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Abstract: We study disformal transformations in the context of scalar extensions to teleparallel
gravity, in which the gravitational interaction is mediated by the torsion of a flat, metric compatible
connection. We find a generic class of scalar–torsion actions which is invariant under disformal
transformations, and which possesses different invariant subclasses. For the most simple of these
subclasses we explicitly derive all terms that may appear in the action. We propose to study actions
from this class as possible teleparallel analogues of healthy beyond Horndeski theories.
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1. Introduction

Scalar–tensor models form one of the largest and most well-studied classes of gravitational
theories. While this term most often refers to scalar-curvature theories [1], which can be regarded as
scalar extensions of general relativity based on its standard formulation in terms of curvature, it can
also appropriately be applied to scalar field extensions of teleparallel gravity based on torsion [2–5] or
symmetric teleparallel gravity based on non-metricity [6,7], and hence to scalar extensions of each of
the three geometric pictures of gravity [8].

An interesting property of the aforementioned scalar–tensor theories is the possibility to
perform scalar field dependent scale transformations of the fundamental fields defining the geometry,
which may include a tetrad, a metric and an affine connection, depending on the particular class of
theories under consideration. While in the most general class of metric-affine theories the metric and
connection may be transformed independently, leading to different notions of invariance under such
transformations [9], assuming a more specific geometry limits the possible transformations. In the
scalar-curvature class, where the affine connection is fixed as the curvature-free, metric compatible
Levi–Civita connection, this leads to the well-known possibility of conformal transformations [10],
or the more general class of disformal transformations [11,12] and its extensions [13,14]. The latter
are of particular interest, as they connect classes of gravity theories with second order field equations,
such as the well-known Horndeski class [15–17], to such higher derivative order theories which are
healthy in the sense that they avoid Ostrogradsky instabilities due to the presence of constraints
arising from degeneracies in their Lagrangians [18–21]. Theories in this larger class are known as
beyond-Horndeski models [13,19,21–25].

Also assuming the teleparallel geometry, which is based on a flat, metric compatible connection,
allows for conformal transformations, which have been studied in the context of different
theories [3–5,26–28]. In the present article we aim to generalize these previous studies by considering
disformal transformations. In particular, we aim to construct a class of scalar–torsion theories of
gravity which is closed under disformal transformations, and from which teleparallel analogues of
Horndeski and beyond Horndeski models may be derived. Once such a class is identified, the physical
properties of the contained theories may be studied in future work.
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The outline of this article is as follows. In Section 2 we briefly review the geometric notions which
are relevant for constructing scalar–torsion gravity theories. We study their behavior under disformal
transformations and redefinitions of the scalar field in Section 3. We apply these transformation rules in
Section 4 in order to construct a disformally invariant class of scalar–torsion actions. We restrict this class
to a simple subclass in Section 5 and explicitly construct its action. We end with a conclusion in Section 6.

2. Geometric Notions

We start our discussion of disformal transformations in scalar–torsion theories of gravity with
a brief review of the geometric notions present in these theories and introducing a few convenient
shorthand notations. Throughout this article we use the language of differential forms. In our
convention lowercase Latin letters a, b, . . . denote Lorentz indices, while we use lowercase Greek letters
µ, ν, . . . for spacetime indices; both types of indices take values from 0 to 3. Lorentz indices are raised
and lowered using the Minkowski metric ηab, which we define with signature (−,+,+,+).

The dynamical fields we consider in the covariant formulation of scalar–torsion gravity [2] are
a tetrad θ

a
= θ

a
µdxµ, a flat Lorentz spin connection ω

a
b = ω

a
bµdxµ, hence satisfying

ω(ab) =
1
2(ηacω

c
b + ηbcω

c
a) = 0 (1)

and
Ra

b = dω
a

b +ω
a

c ∧ω
c
b = 0 , (2)

and a scalar field φ. A number of dependent quantities are derived from these fundamental fields.
From the tetrad we define the dual tetrad ea = ea

µ
∂µ such that

ea ⨼ θ
b
= ea

µ
θ

b
µ = δ

b
a , (3)

as well as the metric tensor
g = ηabθ

a
⊗ θ

b
= ηabθ

a
µθ

b
νdxµ

⊗ dxν . (4)

They are used to define the so-called musical isomorphisms: for a vector field v and a one-form σ

we define

σ
♯
= (ea ⨼ σ)ea

= η
abea

ν
σνe

µ

b ∂µ = gµν
σν∂µ , (5a)

v♭ = (v⨼ θa)θ
a
= ηabvν

θ
a

νθ
b

µdxµ
= gµνvνdxµ . (5b)

For the volume form of the tetrad we used the normalization

volθ =
1
4!

εabcdθ
a
∧ θ

b
∧ θ

c
∧ θ

d
= θ

0
∧ θ

1
∧ θ

2
∧ θ

3 . (6)

Using the exterior covariant derivative D of the spin connection ω
a

b we further define the torsion

Ta
= Dθ

a
= dθ

a
+ω

a
b ∧ θ

b . (7)

Note that from the torsion and the tetrad one may recover the spin connection as

ωab =
1
2 (eb ⨼ ec ⨼ Ta + ec ⨼ ea ⨼ Tb − ea ⨼ eb ⨼ Tc − eb ⨼ ec ⨼ dθa − ec ⨼ ea ⨼ dθb + ea ⨼ eb ⨼ dθc) θ

c . (8)

We also introduced a few helpful notations involving the derivatives of the scalar field, in a similar
fashion as in [29]. For its Lie derivative with respect to the inverse tetrad we use the abbreviation

φ,a = Lea φ = ea ⨼ dφ = ea
µ

∂µφ . (9)
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We used this to define the one-forms

ψa = φ,adφ and πa = Dφ,a = dφ,a −ω
b

a ∧ φ,b . (10)

Finally, we defined the scalar

X = −
1
2 ea ⨼ ψ

a
= −

1
2 η

ab
φ,aφ,b , (11)

which represents the kinetic energy of the scalar field.
A number of helpful relations can be obtained for the quantities we introduced above. First note that

ψa ∧ ψb = 0 , ψa ∧ dφ = 0 , ψa ∧ θ
a
= 0 and dφ = φ,aθ

a , (12)

which directly follows from the identity dφ∧ dφ = 0. For the one-forms we find the exterior covariant
derivatives

Dψa = πa ∧ dφ and Dπa = 0 . (13)

The derivative of the scalar field kinetic term is given by

dX = DX = −η
ab

φ,aDφ,b = −φ,aπ
a . (14)

We will make frequent use of these relations during the remainder of this article.

3. Disformal Transformations

We now discuss the behavior of the terms introduced in the preceding section under disformal
transformations and redefinitions of the scalar field, following closely the definitions used in [14].
For this purpose we write the disformal transformation of the tetrad in the form

θ̄
a
= Cθ

a
+Dψ

a , (15)

where C = C(φ, X) and D = D(φ, X) are functions of the scalar field and its kinetic term.1 In order to
yield an invertible transformation, these functions must satisfy C ≠ 0 and C− 2XD ≠ 0. This can also
be seen from the transformation behavior of the inverse tetrad, which is given by

ēa =
1
C
(ea −

D

C− 2XD
ψ
♯
a) =

1
C
(δ

b
a −

D

C− 2XD
φ,aφ,cη

bc) eb . (16)

For the scalar field we use a redefinition of the form

φ̄ = f (φ), (17)

with an invertible function f . Finally, we leave the spin connection unchanged, ω̄
a

b = ω
a

b, since any
transformation we would apply and which preserves the antisymmetry (1) and the flatness (2) of the
connection could simply be absorbed into a local Lorentz transformation.

From the transformation laws of the basic quantities introduced above we can now derive the
transformations of the dependent terms. For the metric we find the transformation

ḡ = C
2g+ 2D(C− XD)dφ⊗ dφ , (18)

1 Note that the disformal transformations discussed here are different from the extended conformal transformations discussed
in [30]; while the latter are always linear in the tetrad, this does not hold for the inhomogeneous part Dψ

a used here.
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while the volume form transforms as

volθ = C
3(C− 2XD)volθ . (19)

For the torsion we find

T̄a
= CTa

+ C,φdφ∧ θ
a
+ C,XdX ∧ θ

a
+Dπ

a
∧ dφ+D,XdX ∧ ψ

a , (20)

where commas denote derivatives with respect to the corresponding function arguments. We then
come to the transformation rules for the scalar field terms. First note that

φ̄,a =
f ′

C− 2XD
φ,a , (21)

from which follows the similarly simple transformation law

X̄ = ( f ′

C− 2XD
)

2

X . (22)

For the one-forms we introduced we find the transformation behavior

ψ̄a =
f ′2

C− 2XD
ψa , (23)

as well as

π̄a =
f ′

C− 2XD
πa + ( f ′

C− 2XD
)

,φ

ψa + ( f ′

C− 2XD
)

,X

φ,adX . (24)

With these transformation rules at hand we can now study how any action which is constructed
from the fundamental fields will behave under disformal transformations. This will be done in the
following sections.

4. A Disformally Invariant Class of Theories

We now apply the general transformation laws of geometric quantities derived in the preceding
section to a class of actions composed from these quantities. In particular, we aim to construct a class
of scalar–torsion theories of gravity, which

1. contains new general relativity [31] as a sub-class,
2. is closed under disformal transformations,
3. whose action is given by a sum ∑ Fk(φ, X)Qk of terms Qk constructed from the objects discussed

in Section 2, with coefficients given by free functions Fk of the scalar field φ and its kinetic
energy X.

While this choice of requirements may seem arbitrary at first glance, it turns out that it leads to a class
with various interesting and well-studied examples, as we will see below. In order to construct this
class of actions, we consider the terms

AIa
bc = ec ⨼ eb ⨼ AIa, I = 1, . . . , 7 , (25)

where the two-forms AIa are given by

A1a
= Ta , A2a

= dφ∧ (dφ
♯
⨼ Ta) , A3a

= dφ∧ θ
a , A4a

= dX ∧ θ
a ,

A5a
= dX ∧ ψ

a , A6a
= π

a
∧ dφ , A7a

= A3a
η

bc
φ,bX,c . (26)
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Their coefficients AIa
bc in the tetrad basis take the explicit forms

A1a
bc = Ta

bc , A2a
bc = 2Tad

[cφ,b]φ,d , A3a
bc = 2φ,[bδ

a
c] , A4a

bc = 2X,[bδ
a
c] ,

A5a
bc = 2η

adX,[bφ,c]φ,d , A6a
bc = 2φ,[ceb] ⨼ π

a , A7a
bc = 2η

de
φ,dX,eφ,[bδ

a
c] . (27)

We have chosen this particular set of two-forms because they contain the torsion Ta, which is
a crucial ingredient for building any teleparallel gravity action, and because it is the minimal set of
two-forms such that the conformally transformed quantities ĀIa

bc can be expressed in the form

ĀIa
bc = ēc ⨼ ēb ⨼ ĀIa

=

7

∑
J=1

MI
J(φ, X)AJa

bc (28)

in terms of the original quantities AIa
bc, with coefficients MI

J which are functions of the scalar field
and its kinetic term only. This can most easily be seen by successively applying a general disformal
transformation to the torsion term A1a

bc and all terms which result from this operation, which yields
explicit expressions for the remaining terms AIa

bc and the coefficients MI
J . In particular, from the

transformation (20) of the torsion we find the terms

M1
1 =

1
C

, M1
6 = −M1

2 =
D
CE

, M1
3 =

C,φ

CE
, M1

4 =
C,X

C2 , M1
5 =

CD,X−DC,X

C2E
, M1

7 = −
DCX
C2E

, (29)

where we introduced the abbreviation E = C− 2XD. Observe that we find non-vanishing coefficients
for all terms (26), which shows that they indeed form a minimal set. The transformation (20) of the
torsion further yields the coefficients

M2
2 =

f ′2

E3 , M2
3 = −

2X f ′2C,φ

CE3 , M2
5 =

f ′2(C,X−2XD,X)
CE3 , M2

6 = −
2X f ′2D
CE3 , M2

7 =
f ′2C,X

CE3 . (30)

For the scalar field terms we find that they transform into each other, and partially even into
themselves, up to a factor, so that no further torsion terms arise. The latter holds in particular for A3a

and A5a, where we obtain

M3
3 =

f ′

E
, M5

5 =
f ′4F

CE5 , (31)

with the abbreviation F = C+ 2XD− 2XC,X + 4X2
D,X . A similarly simple transformation is found for

A6a, which satisfies

M6
5 =

f ′2(2D− C,X + 2XD,X)
CE3 , M6

6 =
f ′2

CE2 . (32)

Finally, for the remaining two terms we have the transformation

M4
3 =

2X f ′G

E2 , M4
4 =

f ′2F

CE3 , M4
7 = −

f ′2DF

CE4 , M7
3 = −

4X2 f ′3G

E4 , M7
7 =

f ′4F

E6 , (33)

with the abbreviation

G = ( f ′

E
)

,φ

=

f ′′E− f ′E,φ

E2 =
f ′′

C− 2XD
−

f ′(C,φ − 2XD,φ)
(C− 2XD)2 . (34)

We thus find that the terms we chose indeed form a set which is invariant under disformal
transformations.

From the transformation behavior of the action terms discussed above follows that any expression
given by a sum of products and contractions of these terms (using the Minkowski metric to raise,
lower and contract Lorentz indices), with functions of the scalar field and its kinetic term as coefficients,
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again transforms into an expression of the same form. Note that such an expression is necessarily
a scalar if all Lorentz indices are contracted. Together with the volume form (6), which likewise
transforms into itself up to a factor, we may thus construct a generic gravitational action of the form

Sg = ∫
M

volθ ∑
N

∑
I1

⋯∑
IN

HI1⋯IN a1⋯aN
b1⋯bN c1⋯cN AI1a1

b1c1⋯AIN aN
bN cN , (35)

where the coefficients HI1⋯IN a1⋯aN
b1⋯bN c1⋯cN are composed from Minkowski metrics, Kronecker

symbols and functions of the scalar field and its kinetic term; the latter implies that the number of
Lorentz indices will be even, so that also N must be even. Applying a disformal transformation to this
generic action preserves its form, up to replacing the coefficients H with transformed coefficients H̄,
which can be obtained using the transformation rules (28). Complementing this gravitational action
with a suitable matter action, which exhibits the same type of invariance, hence leads to a disformally
invariant class of scalar–torsion theories.

Note that the theories defined by the action (35) in general possess field equations of higher than
second derivative order, and thus potentially suffer from Ostrogradsky instabilities. However, one may
expect that theories which are disformally equivalent to second order theories avoid this problem and
may thus be considered healthy, as it is also the case for scalar-curvature theories [13], and that the
class we constructed here even contains the teleparallel formulation of a number of beyond Horndeski
models [19,21–25]. Further studies are required to show whether this is indeed the case.

We finally remark that any terms for a given order N in the action (35) will transform only into
terms with the same or lower order N̄ ≤ N. One may thus restrict this class of theories to any finite
maximum order. A case of particular interest is given by at most quadratic order, and will be discussed
in the following section.

5. The Quadratic Class of Actions

While the action (35) constructed in the previous section is still very generic, it contains a number
of simpler cases, which can be obtained by restricting the order N to a fixed maximum value. In this
section we consider the at most quadratic case N ≤ 2, which allows to write the coefficients as H
(without any indices) for the zeroth order N = 0 and

HI1 I2a1a2
b1b2c1c2

= UI1 I2 ηa1a2 η
b1b2 η

c1c2 +VI1 I2 δ
[c1
a2 η

b1][b2 δ
c2]
a1 +WI1 I2 δ

[c1
a1 η

b1][b2 δ
c2]
a2 (36)

for the second order N = 2, with free functions H, UI1 I2 , VI1 I2 , WI1 I2 of the scalar field and its kinetic
terms. One easily checks that any term at order N = 2 must be of this form, since there is no other
possibility to form a scalar out of the terms AIa

bc due to the antisymmetry in their lower two indices.
In order to further study this class of theories, it is helpful to explicitly calculate the appearing terms,
which are given by the following exhaustive list:

• Terms quadratic in the torsion only:

Q1 = TabcTabc , Q2 = TabcTcba , Q3 = Ta
acTb

bc . (37)

These are the terms which form the action of new general relativity [31], and which arise from
considering quadratic combinations of A1a

bc. Note, however, that here we consider these terms
not with constant coefficients, but with coefficients which are functions of the scalar field and its
kinetic term.
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• Terms quadratic in the torsion which contain the scalar field:

Q4 = TabeTcd
eφ,aφ,bφ,cφ,d , Q5 = TabcTd

dcφ,aφ,b , Q6 = TcdaTcd
b
φ,aφ,b ,

Q7 = TcdaTdc
b
φ,aφ,b , Q8 = TcdaTb

cdφ,aφ,b , Q9 = TacdTb
cdφ,aφ,b . (38)

These are all terms which can be formed from contractions of the square of the torsion tensor
with derivatives of the scalar field. We find such terms by considering products among A2a

bc and
A6a

bc, or of one of them with A1a
bc. The appearance of the last term is not obvious from a naive

calculation of the action terms (35) at order N = 2; this will be explained below.
• Terms linear in the torsion:

Q10 = Ta
ab

φ,b , Q11 = Tabcea ⨼ πbφ,c , Q12 = Ta
abX,b , Q13 = Tabc

φ,aφ,bX,c . (39)

The first term is the familiar kinetic coupling to the vector torsion, which is present in various
generalized scalar–torsion theories [4], while the remaining terms contain also second order
derivatives of the scalar field. We find them in particular by taking products of A1a

bc or A2a
bc

with any of the other building blocks. Here we used the fact that

X,a = −ea ⨼ π
b
φ,b (40)

in order to find identical terms. Further, one may wonder why there are no terms Tbacea ⨼ πbφ,c

and Tcabea ⨼ πbφ,c listed here. This is due to the fact that

ea ⨼ πb − eb ⨼ πa = Tc
baφ,c , (41)

so that
Tbacea ⨼ πbφ,c = Tabcea ⨼ πbφ,c + TabcTd

abφ,cφ,d = Q8 +Q11 (42)

as well as
Tcabea ⨼ πbφ,c = −

1
2 TcabTd

abφ,cφ,d = −
1
2 Q9 . (43)

The latter causes the non-obvious appearance of the term Q9 mentioned before.
• Terms involving the scalar field only:

Q14 = X,aX,a , Q15 = X,aφ
,a , Q16 = (ea ⨼ π

b)(eb ⨼ π
a) , Q17 = ea ⨼ π

a . (44)

These terms can be found by taking products of the terms A3a
bc, . . . , A7a

bc. Note that also terms
proportional to X appear from taking the product of the term A3a

bc with itself. We do not list
these terms here, since they can be absorbed into the coefficient function H(φ, X) at the zeroth
order N = 0, and thus do not yield any new terms. This leaves only the terms containing second
order derivatives listed above.

• Products of the simple terms:

Q18 = Q15Q17 , Q19 = Q10Q17 , Q20 = Q10Q15 , Q21 = Q2
17 , Q22 = Q2

15 , Q23 = Q2
10 . (45)

In addition to linear combinations the previously listed terms we also find a few terms which
involve their products, and which must therefore be taken into account separately in order to
write the final action again as a linear combination.
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A detailed analysis shows that the action (35) at the second order N = 2 does not contain all
possible linear combinations of the terms Q1, . . . , Q23 listed above. It turns out that the term Q23

appears only together with other terms, and may hence be omitted if one defines

Q̃4 = Q4 − 2XQ23 , Q̃5 = Q5 +Q23 , Q̃7 = Q7 −Q23 ,

Q̃9 = Q9 + 2Q23 , Q̃11 = Q11 +Q23 , Q̃16 = Q16 +Q23 , (46)

and Q̃k = Qk for all other terms. Further defining Q̃0 = 1, one may then write the most general
action (35) of order N ≤ 2 as

Sg = ∫
M

volθ

22

∑
k=0

Fk(φ, X)Q̃k , (47)

where F0, . . . , F22 are free functions of the scalar field and its kinetic term. It follows from the discussion
detailed in the preceding Section 4 that this class of actions is invariant under disformal transformations,
i.e., that any action of this form transforms into another action of the same form, but with different
coefficient functions F̄k replacing the original functions Fk, when a disformal transformation is applied.
The form of these transformed functions can be derived from the transformation behavior (28) of the
terms from which the action is constructed; we omit the result here for brevity.

The class of theories presented here contains a number of interesting examples, some of which
have already been studied, such as an analogue of scalar-curvature gravity [5] and a scalar–torsion
generalization of new general relativity, which includes conformal teleparallel gravity [28]. Note,
however, that the full class of Horndeski models and its recently proposed teleparallel extension [32]
are not included here, since the Horndeski Lagrangian L5 requires terms which are cubic in second
order derivatives of the scalar field, and which appear only in the next order N = 4. A full treatment of
these fourth order theories would exceed the scope of this article.

6. Conclusions

We have discussed disformal transformations in the context of scalar–torsion extensions of
teleparallel gravity and derived the transformation behavior of the most important geometric quantities
used in these theories. Based on these transformation rules, we have constructed a class of scalar–torsion
theories of gravity which is closed under disformal transformations, in the sense that applying
a disformal transformation to any theory of this class yields a theory which again lies in the same
class. The Lagrangian of these theories is given by a polynomial of arbitrary order in a number of
tensorial building blocks. Further, we considered the restricted case of actions which are at most
quadratic in these building blocks, and which by itself forms a disformally invariant subclass. For the
latter class we explicitly derived all terms whose linear combination constitutes the general form of
the action.

Our results show that the studies of disformal transformations in scalar-curvature gravity [13,14]
can be generalized also to scalar–torsion theories. In this work we have undertaken a first step in
this direction, by focusing on general disformal transformations only, and by explicitly constructing
an invariant class of actions by applying these transformations to the torsion tensor. One may follow
a similar approach as in the scalar-curvature case and consider the restricted case of special disformal
transformations, which do not depend on the kinetic term of the scalar field, or the even more general case
of extended disformal transformations, which also include second order derivatives of the scalar field.
Given these different sets of transformations, one may study their orbits in the space of scalar–torsion
Lagrangians, and investigate whether these yield healthy higher order theories, in a similar fashion to the
healthy beyond Horndeski theories [13,19,21–25]. Another question of particular interest is whether the
recently proposed teleparallel extension of Horndeski gravity [32] is invariant under special disformal
transformations, as it is the case for the scalar-curvature Horndeski class [12].

A different direction of further studies besides exhaustively charting the landscape of
scalar–torsion theories is to study the phenomenology of extended models such as those presented in
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this article. A promising approach for this work is given by extending the formalism of conformal
invariants, which was originally developed for scalar-curvature theories of gravity [33] and later
extended to scalar–torsion gravity [5], to include also disformal transformations. Such an extended
formalism would be useful for both scalar-curvature and scalar–torsion gravity, and potentially
allow expressing observational properties of these theories in terms of invariant quantities. Potential
applications include the post-Newtonian limit [34] and cosmological dynamics, either following the
Noether symmetry approach, as shown for scalar-curvature Horndeski gravity [35], or by using
methods used in f (T) cosmology for flat [36] and non-flat [37] spatial geometry.
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