an additional cross check for the correctness of the projector used. In a similar way, all the remaining
identities can be verified.

In particular, the expression:

1
m

(
pα −

1
4

γα p/
)

u±

(
p,±1

2

)
= ψ

(1,1/2)⊕(1/2,1)
α , (101)

could be obtained in [35]. Contraction of the latter equation by pα leads to:

p · ψ(1,1/2)⊕(1/2,1) =
3
4

mu±. (102)
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The ψ
(1,1/2)⊕(1/2,1)
α part of the spin-3/2 Rarita–Schwinger field provides an example of how

a representation space of the type (1/2, j)⊕ (j, 1/2) used by Hurley [20] can be equipped by Lorentz
indices (one index in this case).

Actually, the genuine Rarita–Schwinger equation could be:

(p/−m)ψ
(1,1/2)⊕(1/2,1)
α = 0,

p · ψ(1,1/2)⊕(1/2,1) =
3
4

mu±. (103)

Alternatively, the spin-3/2 can be identified also by a second order equation as:

P (m,3/2)ψ
(1,1/2)⊕(1/2,1)
α = −15

4
m2ψ

3/2−∈(1,1/2)⊕(1/2,1)
α , (104)

withP (m,3/2) in (16). Finally, upon applying to ψ
(1,1/2)⊕(1/2,1)
α the spin-1/2 and mass projector, P (m,1/2)

from (17), a wave equation for spin- 1
2
− ∈ (1/2, 1)⊕ (1, 1/2) was found there as:

P (m,1/2)ψ
(1,1/2)⊕(1/2,1)
α = −3

4
m2ψ

1/2−∈(1,1/2)⊕(1/2,1)
α . (105)

It should be noticed that the Lagrangian description of high spins presents some difficulties
already at the classical field theoretic level. Specifically within the Rarita–Schwinger formalism, the
problem concerns the incorporation of the auxiliary conditions, which can be done to some extent at
the cost of the introduction of a free parameter, which however introduces upon gauging ambiguities
through so-called “off-shell parameters”. More details can be found among others in the Introduction
to [24]. As a comparison, the second order equation in (104) in its extended version in (23) was derived
from a classical Lagrangian in [24]. Furthermore, there, it was shown that for a gyromagnetic factor
taking the “natural” value of g3/2 = 2, the wave fronts of the solutions propagate causally in the
background of an electromagnetic field and thus avoid the acausality inconsistency. Admittedly,
the quantization of this Lagrangian has not be studied so far. The fact is that the quantization of field
theories of high spins coupled to external fields still remains an unsolved problem. We here take for
the time being the position that Lagrangians of the type presented in (47) may have chances to provide
consistent field theories for at least some of the high spin fields. A further challenge emerging in
high-spin theories concerns problems of the stability of quantized high-spin fields placed in external
time-dependent potentials [36–38]. For the time being, these issues go beyond the scope of the present
work, but should be kept in mind as important topics for future research.

5.2. Projectors on the Chiral Components

The most illustrative example for a chiral projector is provided by the Dirac space. There, one finds:

G(0,1/2) = G(1/2,0) = −3
4

iγ5,

G(0,1/2)ψ(0,1/2) = −3
4

i, G(1/2,0)ψ(1/2,0) =
3
4

i, (106)

which upon substitution in (79) and (80) amounts to the following projectors,

P (0,1/2)
G =

1− γ5

2
,

P (1/2,0)
G =

1 + γ5

2
. (107)
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These are the very well-known projectors on right- and left-handed Dirac spinors. The example
reveals the origin of the γ5 matrix from the G Casimir invariant of the homogeneous
spin-Lorentz group.

In the more complicated case of the four-vector spinor space, the G operator in (55) takes the form:

Gαβ =
i
4

εαβµνσαβ − 3i
4

γ5gαβ, (108)

and its eigenvalues are calculated as:

r(0,1/2) =
3i
4

, r(1,1/2) = −
5i
4

. (109)

Substitution in (79) and (80) allows writing down all possible Lorentz projectors of interest as:[
P (0,1/2)

G

]
αβ

= −1
2

γ5gαβ +
1
2

gαβ +
1
6

εαβµνσµν, (110)[
P (1/2,0)

G

]
αβ

=
1
2

γ5gαβ +
1
2

gαβ −
1
6

εαβµνσµν, (111)[
P (1,1/2)

G

]
αβ

=
3
10

γ5gαβ +
1
2

gαβ −
1
10

εαβµνσµν, (112)[
P (1/2,1)

G

]
αβ

= − 3
10

γ5gαβ +
1
2

gαβ +
1
2

εαβµνσµν. (113)

Finally, combining the projectorsPF in (92) and (93) withPG in (110)–(113), the following identities
are obtained,[

P (0,1/2)
G

]
αρ

[
P (0,1/2)⊕(1/2,0)

F

]ρβ
ψβ =

1
8

γ5ψα +
1
8

ψα +
1
16

εαβµνσµνψβ − i
8

σαβψβ

=
[
φ
(0,1/2)
R

]
α

, (114)[
P (1/2,0)

G

]
αρ

(
P (0,1/2)⊕(1/2,0)

F

]ρβ
ψβ = −1

8
γ5ψα +

1
8

ψα −
1

16
εαβµνσµνψβ − i

8
σαβψβ

=
[
φ
(1/2,0)
L

]
α

, (115)[
P (1,1/2)

G

]
αρ

[
P (1,1/2)⊕(1/2,1)

F

]ρβ
ψβ =

3
8

γ5ψα +
3
8

ψα −
1
16

εαβµνσµνψβ +
i
8

σαβψβ

=
[
φ
(1,1/2)
R

]
α

, (116)[
P (1/2,1)

G

]
αρ

[
P (1,1/2)⊕(1/2,1)

F

]ρβ
ψβ = −3

8
γ5ψα +

3
8

ψα +
1

16
εαβµνσµνψβ +

i
8

σαβψβ

=
[
φ
(1/2,1)
L

]
α

. (117)

6. Conclusions

In the present, work we reviewed the technique suggested in [22,35] for decomposing products of
Lorentz tensors into irreducible representation spaces that is based on covariant projectors built up in
a transparent way from the Casimir invariants of the homogeneous spin-Lorentz group. Decomposition
of product spaces by group projectors is a method fundamental to the construction of basis states
in atomic and molecular physics [39], in which for the case of compact groups, use can be made
of of Weyl’s character formula. The technique under discussion in the present work, illustrated in
Sections 4 and 5.2 by several new examples of tensor decompositions by projectors, allowed us to
equip any finite-dimensional representation space of the Lorentz group by SO(1, 3) indices, an example
being (3/2, 0)⊕ (0, 3/2) as part of the direct product of a totally antisymmetric tensor, B[µ,ν] of second
rank with the Dirac spinor, ψ. The projector that finds this sector in B[µν] ⊗ ψ, earlier obtained in [22],
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was reported in Equation (62). As a recent application, the presentation of (3/2, 0) ⊕ (0, 3/2) as
a totally-antisymmetric Lorentz tensor of second rank with Dirac spinor components was employed
in [40] as the field-strength tensor of the gravitino, described by a massless Rarita–Schwinger field
and in complete parallel to the description in the quantum electrodynamics of a massless photon by
means of a field strength tensor transforming as (1, 0)⊕ (0, 1). Moreover, calculations of Compton
scattering off such a spin-3/2 revealed differences to spin-3/2 embedded by the four-vector-spinor
ψµ, and the conclusion could be drawn that particles of the same spin transforming in distinct carrier
spaces possess distinct physical characteristics, among them the electromagnetic multipole moments.
This conclusion could furthermore be strengthened through the neat separation by the spin-Lorentz
group projectors in (92) and (93) of the two spins 1/2+ and 1/2− residing in ψµ, a finding that hints at
the physical nature of these two states.

In this case, the spin-1/2+ and spin-1/2− particles were shown in [35] to be characterized by
the two different gyromagnetic factors, g 1

2
+ = 2 and g 1

2
− = −2/3, respectively. Finally, in [41], it

could be observed that the Bargmann–Wigner approach to pure spin-j was not equivalent to the
Joos–Weinberg method. The reason is that although both methods describe spin-j particles in terms
of the correct number of 2(2j + 1) independent degrees of freedom, in the BW, scheme irreducible
representation spaces of the two types (j, 0) ⊕ (0, j) and (j − 1/2, 1/2) ⊕ (1/2, j − 1/2) get mixed
up. In view of the fact that particles of equal spins transforming in distinct representation spaces
are different species, the BW method needs to be upgraded through the application on the totally
symmetric Dirac spinor-tensors in (49) of a covariant projector of the type in (67), with j2 = 0, this for
the sake of avoiding unphysical solutions. In contrast, no such projectors need to be applied to the
Weyl spinors in the approach of Cap and Donnert, in which (j− 1/2, 1/2)⊕ (1/2, j− 1/2) played
an auxiliary role and were excluded by the second order differential wave equations. This makes,
in our opinion, the framework by Cap and Donnert, which is based on irreducible tensors labeled
by SL(2, C) indices, the most neat and promising method for the description of single-spin-valued
representation spaces. Our covariant spin-Lorentz group projectors allowed us to design in the factor
group of SL(2, C), i.e., in SL(2, C)/Z2 ' SO(1, 3), the counterpart to the approach by Cap and Donnert.
We believe that the method presented here provides a reliable point of departure for perturbative
studies of Lorentz symmetry violating effects in theories with high-spin fields.
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