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Abstract: A new formalism involving spinors in theories of spacetime and vacuum is presented. It is
based on a superalgebraic formulation of the theory of algebraic spinors. New algebraic structures
playing role of Dirac matrices are constructed on the basis of Grassmann variables, which we
call gamma operators. Various field theory constructions are defined with use of these structures.
We derive formulas for the vacuum state vector. Five operator analogs of five Dirac gamma matrices
exist in the superalgebraic approach as well as two additional operator analogs of gamma matrices,
which are absent in the theory of Dirac spinors. We prove that there is a relationship between gamma
operators and the most important physical operators of the second quantization method: number of
particles, energy–momentum and electric charge operators. In addition to them, a series of similar
operators are constructed from the creation and annihilation operators, which are Lorentz-invariant
analogs of Dirac matrices. However, their physical meaning is not yet clear. We prove that the
condition for the existence of spinor vacuum imposes restrictions on possible variants of the
signature of the four-dimensional spacetime. It can only be (1, −1, −1, −1), and there are two
additional axes corresponding to the inner space of the spinor, with a signature (−1, −1). Developed
mathematical formalism allows one to obtain the second quantization operators in a natural way.
Gauge transformations arise due to existence of internal degrees of freedom of superalgebraic spinors.
These degrees of freedom lead to existence of nontrivial affine connections. Proposed approach opens
perspectives for constructing a theory in which the properties of spacetime have the same algebraic
nature as the momentum, electromagnetic field and other quantum fields.

Keywords: spacetime signature; space-time signature; Clifford algebra; gamma matrices; Clifford
vacuum; spinor vacuum; Clifford bundle; spinor bundle

1. Introduction

The question of the origin of the dimension and signature of spacetime has a long history.
There are different approaches to substantiate the observed dimension and the spacetime signature.
One of the main directions is the theory of supergravity. It was shown in [1] that the maximum
dimension of spacetime, at which supergravity can be built, is equal to 11. At the same time, multiplets
of matter fields for supersymmetric Yang–Mills theories exist only when the dimension of spacetime
is less than or equal to 10 [2]. Subsequently, most attention was paid to the theory of superstrings
and supermembranes. Various versions of these theories were combined into an 11-dimensional
M-theory [3,4]. In [5], the most general properties of the theories of supersymmetry and supergravity
in spaces of various dimensions and signatures were analyzed. Proceeding from the possibility
of the existence of Majorana and pseudo-Majorana spinors in such spaces, it was shown that the
supersymmetry and the supergravity of M-theory can exist in 11-dimensional and 10-dimensional
spaces with arbitrary signatures, although, depending on the signature, the theory type differs.
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Later, other possibilities were shown for constructing variants of M-theories in spaces of different
signatures [6].

Other approaches are Kaluza–Klein theories. For example, in [7], it was shown that, in some cases,
it is possible not only to postulate, but also to determine from the dynamics the dimension of the
spacetime as well as its signature. In [8–10], an attempt was made to find a signature based on the
average value of the quantum fluctuating metric of spacetime.

A number of other attempts were made to explain the dimension and the signature of spacetime.
For example, the anthropic principle and causality were used in [11], the existence of equations of
motion for fermions and bosons was used in [12] and the possibility of existence in spacetime classical
electromagnetism was used in [13].

In all the above approaches, the fermion vacuum operator in the second quantization formalism
is not constructed and the restrictions imposed by such a construction are not considered. Therefore,
the possibility of the existence of the vacuum and fermions is not discussed.

2. Theory of Algebraic Spinors

The most general approach to the theory of spinors is based on the theory of Clifford
algebras [14–20]. The corresponding theory was called the theory of algebraic spinors.

The central role in the theory of algebraic spinors is played by the Hermitian primitive idempotent
I [18–21]

I ∈ C⊗ Cl(p, q),

I2 = I,

I+ = I,

(1)

where C is the field of complex numbers and Cl(p, q) is complex or real Clifford algebra with signature
(p, q), being p the number of basis vectors with positive signature and q the negative one.

The subset M(I) = {U ∈ C⊗ Cl(p, q); U = UI} is called the left ideal generated by I. It is a
complex vector space which is called spinor space. Elements of this ideal are spinors. They are called
algebraic spinors.

All complex Clifford algebra ClC(p, q) with p + q = n are isomorphic [20]. We consider only
even-dimensional complex Clifford algebras ClC(m, m) with the number of basis vectors n = 2m.
Algebra ClC(m, m) has a complete set of 2m primitive mutually annihilating idempotents I. Despite
the fact that the theory of algebraic spinors has a greater generality compared to the ordinary matrix
theory of the Dirac 4-spinors, it has problems with physical interpretation. The matrix representation
of algebraic 4-spinors is a 4× 4 matrix, and each column in it is an independent Dirac 4-spinor [16–20].
The space of algebraic spinors represented by such a matrix can contain not only Dirac, Majorana and
Weyl spinors, but also the so-called flag-dipole and flagpole spinors [16,22].

The theory of algebraic spinors allows describing fields with different spins [23], which opens
the perspective for constructing supersymmetric field theories on its basis. However, for this, odd
Grassmann variables must be introduced, and the algebra of spinors and operators acting on them
must be transformed into a superalgebra.

3. Theory of Superalgebraic Spinors and Vacuum State

There are various approaches that allow adding Grassmann variables to the theory of Clifford
algebras. We use the approach in which Grassmann variables are defined in the framework of the
classic theory of algebraic spinors where they are constructed of Clifford basis vectors [21,24,25].

Let us consider the even-dimensional n = 2m complex Clifford algebra with basis vectors Ej,
where j = 1, 2, . . . , n and (Ej)

2 = 1, E+
j = Ej [21]. We call this algebra a large Clifford algebra.
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Let us introduce

θα =
E2α−1 − iE2α

2
,

θα =
E2α−1 + iE2α

2
,

(2)

where α = 1, 2, . . . , m.
From the definition in Equation (2), it follows that

(θα)2 = (θα)2 = 0 ,

{θα,θβ} = δα
β .

(3)

Equation (3) defines the canonical anticommutation relations—the CAR-algebra of variables θα

and θβ. Clifford vectors Ej are odd elements of the Clifford algebra. Therefore, variables θα and θβ are
also odd elements of the Clifford algebra.

Using these variables, one can construct an Hermitian primitive idempotent [21,24]

I1 = θ1θ1θ2θ2 . . . θmθm . (4)

It plays the role of a spinor vacuum [21], and variables θα and θα are the creation and annihilation
operators [21].

Other idempotents Ii differ from I1 only in the order of factors θα and θα. For example,

I2 = θ1θ1 θ2θ2 . . . θmθm ,

I3 = θ1θ1θ2θ2 . . . θmθm ,

. . .

I2m = θ1θ1 θ2θ2 . . . θmθm .

(5)

As already mentioned, there are 2m such idempotents. Each idempotent Ii generates its own
spinor space M(Ii), which is the minimal left ideal of the algebra. In turn, each ideal M(Ii) has a basis
of 2m elements, and Clifford algebra is the direct sum of these ideals.

For variables θα, we can use the notation [25]

θα =
∂

∂θα
. (6)

Taking into account Equation (6), Equation (3) can be rewritten as

(θα)2 = (
∂

∂θα
)2 = 0 ,

{θα,
∂

∂θβ
} = δα

β .
(7)

Equation (7) represents the usual anticommutation relations for Grassmann variables and
derivatives with respect to them.

From the previous arguments, it is clear that θα can be considered as Grassmann variable with the
same success, and θα can be considered as a derivative with respect to θα:

θα =
∂

∂θα
. (8)

However, if we consider a particular primitive idempotent I, we can always define the Grassmann
variables in such a way they serve as creation operators, and, accordingly, the derivatives with respect
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to them serve as annihilation operators. Thus, the idempotent would have the form of Equation (4).
We denote this idempotent as ΨV , and the relations for ΨV are satisfied

θα ΨV 6= 0 ,

∂

∂θα
ΨV = 0 .

(9)

The formulation of the theory of algebraic spinors, in which all elements are expressed in terms of
Grassmann variables and derivatives with respect to them, is called the theory of superalgebraic spinors.

Apparently, the first studies in the theory of superalgebraic spinors were made by N. Borštnik [26–28].
However, N. Borštnik’s interpretation of Grassmann variables and derivatives with respect to them was
very different from that proposed in this article and had nothing to do with the theory of algebraic spinors.
She assumed that the Grassmann variables are supercoordinates of a superspace, not creation operators
of the spinor (fermion). Accordingly, she believed that the derivatives with respect to the Grassmann
variables, multiplied by the imaginary unit, are components of the supermomentum, and not operators of
the annihilation of the spinor. In these works, formulas for the Lorentz transformations of superalgebraic
spinors and a number of other useful results are obtained.

4. Superalgebraic Analog of Matrices

The author develops an approach to the theory of superalgebraic spinors, in which Clifford
analogs of Dirac gamma matrices are composite.

In [29,30], it was shown that, using Grassmann variables and derivatives with respect to them,
one can construct an analog of matrix algebra, including analogs of matrix columns of four spinors and
their adjoint rows of conjugate spinors. However, at the same time, the spinors and their conjugates
exist in the same space—i.e., in the same algebra.

Initially, this approach was based on the idea of using Grassmann variables and derivatives with
respect to them in the spirit of the theory of supersymmetry and was not based on the theory of
algebraic spinors. Let us prove the correctness of this approach (with some corrections) within the
framework of the theory of algebraic spinors.

Consider the spinor space M(ΨV), which is a left ideal generated by the idempotent ΨV given
by Equation (4). This space is obtained by multiplying ΨV on the left by all elements of the Clifford
algebra. Therefore, in the Clifford algebra under consideration, any operators transform the elements
of a given ideal into its other elements.

Element Φ of the ideal is called state vector. It can be written as

Φ = (φ0 + φαi1
θαi1 + φαi1 i2

θαi1 θαi2 + . . . φαi1...im
θαi1 . . . θαim )ΨV = φΨV . (10)

In the transformation, which consists in multiplying the state vector Φ by the operator T

Φ′ = TΦ , (11)

an arbitrary operator A is transformed as

A′ = TAT−1 . (12)

Consider an arbitrary element Ψ of a linear vector space ClC1 (m, m) with a basis Ej, or, equivalently,
with a basis as Equation (2). It can be written as

Ψ = ψα ∂

∂θα
+ χαθα , (13)

where α = 1, 2, . . . , m.
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Element ΨΦ belongs to the same ideal as Φ, and operator Ψ corresponds to the spinor field
operator in second quantized field theory.

Suppose there is some arbitrary operator of infinitesimal transformations

T = 1 + εM (14)

where M is any element of the Clifford algebra, and ε is an infinitely small parameter of the transformation.
In accordance with Equations (11), (12) and (14), it provides infinitesimal transformations

(Equation (15)) of Φ and A

Φ′ = Φ + εMΦ ,

A′ = A + ε[M, A] .
(15)

and generates for elements A a Lie group corresponding to the Clifford group.
Denote

M̂ = [M, ∗] , (16)

where operator [M, ∗] means commutator when it acts on A and means multiplying by M when it acts
on state vector Φ.

In this case,

M̂Ψ = [M, Ψ] ,

M̂Φ = [M, Φ] = MΦ ,

M̂ΨΦ = [M, Ψ]Φ + ΨMΦ .

(17)

Element M of the Lie group is the sum of the Clifford scalar and the Clifford bivector [20]. In the
language of the superalgebraic formalism, this means that

M̂ = [a + bαβ ∂

∂θα

∂

∂θβ
+ cα

β

∂

∂θα
θβ + dαβθαθβ, ∗] , (18)

where a, bαβ, cα
β, dαβ are numerical constants. Moreover, we can assume that a = 0 as long as we

consider only commutators.
It is easy to show, in complete analogy with the work in [29,30], that operator M̂ is a superalgebraic

analog of the matrix that transforms column Ψ.
Let the value m, which specifies the number of Grassmann variables in the large Clifford

algebra, be m = 2ν, where ν is some integer. In this case, the dimension of space of operators
M̂ which we consider as analogs of matrices is equal to 2ν × 2ν, and it is possible to set 2ν operators
(analogs of gamma matrices) γ̂

µ
p , which are generators of the corresponding Clifford algebra. For the

four-dimensional case, they are given by Equation (A1).
The signature of these operators can be set arbitrary due to the possibility of multiplying any

of these “matrices” by i. The first four operators γ̂
µ
p correspond to the Dirac gamma matrices γµ.

Operators γ̂6
p and γ̂7

p have no analogs in the Dirac theory. The reason for using the index p is
explained below.

We call this algebra the small Clifford algebra. It should be noted that this algebra is Clifford
algebra only under field operators Ψ (Equation (13)). When acting on state vectors ΨΦ, it is necessary
to take into account term ΨMΦ in Equation (17).

Generators of pseudo-orthogonal rotations are given by the usual relation:

γ̂
µν
p =

γ̂
µ
p γ̂ν

p − γ̂ν
pγ̂

µ
p

2
. (19)
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For the four-dimensional case, these operators generate Lorentz transformations. We mean active
Lorentz transformations [31] when the basis Clifford vectors and all other vectors are rotated, and at
the same time all vectors retain the old coordinates in the new basis.

Consider boost (active Lorentz transformation) of the time-like momentum vector P = γ0m
in the Clifford algebra with generators γµ, where m is real positive constant. Let the operator
of transformation

T = exp(γ0kω0k/2) , (20)

where real constants ω0k = −ωk0 are parameters of the transformation and k = 1, 2, 3.
Clifford vector P after transformation appears as

P′ = TPT−1 = eγ0kω0k/2γ0m e−γ0kω0k/2 = eγ0γkω0k γ0m . (21)

Let
ϕ =

√
∑
k
(ω0k)2 (22)

and
γ = −γkω0k/ϕ , (23)

wherein (γ)2 = −1.
Then, γkω0k = −γϕ, and we have from Equation (21) that

P′ = e−γ0γϕγ0m = γ0m cosh(ϕ)− γ0γγ0m sinh(ϕ) = γ0m cosh(ϕ) + γ m sinh(ϕ) . (24)

Equation (24) can be rewritten as

P′ = γ0 p0 + γ p = γ0 p0 + γk pk , (25)

where p0 = m cosh(ϕ) and pk = −m ω0k
ϕ sinh(ϕ).

Taking into account Equations (22) and (25), we find that parameters ω0k uniquely set spatial
momentum p′ after the rotation, and p′ has components pk.

Moreover, if there is a dependence A(p) of the element A on the momentum p, then, after rotation,
we obtain the dependence A′(p′) of the transformed element A′ on p′. Therefore, A(0) is transformed
to A′(p′). For example, if we have density θα(p) (see next section), and initially p = 0, then after the
rotation we get density θ′α(p′).

The operator of the Lorentz transformation of a general form, including not only boosts, but also
spatial rotations, has the form

T = exp(γµνωµν/4) , (26)

where real constants ωµν = −ωνµ are parameters of the transformation and in the four-dimensional
case µ, ν = 0, 1, 2, 3. Otherwise, the ranges of µ and ν values correspond to all existing Clifford
algebra generators.

These arguments are valid for any Clifford algebra, including the small Clifford algebra with
generators γ̂

µν
p .

In this case, the state vector in Equation (10) is transformed as

Φ′ = (φ0 + φαi1
θ′αi1 + φαi1 i2

θ′αi1 θ′αi2 + . . . φαi1...im
θ′αi1 . . . θ′αim )Ψ′V , (27)

where θ′α = exp(γ̂µν
p ωµν/4)θα and Ψ′V is transformed vacuum state.

All rotations, with the exception of boosts, leave the vacuum invariant. This is because

γ̂ab
p ΨV = 0 , (28)
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where a, b = 1, 2, 3, 4, 6, 7.
Equation (27) corresponds to the relations of quantum field theory for the method of second

quantization, if operators θα are considered as the operators of the creation of states with momentum
p = 0 and θ′α as the operators of the creation of states with momentum p. In this case, the vacuum
state vector must be invariant even with boosts. This requires an approach in which operators θα

depend on the momentum.
There is another serious reason that requires going beyond the theory of algebraic spinors and

small Clifford algebra allows us to do this. In the general case, it is impossible to decompose the
elements of the Clifford algebra on manifold into elementary spinors, since an arbitrary manifold does
not admit covariantly constant idempotent fields [18]. The proposed approach ensures that spinors of
a small Clifford algebra have additional internal degrees of freedom due to the fact that a large Clifford
algebra contains more elements than a small one.

5. Superalgebraic Analog of Dirac Gamma Matrices and Operators of
Pseudo-Orthogonal Rotations

In [32,33], the author proposed such approach. Grassmann densities θa(p), a = 1, 2, 3, 4, and
derivatives ∂

∂θa(p) with respect to them were introduced, with CAR-algebra

{ ∂

∂θi(p)
, θk(p′)} = δ(p− p′)δk

i . (29)

Operators γ̂µ (Equation (30)) are constructed of these densities. They are superalgebraic analogs
of Dirac gamma matrices γµ. We call them gamma operators.

γ̂0 =
∫

d3 p [
∂

∂θ1(p)
θ1(p) +

∂

∂θ2(p)
θ2(p) +

∂

∂θ3(p)
θ3(p) +

∂

∂θ4(p)
θ4(p), ∗] ,

γ̂1 =
∫

d3 p [
∂

∂θ1(p)
∂

∂θ4(p)
− θ4(p)θ1(p) +

∂

∂θ2(p)
∂

∂θ3(p)
− θ3(p)θ2(p), ∗] ,

γ̂2 = i
∫

d3 p [− ∂

∂θ1(p)
∂

∂θ4(p)
− θ4(p)θ1(p) +

∂

∂θ2(p)
∂

∂θ3(p)
+ θ3(p)θ2(p), ∗] ,

γ̂3 =
∫

d3 p [
∂

∂θ1(p)
∂

∂θ3(p)
− θ3(p)θ1(p)− ∂

∂θ2(p)
∂

∂θ4(p)
+ θ4(p)θ2(p), ∗] ,

γ̂4 = iγ̂5 = i
∫

d3 p [
∂

∂θ1(p)
∂

∂θ3(p)
+ θ3(p)θ1(p) +

∂

∂θ2(p)
∂

∂θ4(p)
+ θ4(p)θ2(p), ∗] ,

γ̂6 = i
∫

d3 p [
∂

∂θ1(p)
∂

∂θ2(p)
+ θ2(p)θ1(p)− ∂

∂θ3(p)
∂

∂θ4(p)
− θ4(p)θ3(p), ∗] ,

γ̂7 =
∫

d3 p [
∂

∂θ1(p)
∂

∂θ2(p)
− θ2(p)θ1(p) +

∂

∂θ3(p)
∂

∂θ4(p)
− θ4(p)θ3(p), ∗] .

(30)

In contrast to the previous approach, the operator [M, ∗] is always considered as a commutator.
This does not affect the relations of the small Clifford algebra, but it allows ensuring the invariance of
the vacuum with boosts.

The theory is automatically secondarily quantized and does not require normalization of operators.
In the proposed theory, in addition to analogs of the Dirac matrices, there are two additional

gamma operators γ̂6 and γ̂7, the rotation operator in whose plane (gauge transformation) is analogous
to the charge operator of the second quantization method [33].

In [33], the superalgebraic analog of the Dirac conjugation was proposed. It was shown that the
general form of the conjugation that provides Lorentz covariance is given by the Equation

Ψ = (Mp,qΨ)+ ,

Mp,q = γ̂1
+ . . . γ̂

p
+c+ + γ̂1

− . . . γ̂
q
−c−,

(31)
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where c+ and c− are numerical constants and (p, q) is signature of spacetime, γ̂i
+—gamma operator

with positive signature—and γ̂i
−—gamma operator with negative signature. The signature of the

spacetime sets the formula for the Dirac conjugation, and vice versa.
In [33], it was shown that transformations of densities θa(p) and ∂

∂θa(p) , while maintaining their
CAR-algebra of creation and annihilation operators, provide transformations of field operators of
the form

Ψ′ = (1 + iγ̂µdωµ +
1
4

γ̂µνdωµν)Ψ , (32)

where γ̂µν = 1
2 (γ̂

µγ̂ν − γ̂νγ̂µ); µ, ν = 0, 1, 2, 3, 4, 6, 7, and dωµν = −dωνµ are the real infinitesimal
transformation parameters. The multiplier 1/4 is added in Equation (32) compared to the work in [33]
to correspond to the usual transformation formulas for spinors in the case of Lorentz transformations.

Operators γ̂µν are the generators of the pseudo-orthogonal rotations of the form exp(γ̂µνωµν/4),
where µ, ν = 0, 1, 2, 3, 4, 6, 7. We call them gamma operators of rotations. They are the generators of
Lorentz rotations when µ, ν = 0, 1, 2, 3.

Operators of annihilation of spinors bα(p), α = 1, 2, and of antispinors bτ(p), τ = 3, 4, are
obtained by Lorentz rotations of ∂

∂θα(0) and ∂
∂θτ(0) , and the Dirac conjugated to the operators of

creation b̄α(p) and b̄τ(p) by Lorentz rotations of θα(0) and θτ(0) [32,33]. The momentum specified as a
parameter is replaced with a rotation from 0 to p:

bi(p) = (eγ̂0kω0k/2 ∂

∂θi(0)
)|0→p ,

b̄i(p) = (eγ̂0kω0k/2θi(0))|0→p ,

i = 1, 2, 3, 4.

(33)

Anticommutation relations for bi(p) and b̄k(p′)

{bi(p), b̄k(p′)} = δ(p− p′)δk
i . (34)

In Equation (33), the particle momentum p depends on Lorentz rotation parameters ω0k. For
example, for rotation in the plane γ̂0, γ̂1, the transformation (33) for b1(p) and b̄1(p) looks like

b1(p) = cosh
ω01

2
∂

∂θ1(p)
+ sinh

ω01

2
γ̂01 ∂

∂θ1(p)
,

b̄1(p) = cosh
ω01

2
θ1(p) + sinh

ω01

2
γ̂01θ1(p) .

(35)

As a result, we get

b1(p) = cosh
ω01

2
∂

∂θ1(p)
+ sinh

ω01

2
θ4(p) ,

b̄1(p) = cosh
ω01

2
θ1(p)− sinh

ω01

2
∂

∂θ4(p)
.

(36)

The expression for operator γ̂01 as an example of the operator of rotations is given by

γ̂01 =
∫

d3 p [
∂

∂θ1(p)
∂

∂θ4(p)
+ θ4(p)θ1(p) +

∂

∂θ2(p)
∂

∂θ3(p)
+ θ3(p)θ2(p), ∗] . (37)

Similar expressions for all gamma operators of rotations γ̂ab are given by Equation (A3).
Denote the integrands in Equation (A2) as γ̂a(p) and in Equation (A3) as γ̂ab(p) . Thus, we can

rewrite Equation (A2) as

γ̂a =
∫

d3 p γ̂a(p) , (38)
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and (A3) as

γ̂ab =
∫

d3 p γ̂ab(p) . (39)

6. Vacuum and Discrete Analogs of Grassmann Densities

In [32], the author proposed a method for constructing a state vector of the vacuum. Let us analyze
it in more detail. We divide the momentum space into infinitely small volumes. We introduce operators

Bk(pj) =
1
43 pj

∫
43 pj

d3 p bk(p) ,

B̄k(pj) =
1
43 pj

∫
43 pj

d3 p b̄k(p) .
(40)

At the same time, given Equation (34),

{B̄k(pi), Bl(pj)} =
1

43 pi43 pj

∫
43 pi

d3 p
∫
43 pj

d3 p′{b̄k(p), bl(p′)} = 1
43 pj

δi
jδ

k
l . (41)

There is no silent summation over the index that enumerates discrete volumes. For example,
it does not exist at index j in Equations (40) and (41). For indexes enclosed in triangular brackets
(for example, in Equation (43)), there is also no silent summation.

The expression 1
43 pj

δi
j in Equations (40) and (41) is a discrete analog of the delta function δ(p− p′).

In addition, due to the anticommutativity of all bk(p) and bl(p′) as well as all b̄k(p) and b̄l(p′),
it is obvious that

(Bk(pj))
2 = (B̄k(pj))

2 = 0 . (42)

We introduce operators

ΨBk j =43 pjB<k>(pj)B̄<k>(pj) ,

ΨVj =ΨB1 jΨB2 jΨB3 jΨB4 j
(43)

and determine via them the fermionic vacuum operator ΨV

ΨV = ∏
j

ΨVj , (44)

where the product goes over all physically possible values of j. In this case, we assume that all volumes
43 pj are formed by Lorentz rotations of the volume43 pj=0 corresponding to p = 0, and the set of
angles ωµν of these rotations is discrete.

Further, it is often convenient to represent Equation (44) in the form

ΨV = ΨVj Ψ
′
Vj

, (45)

where
Ψ
′
Vj

= ∏
i 6=j

ΨVi , (46)

is the product of factors in Equation (44), independent of pj.
Let us replace in the formulas with participation of γ̂a and γ̂ab continuous operators bk(p) and

b̄k(p) to discrete Bk(pj) and B̄k(pj), and the integral
∫

d3 p ... to the sum ∑j43 pj .... In this case, all
formulas using continuous operators bk(p) and b̄k(p) are replaced by completely similar ones, with the
replacement of the delta function δ(p− p′) by 1

43 pj
δi

j, where pi corresponds to p, and pj corresponds
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to p′. We use for operators γ̂a = ∑j43 pjγ̂
a(pj) and γ̂ab = ∑j43 pjγ̂

ab(pj) after such a replacement
the same notation as for the corresponding continuous ones, and we call such γ̂a as discrete gamma
operators, and γ̂ab as discrete gamma operators of rotations.

7. Action of Gamma Operators on the Vacuum

Consider the action of the gamma operator of rotation γ̂µν on the vacuum in Equation (45).
The invariance of the vacuum during Lorentz rotation by means of the operator in Equation (26) is
ensured by the fact that each volume43 pj passes into another volume43 pk, and its place is occupied
by the third volume43 pl . This only leads to a change in the order of the factors ΨVj in Equation (44).
These factors commute, thus the Lorentz rotations leave the vacuum ΨV invariant. At infinitesimal
rotations, we have T = exp(γ̂µνdωµν/4) = 1 + γ̂µνdωµν/4, therefore

TΨV = (1 + γ̂µνdωµν/4)ΨV = ΨV , (47)

that is
γ̂µνdωµνΨV = 0 . (48)

Since the rotation parameters dωµν are arbitrary, we get

γ̂µνΨV = 0 . (49)

Dividing the momentum space into infinitely small volumes is a kind of regularization. Only
within the framework of this regularization, both Equation (47) and Equation (49) resulting from it
are fulfilled.

If axes γ̂4, γ̂6 and γ̂7 are considered as additional spacetime axes, the reasoning is similar with the
same vacuum as in Equation (45). In this case, µ, ν = 0, 1, 2, 3, 4, 6, 7, and the integration is performed
over the six-dimensional momentum space. If axis γ̂4 is excluded, the momentum space turns out to
be five-dimensional.

As a result of the Lorentz transformation in Equation (26), the Grassmann densities ∂
∂θα(p) and

θα(p) are transformed into equivalent ones ∂
∂θα(p′) and θα(p′), and arbitrary vector γ̂µ Aµ is transformed

into equivalent one (γ̂µ)′ Aµ, where (γ̂µ)′ = Tγ̂µT−1. The transformations in Equation (32) are
symmetry transformations. Therefore, Lorentz transformations are symmetry transformations of
spinors and spacetime.

It should be noted that operators γ̂µν make sense only within the framework of the decomposition
in Equation (32). That is, they make sense only as generators of active Lorentz rotations (Equation (26)),
which lead to a change in the momentum p.

Now, consider operators γ̂µ. They also make sense only within the framework of the
decomposition in Equation (32). As a result of the action of the transformation operator

T1 = exp(iγ̂µdωµ) = 1 + iγ̂µdωµ (50)

the Grassmann densities ∂
∂θα(p) and θα(p) are transformed into equivalent ones. However, it is not the

Lorentz rotation operator, and it is not symmetry transformation of the spacetime. Operators γ̂µ are
basic vectors of a vector space. Therefore, we can identify parameters dωµ with local coordinates of
spinors in this vector space. In the simplest case, we can consider them as local coordinates dxµ in the
spacetime with spinor mass m as a scale factor [33]

dωµ = −m dxµ , (51)

since the decomposition of the field operator of the spinor in momenta coincides with the
decomposition of the field operator in the secondary quantization formalism. In the general case,
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the situation is more complicated, and it is necessary to take into account the existence of additional
vector fields (see Section 10). However, it follows from the above that gamma operators γ̂µ, when
acting on ∂

∂θα(p) and θα(p), do not change the momentum p as their parameter. Therefore, when γ̂µ

acts on field operators, vacuum and state vectors, the parameter p remains unchanged.
With this in mind, consider the action of γ̂0 on the vacuum. Since γ̂0 is a commutator, we have

γ̂0ΨV = γ̂0 ∏
j

ΨVj = (γ̂0ΨV0)ΨV1 ΨV2 . . . + ΨV0(γ̂
0ΨV1)ΨV2 . . . + ΨV0 ΨV1(γ̂

0ΨV2) . . . + . . . , (52)

Here, brackets limit the scope of the commutator γ̂0. In this case, from Equation (43), it follows that

ΨVj =(43 pj)
4B1(pj)B̄1(pj)B2(pj)B̄2(pj)B3(pj)B̄3(pj)B4(pj)B̄4(pj) . (53)

Taking into account the introduced notation for discrete operators as well as the fact that an
arbitrary spatial momentum can be obtained from the state with p = 0 (Equation (33)),

B1(pj) =eγ̂0kω0k/2B1(0) . (54)

At the same time, B1(pj) means that the result of rotation of a state with p = 0 turns into the state
with p = pj.

First, consider action of γ̂0(0) on ΨV . Since

ΨV0 =
∂

∂θ1(0)
θ1(0)

∂

∂θ2(0)
θ2(0)

∂

∂θ3(0)
θ3(0)

∂

∂θ4(0)
θ4(0) , (55)

it is easy to see that

γ̂0(0)ΨV =(γ̂0(0)ΨV0)ΨV1 ΨV2 . . . =

−43 pj[θ
k(0)

∂

∂θk(0)
,

∂

∂θ1(0)
θ1(0)

∂

∂θ2(0)
θ2(0)

∂

∂θ3(0)
θ3(0)

∂

∂θ4(0)
θ4(0)]ΨV1 ΨV2 . . . = 0.

(56)

Now, consider action of γ̂0(p) on ΨV for the case when continuous momentum p = p1 with
corresponding discrete pj, that is, it is directed along the axis γ̂1. Let us represent ΨV as a product
ΨV = ΨV1,4 ΨV2,3 Ψ

′
V where

ΨV1,4 =(43 pj)
2B1(pj)B̄1(pj)B4(pj)B̄4(pj)

ΨV2,3 =(43 pj)
2B2(pj)B̄2(pj)B3(pj)B̄3(pj) .

(57)

Obviously,

γ̂0(p1)ΨV =((γ̂0(p1)ΨV1,4)ΨV2,3 + ΨV1,4(γ̂
0(p1)ΨV2,3))Ψ

′
V . (58)

Write the following useful relationships:

∂

∂θ<a>(pj)
θb(pj)

∂

∂θ<a>(pj)
=(

1
43 pj

δb
a − θb(pj)

∂

∂θ<a>(pj)
)

∂

∂θ<a>(pj)
=

1
43 pj

δb
a

∂

∂θ<a>(pj)
,

θ<a>(pj)
∂

∂θb(pj)
θ<a>(pj) =(

1
43 pj

δb
a −

∂

∂θb(pj)
θ<a>(pj))θ

<a>(pj) =
1
43 pj

δb
a θ<a>(pj) .

(59)



Universe 2019, 5, 162 12 of 22

Consider action of γ̂0(p1) on ΨV1,4 and ΨV2,3 . From Equations (54), (A3) and (57), taking into
account Equation (59), we obtain with pj = p1

γ̂0(p1)ΨV1,4 =
43 pj

2
sinhω01(p1)(

∂

∂θ4(p1)
∂

∂θ1(p1)
+ θ1(p1)θ4(p1)) ,

γ̂0(p1)ΨV2,3 =
43 pj

2
sinhω01(p1)(

∂

∂θ3(p1)
∂

∂θ2(p1)
+ θ2(p1)θ3(p1)) .

(60)

To understand the meaning of Equation (60), we consider the action of the operator of creation of
a fermion–antifermion pair43 pB̄1(p)B̄4(p) ≈ 43 pθ1(p1)θ4(p1) on ΨV1,4 when p→ 0. The multiplier
43 p is necessary for normalization to the unit probability of finding spinors in the whole space.

That is, γ̂0(p1)ΨV1,4 contains a term corresponding to the creation of a fermion–antifermion pair
θ1(p1)θ4(p1), suppressed by a small multiplier sinhω01(p1) in the non-relativistic limit. γ̂0(p1)ΨV2,3

corresponds to the creation of a pair θ2(p1)θ3(p1) with different values of the spin.
Similarly, ∂

∂θ4(p1)
∂

∂θ1(p1) are the creation operators of a fermion–antifermion pair for an alternative

vacuum (see Section 3), where factors ∂
∂θ1(p1) θ1(p1) ∂

∂θ4(p1) θ4(p1) in the vacuum state vector are

replaced by θ1(p1) ∂
∂θ1(p1) θ4(p1) ∂

∂θ4(p1) , and similarly for operator ∂
∂θ3(p1)

∂
∂θ2(p1) for a corresponding

alternative vacuum.
Thus, γ̂0(p1)ΨV → 0 when p1→ 0.
Carrying out spatial rotations exp(γ̂klωkl/4), where k, l = 1, 2, 3, of Equation (60), does not affect

the multiplier γ̂0, since γ̂kl commutes with γ̂0, we get a similar result for arbitrary directions of the
spatial momentum. Thus, in the non-relativistic limit p→ 0, it can be considered that γ̂0ΨV = 0.

Similarly, we find the result of the action of γ̂1(0) on the multipliers of ΨV :

γ̂1(0)ΨV1,4 = (43 pj)
3(

∂

∂θ4(0)
∂

∂θ1(0)
+ θ1(0)θ4(0)) ,

γ̂1(0)ΨV2,3 = (43 pj)
3(

∂

∂θ3(0)
∂

∂θ2(0)
+ θ2(0)θ3(0)) .

(61)

That means the creation of fermion–antifermion pairs by operator γ̂1 even at zero momentum,
without suppression of this process in the non-relativistic limit. In the case p = 0, the state vector has
the form of Equation (10). Consider a single-particle state for which φ = φαθα(0). Let

γ̂1(0)φΨV = (γ̂1(0)φ)ΨV + φ(γ̂1(0)ΨV) = λφΨV . (62)

However, it is easy to verify that (γ̂1(0)φ)ΨV = 0, which means

φαθα(0)(γ̂1(0)ΨV) = λφΨV . (63)

If φ1 6= 0, in accordance with Equations (61) and (55), the left side of Equation (63) contains a
nonzero term with factor θ1(0)θ2(0)θ3(0). However, in the right part, there is no such term. A similar
situation is observed for all other cases (φ2 6= 0, φ3 6= 0, φ4 6= 0).

Thus, operator γ̂1 in the non-relativistic limit p → 0 (and, therefore, in general) cannot have
eigenvalues on single-particle state vectors. This means that this operator cannot correspond to the
operator of physical measurable quantity. Among other things, this means that this operator cannot
correspond to the operator γ0 of the Dirac theory of spinors, even if it is multiplied by i.

We get the same situation when acting on the vacuum and on state vectors by operators γ̂a,
a = 1, 2, 3, 4, 6, 7—they do not annulate the vacuum in the non-relativistic limit and cannot have
eigenvalues on single-particle state vectors.
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8. Lorentz-Invariant Gamma Operators

It is easy to construct Lorentz-invariant analogs Γ̂a and Γ̂ab of superalgebraic representations γ̂µ

of Dirac matrices and rotation generators γ̂µν. To do this, it is enough in Equations (A2) and (A3) to
replace all operators ∂

∂θk(p) by bk(p), and operators θk(p) by b̄k(p). For example,

Γ̂0 =
∫

d3 p [b1(p)b̄1(p) + b2(p)b̄2(p) + b3(p)b̄3(p) + b4(p)b̄4(p), ∗] , (64)

Γ̂1 =
∫

d3 p [b1(p)b4(p)− b̄4(p)b̄1(p) + b2(p)b3(p)− b̄3(p)b̄2(p), ∗] , (65)

Γ̂67 = −i
∫

d3 p [b1(p)b̄1(p) + b2(p)b̄2(p)− b3(p)b̄3(p)− b4(p)b̄4(p), ∗] , (66)

and so on (see Equations (A4) and (A5)).
In the discrete version of the theory, in the operators Γ̂a and Γ̂ab, as above, continuous operators

bk(p) and b̄k(p) are replaced by discrete Bk(pj) and B̄k(pj), and integrals
∫

d3 p ... by sums ∑j43 pj ....
Operators Γ̂µ and Γ̂µν are constructed by summing (integrating in the continuous case) over spatial

momenta the results of all possible Lorentz rotations of operators γ̂µ(0) and γ̂µν(0). As a result of such
rotations, ∂

∂θk(0)
goes to bk(p), and θk(0) to b̄k(p) as in the field operators, as in γ̂µ(0) and γ̂µν(0).

In contrast to γ̂µ and γ̂µν, operators Γ̂a and Γ̂ab do not change either in the Lorentz transformations,
since, as for the vacuum, the sum element for some momentum goes into the sum element for another
momentum, and the sum element for the third momentum takes its place. As a result, these operators
are Lorentz-invariant (and therefore also Lorentz-covariant). For the same reason, if for some values of
µ and ν operator γ̂µ(0) or γ̂µν(0) annulate the vacuum, then Γ̂µ or Γ̂µν annulate the vacuum too, and if
γ̂µ(0) or γ̂µν(0) do not annulate the vacuum, then Γ̂µ or Γ̂µν under the action on the vacuum do not
give zero. For the same reason, if γ̂µ(0) or γ̂µν(0) has eigenvalue for the state with p = 0, then Γ̂µ or
Γ̂µν has corresponding eigenvalue for states with any momenta. That is why operators Γ̂µ have the
same signature as γ̂µ(0) and, hence, the same signature as γ̂µ.

Operators γ̂µν(0) annulate the vacuum. Operator γ̂0 annulate the vacuum only in the
non-relativistic limit p→ 0. Operators γ̂k, k = 1, 2, 3, 4, 6, 7, do not annulate the vacuum. Therefore, in
quantum relativistic field theory, eigenvalues of operators γ̂µν, Γ̂0 and Γ̂ab exist on the state vectors,
and operators γ̂µ cannot have eigenvalues at all, since they do not annulate the vacuum.

Since the commutation relations in Equation (34) for bi(p) and b̄k(p) are the same as for ∂
∂θi(p)

and θk(p), the commutation relations for Γ̂a and Γ̂ab are the same as for γ̂µ and γ̂µν. That is,
Γ̂a, a = 0, 1, 2, 3, 4 are also analogs of Dirac matrices γµ, µ = 0, 1, 2, 3, 4, but Γ̂6 and Γ̂7 also expand
the set of analogs of Dirac matrices as γ̂6 and γ̂7 .

We introduce the superalgebraic analogs [32] of the operators of the number of particles N̂1, N̂2

and antiparticles N̂3, N̂4 and the charge operator Q̂ in the method of second quantization:

N̂k(p) = [b̄<k>(p) b<k>(p), ∗] = −[b<k>(p) b̄<k>(p), ∗] ,

Q̂ =
∫

d3 p (N̂1(p) + N̂2(p)− N̂3(p)− N̂4(p)) ,
(67)

Then, the physical meaning of Γ̂0 and Γ̂67 is obvious, since Equations (64) and (66) can be rewritten
in the form:

Γ̂0 = −
∫

d3 p (N̂1(p) + N̂2(p) + N̂3(p) + N̂4(p)) ,

Γ̂67 = i
∫

d3 p (N̂1(p) + N̂2(p)− N̂3(p)− N̂4(p)) = iQ̂ .
(68)
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That is, −Γ̂0 is the operator of the total number of spinors and antispinors, and Γ̂67 is related to
the charge operator Q̂ by the relation Γ̂67 = iQ̂. However, the physical meaning of operators Γ̂k and
Γ̂ab, where k = 1, 2, 3, 4, 6, 7; a, b = 0, 1, 2, 3, 4, 6, 7; a 6= b; ab 6= 67, is incomprehensible.

It is useful to note that the matrix formalism does not provide the possibility of zero eigenvalues
of gamma matrices, in contrast to the proposed theory.

9. Spacetime Signature in the Presence of the Spinor Vacuum

The reason for the difference between the action on the vacuum and the state vectors of the
operators γ̂0(0) on the one hand, and γ̂k(0), k = 1, 2, 3, 4, 6, 7, on the other hand, is related to
the structure of these operators in Equation (A2). Since the vacuum state vector has a multiplier
B<i>(0) B̄<i>(0), the action on vacuum of operators consisting only of terms of the form [B̄l(0)Br(0), ∗]
will always give zero, since, by virtue of Equations (41) and (42),

[B̄<l>(0)B<r>(0), B<r>(0)B̄<r>(0)B<l>(0)B̄<l>(0)] = 0 . (69)

However, the terms of the form [Br(0) Bl(0), ∗] and [B̄r(0) B̄l(0), ∗] will give a non-zero result.
Summing the results of Lorentz rotations leads to similar conclusions for Γ̂0 on the one hand, and Γ̂k

on the other hand.
The decomposition in Equation (32) generates the decomposition of field operators with respect

to momenta and leads to the Dirac equation [33]. The question arises of what kind of Clifford basis
such decomposition is possible.

If, as in the considered case, γ̂0 = (γ̂0)+, γ̂k = −(γ̂k)+, there is one time-like Clifford vector.
Multiplying γ̂0 by an imaginary unit will lead to the appearance in the decomposition with

respect to momenta [33] of exponentially increasing terms, that is, to the impossibility of the existence
of normalized solutions. Therefore, Clifford vectors γ̂0 and Γ̂0 are time-like and have signature +1 for
spacetime where spinors can exist as physical particles.

Multiplication of any of operators γ̂k (and, consequently, Γ̂k) by the imaginary unit will lead to
asymmetry between Clifford vectors Γ̂0 and iΓ̂k due to the presence of the vacuum in Equation (44),
since Γ̂0ΨV = 0 and iΓ̂kΨV 6= 0, and Γ̂0 can have eigenvalues on the state vectors but iΓ̂k cannot.
The space of Clifford vectors with the same signature must be isotropic, however in this case we obtain
a preferred direction. Therefore, other than Γ̂0 Clifford vectors could not have the same signature as
Γ̂0. Consequently, the condition for the existence of the vacuum imposes restrictions on the possible
variants of Clifford algebras: neither complex algebra nor algebras in which at least one of the base
vectors Γ̂k (and hence γ̂k ) is time-like is suitable. Therefore, all Clifford vectors Γ̂k are space-like
(and hence γ̂k)—they have a signature of −1, and there is only one basis time-like Clifford vector Γ̂0

(and hence γ̂0).
Operator Γ̂0 annulate the vacuum, and Γ̂k, k = 1, 2, 3, 4, 6, 7, do not annulate. Therefore, if we

require the existence of spinors as physical particles with second quantization of spinor fields and
existence of state vectors, out of seven gamma matrices Γ̂a (and hence γ̂a ), one must have a positive
signature, and the other six must have a negative signature.

Thus, in the superalgebraic theory of spinors, the signature of a four-dimensional spacetime
can only be (1, −1, −1, −1), and there are two additional axes γ̂6 and γ̂7 with a signature (−1, −1)
corresponding to the inner space of the spinor. The reason they and the axis γ̂4 are not additional
spatial axes is not yet clear.

Of course, the conclusions made about the spacetime signature rely on some assumptions. First,
it is assumed that the proposed formalism is consistent with the principles of measurement of physical
quantities in quantum mechanics. Secondly, it is assumed that the spinor vacuum as well as space of
Clifford vectors with the same signature are isotropic.
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10. Internal Degrees of Freedom of Superalgebraic Spinors

In [33], it was shown that transformations of densities θa(p) and ∂
∂θa(p) , while maintaining their

CAR-algebra of creation and annihilation operators, provide the transformations in Equation (32) of
field operators.

If we replace θa(p) and ∂
∂θa(p) in the method proposed in [33] with b̄(p) and b(p), we get

a decomposition similar to Equation (32)

Ψ(p)′ = (1 + iΓ̂adωa +
1
4

Γ̂abdωab)Ψ(p) , (70)

where a, b = 0, 1, 2, 3, 4, 6, 7 and dωab = −dωba are real infinitesimal transformation parameters.
This decomposition occurs due to the presence of internal degrees of freedom of superalgebraic

spinors. Consider the decomposition in Equation (70) in the case of an infinitely small change in
coordinates dxµ. We have dωa = Aaµdxµ and dωab = Aabµdxµ. That is why

Ψ(p)′ = (1 + iΓ̂a Aaµdxµ +
1
4

Γ̂ab Aabµdxµ)Ψ(p) , (71)

or equivalently

dΨ(p) = Ψ(p)′ −Ψ(p) = (iΓ̂a Aaµdxµ +
1
4

Γ̂ab Aabµdxµ)Ψ(p) . (72)

We denote A0µ = −pµ and assume that the parameter p in Equations (71) and (72) refers to pµ.
Consider in Equation (72) the term corresponding to pµ

d0Ψ(p) = −iΓ̂0 pµdxµΨ(p) = −i
∫

d3 p′ Γ̂0(p′) pµdxµΨ(p) = −i
∫

d3 p′ p′µ Γ̂0(p′) dxµΨ(p) . (73)

Since

P̂µ =
∫

d3 p pµ Γ̂0(p) =
∫

d3 p pµ [b1(p)b̄1(p) + b2(p)b̄2(p) + b3(p)b̄3(p) + b4(p)b̄4(p), ∗] (74)

is the operator of energy–momentum in the second quantization formalism, we have

d0Ψ(p) = −iP̂µdxµΨ(p) . (75)

The superposition of all possible values of the momentum gives

Ψ =
∫

d3 p Ψ(p) , (76)

and we have
d0Ψ = −iP̂µdxµΨ . (77)

Thus, term iΓ̂0 A0µdxµ = −iΓ̂0 pµdxµ corresponds to the decomposition with respect to momenta,
and our assumption that the parameter p in Equations (71) and (72) refers to pµ is proper. If we have
more than three spatial axes, all the calculations are similar, only the integration over the momentum
will be carried out not over three, but over all spatial components.

Values Aaµ and Aabµ are affine connections. Thus, it is possible to build a theory of Clifford
and spinor bundles without restrictions imposed by the requirement of covariantly constant
idempotent field.

Now, consider the term

d67Ψ =
1
2

Γ̂67 A67µdxµΨ . (78)
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Let Q̂ = −iΓ̂67 and A67µ = g Aµ, where Aµ is the vector field and g is the coupling constant for
this field. Then,

d67Ψ = i
1
2

gQ̂AµdxµΨ , (79)

and the gauge transformation exp(i 1
2 gQ̂Aµdxµ) automatically arises. Operator Q̂ is the charge operator

in the second quantization formalism, Q̂Ψ = Ψ for the spinor Ψ, and Q̂Ψ̄ = −Ψ̄ for its antiparticle Ψ̄.
It should be noted that in Equation (77) we can replace −iP̂µ with ∂µ. In accordance with

Equation (72), taking into account Equations (77) and (79), we can write the covariant derivative
in the form

Dµ = ∂µ + i
1
2

gQ̂Aµ + iΓ̂a Aaµ +
1
4

Γ̂bc Abcµ , (80)

where a = 1, 2, 3, 4, 6, 7; b, c = 0, 1, 2, 3, 4, 6, 7 and bc 6= 67, bc 6= 76.
Part of decomposition terms in Equation (80) corresponds to the usual field theories available in

the framework of the general theory of relativity [34], as well as to theories of bundles [35]. The physical
meaning of the other terms requires additional research. In any case, the proposed approach opens
perspectives for constructing a theory in which properties of the spacetime have the same algebraic
nature as the momentum, electromagnetic field and other quantum fields.

11. Discussion

Thus, the superalgebraic formulation of the theory of algebraic spinors allows constructing
composite analogs of the Dirac gamma matrices. The proposed theory has a number of interesting
consequences.

Equations (32) and (70) ensure for spinors the existence of the decomposition with respect to
momenta.

The theory is free from divergences, leading to the need for the normalization of operators [32].
It leads to an unambiguous signature of the spacetime, which coincides with the observable.
The proposed approach of constructing a discrete vacuum is fundamentally different from

theories in which the discreteness of the spacetime is considered, leading to the loss of Lorentz
covariance [36]. The proposed theory is Lorentz-covariant and combines the features of discrete and
continuous theories.

We can construct Γ̂a of creation and annihilation operators independently on superalgebraic
representation γ̂µ of Dirac gamma matrices γµ. However, this representation makes interconnection
between Dirac gamma matrices and operators Γ̂a obvious.

At the same time, there are several unsolved problems in the proposed theory.
First, gamma operators γ̂4, γ̂6 and γ̂7 (and, respectively, Γ̂4, Γ̂6 and Γ̂7) have exactly the same

properties as operators γ̂1, γ̂2 and γ̂3 (and Γ̂1 and Γ̂2, Γ̂3, respectively). Therefore, it seems that the
spatial dimensions should be six, not three. However, the equality holds in the small Clifford algebra

γ̂0γ̂1γ̂2γ̂3γ̂4γ̂6γ̂7 = −i E , (81)

where E is the identity operator in the small Clifford algebra. Therefore, it seems that one of the
gamma operators should be regarded as dependent on the others. It is natural to use γ̂4 as such
operator to obtain the ordinary Dirac theory, extended by γ̂6 and γ̂7 operators. However, Equation (81)
is valid only in the small Clifford algebra. Accordingly, E is the identity operator only in the small
Clifford algebra, since it follows from Equations (49) and (81) that E ΨV = 0. In addition, all gamma
operators are involved in the decompositions in Equations (32) and (70). Therefore, the question of
what limitations are imposed by Equation (81) requires additional study.

The reason that γ̂6 and γ̂7 axes are not the generators of the physical spatial axes may be due
to the fact that operators γ̂6, γ̂7, γ̂6k and γ̂7k, where k = 0, 1, 2, 3, 4, mix components of spinors
and antispinors. If such mixing is prohibited, and the fermion field operators are required to be the
eigenvectors of the charge operator Q̂, then γ̂6 and γ̂7 axes can only correspond to the internal degrees
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of freedom of the fermions. In this case, the fermions themselves can be either only spinors or only
antispinors, but not their mixture.

Another approach is possible to solve this problem. We can consider the creation and annihilation
operators, of which the gamma operators Γa are constructed as primary. In addition, their properties
are determined by the properties of the physical spacetime. In this case, no symmetry violation
can occur between the generators of Clifford algebra having the same signature. In this case, the
number of the basis Clifford vectors corresponding to the spacetime is specified by the properties of
the physical spacetime. The consideration given in the article shows that the vacuum state vector
and the creation and annihilation operators of spinors are possible only if the physical space-time
signature is (+1,−1,−1,−1). At the same time, there are internal degrees of freedom associated with
the existence of gamma operators γ̂6 and γ̂7. These generators have the signature (−1,−1) due to the
requirement of the isotropy of the Clifford algebra vector space.

The second problem, which has not yet been solved, is related to the presence of vector fields in
Equations (70) and (80), the physical meaning of which is still unclear. To solve this problem, further
research is required.

Increasing the number of independent spinor densities θa(p) and ∂
∂θa(p) increases the number of

dimensions of small Clifford algebra. In this case, additional fields generated by affine connections
appear in the decomposition in Equation (71). This allows us to hope for the construction on this basis
of a theory describing all known spinors and their interactions.

12. Conclusions

A new formalism involving spinors in theories of space-time and vacuum is presented. It is based
on a superalgebraic formulation of the theory of algebraic spinors. It is proved that the signature of
four-dimensional spacetime, in which the vacuum state exists, can only be (1, −1, −1, −1), and there
are two additional axes corresponding to the inner space of the spinor, with a signature (−1, −1).

Section 1 of the article contains information on various approaches used to determine the possible
dimensions and signature of the spacetime.

Section 2 briefly describes the approaches used in the theory of algebraic spinors.
Section 3 describes the reformulation of the theory of algebraic spinors in terms of Grassmann

variables and derivatives with respect to them. Hermitian primitive idempotents constructed of these
variables and derivatives.

Section 4 introduces the concept of state vector. The transformations of state vectors and operators
are considered. The Lie group corresponding to the Clifford group is investigated. It is shown that,
in addition to the Clifford algebra under consideration, which we call the large Clifford algebra,
there can be another Clifford algebra. We call it small Clifford algebra. It is shown that, in the
four-dimensional case, there are seven generators of the small Clifford algebra. Five of them correspond
to the Dirac matrices and two additional ones are related to the internal degrees of freedom of the
spinor. Elements of the small Clifford algebra are operators. They satisfy the relations of Clifford
algebra only under the action on vectors of large Clifford algebra, otherwise it is necessary to consider
more complex relations.

Section 5 contains information on the construction of analogs γ̂µ of Dirac matrices using variables,
which are Grassmann density, and derivatives with respect to them. In addition, based on the
Grassmann densities and derivatives with respect to them, operators of pseudo-orthogonal rotations
are constructed. These include the Lorentz transformations.

In Section 6, the transition is carried out in the momentum space from continuous Grassmann
densities to infinitesimal discrete volumes. The vacuum state vector is constructed as a product of
local vacua related to these discrete volumes.

Section 7 is the most important in the article. It proves that the operator γ̂0, acting on the vacuum
state vector, gives zero in the non-relativistic limit p → 0. Operators γ̂k, k = 1, 2, 3, 4, 6, 7, acting on
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the vacuum state vector, do not give zero in the non-relativistic limit p→ 0. It is shown that for this
reason operators γ̂k cannot have eigenvalues on state vectors.

In Section 8, other superalgebraic analogs Γ̂a of Dirac gamma matrices are constructed.
These operators are constructed of creation and annihilation operators and have the same signature
as gamma operators γ̂µ. However, they are Lorentz-invariant. We proved that operator −Γ̂0 is the
operator of the total number of spinors and antispinors, and Γ̂67 is related to the charge operator Q̂ by
the relation Γ̂67 = iQ̂.

In Section 9, we draw conclusions about a possible spacetime signature.
Section 10 shows that the developed mathematical formalism allows one to obtain the second

quantization operators in a natural way. When the spinor coordinate changes, gauge transformations
arise due to existence of internal degrees of freedom of the superalgebraic spinors. These degrees
of freedom lead to existence of affine connections. The proposed approach opens perspectives for
constructing a theory in which the properties of the spacetime have the same algebraic nature as the
momentum, electromagnetic field and other quantum fields.

In Section 11, we discuss the advantages and possible directions for the development of the
proposed approach.
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Abbreviations

The following abbreviations are used in this manuscript:

CAR Canonical Anticommutation Relations

Appendix A. Formulas of Gamma Operators

Formulas of gamma operators γ̂a
p are as follows:

γ̂0
p = [

∂

∂θ1 θ1 +
∂

∂θ2 θ2 +
∂

∂θ3 θ3 +
∂

∂θ4 θ4, ∗] ,

γ̂1
p = [

∂

∂θ1
∂

∂θ4 − θ4θ1 +
∂

∂θ2
∂

∂θ3 − θ3θ2, ∗] ,

γ̂2
p = −i [

∂

∂θ1
∂

∂θ4 − θ4θ1 +
∂

∂θ2
∂

∂θ3 + θ3θ2, ∗] ,

γ̂3
p = [

∂

∂θ1
∂

∂θ3 − θ3θ1 − ∂

∂θ2
∂

∂θ4 + θ4θ2, ∗] ,

γ̂4
p = iγ̂5

p = i [
∂

∂θ1
∂

∂θ3 + θ3θ1 +
∂

∂θ2
∂

∂θ4 + θ4θ2, ∗] ,

γ̂6
p = i [

∂

∂θ1
∂

∂θ2 + θ2θ1 − ∂

∂θ3
∂

∂θ4 − θ4θ3, ∗] ,

γ̂7
p = [

∂

∂θ1
∂

∂θ2 − θ2θ1 +
∂

∂θ3
∂

∂θ4 − θ4θ3, ∗] .

(A1)
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Formulas of gamma operators γ̂a are as follows:

γ̂0 =
∫

d3 p [
∂

∂θ1(p)
θ1(p) +

∂

∂θ2(p)
θ2(p) +

∂

∂θ3(p)
θ3(p) +

∂

∂θ4(p)
θ4(p), ∗] ,

γ̂1 =
∫

d3 p [
∂

∂θ1(p)
∂

∂θ4(p)
− θ4(p)θ1(p) +

∂

∂θ2(p)
∂

∂θ3(p)
− θ3(p)θ2(p), ∗] ,

γ̂2 = i
∫

d3 p [− ∂

∂θ1(p)
∂

∂θ4(p)
− θ4(p)θ1(p) +

∂

∂θ2(p)
∂

∂θ3(p)
+ θ3(p)θ2(p), ∗] ,

γ̂3 =
∫

d3 p [
∂

∂θ1(p)
∂

∂θ3(p)
− θ3(p)θ1(p)− ∂

∂θ2(p)
∂

∂θ4(p)
+ θ4(p)θ2(p), ∗] ,

γ̂4 = iγ̂5 = i
∫

d3 p [
∂

∂θ1(p)
∂

∂θ3(p)
+ θ3(p)θ1(p) +

∂

∂θ2(p)
∂

∂θ4(p)
+ θ4(p)θ2(p), ∗] ,

γ̂6 = i
∫

d3 p [
∂

∂θ1(p)
∂

∂θ2(p)
+ θ2(p)θ1(p)− ∂

∂θ3(p)
∂

∂θ4(p)
− θ4(p)θ3(p), ∗] ,

γ̂7 =
∫

d3 p [
∂

∂θ1(p)
∂

∂θ2(p)
− θ2(p)θ1(p) +

∂

∂θ3(p)
∂

∂θ4(p)
− θ4(p)θ3(p), ∗] .

(A2)

Formulas of gamma operators of rotations γ̂ab are as follows:

γ̂01 =
∫

d3 p [
∂

∂θ1(p)
∂

∂θ4(p)
+ θ4(p)θ1(p) +

∂

∂θ2(p)
∂

∂θ3(p)
+ θ3(p)θ2(p), ∗] ,

γ̂02 = −i
∫

d3 p [
∂

∂θ1(p)
∂

∂θ4(p)
− θ4(p)θ1(p)− ∂

∂θ2(p)
∂

∂θ3(p)
+ θ3(p)θ2(p), ∗] ,

γ̂03 =
∫

d3 p [
∂

∂θ1(p)
∂

∂θ3(p)
+ θ3(p)θ1(p)− ∂

∂θ2(p)
∂

∂θ4(p)
− θ4(p)θ2(p), ∗] ,

γ̂04 = i
∫

d3 p [
∂

∂θ1(p)
∂

∂θ3(p)
− θ3(p)θ1(p) +

∂

∂θ2(p)
∂

∂θ4(p)
− θ4(p)θ2(p), ∗] ,

γ̂06 = i
∫

d3 p [
∂

∂θ1(p)
∂

∂θ2(p)
+ θ2(p)θ1(p)− ∂

∂θ3(p)
∂

∂θ4(p)
+ θ4(p)θ3(p), ∗] ,

γ̂07 =
∫

d3 p [
∂

∂θ1(p)
∂

∂θ2(p)
+ θ(p)θ1(p) +

∂

∂θ3(p)
∂

∂θ4(p)
+ θ4(p)θ3(p), ∗] ,

γ̂12 = −i
∫

d3 p [
∂

∂θ1(p)
θ1(p)− ∂

∂θ2(p)
θ2(p)− ∂

∂θ3(p)
θ3(p) +

∂

∂θ4(p)
θ4(p), ∗] ,

γ̂13 =
∫

d3 p [
∂

∂θ1(p)
θ2(p)− ∂

∂θ2(p)
θ1(p) +

∂

∂θ3(p)
θ4(p)− ∂

∂θ4(p)
θ3(p), ∗] ,

γ̂14 = i
∫

d3 p [
∂

∂θ1(p)
θ2(p) +

∂

∂θ2(p)
θ1(p) +

∂

∂θ3(p)
θ4(p) +

∂

∂θ4(p)
θ3(p), ∗] ,

γ̂16 = i
∫

d3 p [− ∂

∂θ3(p)
θ1(p)− ∂

∂θ1(p)
θ3(p) +

∂

∂θ4(p)
θ2(p) +

∂

∂θ2(p)
θ4(p), ∗] ,

γ̂17 =
∫

d3 p [
∂

∂θ3(p)
θ1(p)− ∂

∂θ1(p)
θ3(p)− ∂

∂θ4(p)
θ2(p) +

∂

∂θ2(p)
θ4(p), ∗] ,

γ̂23 = −i
∫

d3 p [
∂

∂θ1(p)
θ2(p) +

∂

∂θ2(p)
θ1(p)− ∂

∂θ3(p)
θ4(p)− ∂

∂θ4(p)
θ3(p), ∗] ,

γ̂24 =
∫

d3 p [
∂

∂θ1(p)
θ2(p)− ∂

∂θ2(p)
θ1(p)− ∂

∂θ3(p)
θ4(p) +

∂

∂θ4(p)
θ3(p), ∗] ,

γ̂26 =
∫

d3 p [
∂

∂θ3(p)
θ1(p)− ∂

∂θ1(p)
θ3(p) +

∂

∂θ4(p)
θ2(p)− ∂

∂θ2(p)
θ4(p), ∗] ,

γ̂27 = i
∫

d3 p [
∂

∂θ3(p)
θ1(p) +

∂

∂θ1(p)
θ3(p) +

∂

∂θ4(p)
θ2(p) +

∂

∂θ2(p)
θ4(p), ∗] ,

γ̂34 = i
∫

d3 p [
∂

∂θ1(p)
θ1(p)− ∂

∂θ2(p)
θ2(p) +

∂

∂θ3(p)
θ3(p)− ∂

∂θ4(p)
θ4(p), ∗] ,

γ̂36 = i
∫

d3 p [
∂

∂θ4(p)
θ1(p) +

∂

∂θ1(p)
θ4(p) +

∂

∂θ3(p)
θ2(p) +

∂

∂θ2(p)
θ3(p), ∗] ,

γ̂37 =
∫

d3 p [− ∂

∂θ4(p)
θ1(p) +

∂

∂θ1(p)
θ4(p)− ∂

∂θ3(p)
θ2(p) +

∂

∂θ2(p)
θ3(p), ∗] ,

γ̂46 =
∫

d3 p [
∂

∂θ4(p)
θ1(p)− ∂

∂θ1(p)
θ4(p)− ∂

∂θ3(p)
θ2(p) +

∂

∂θ2(p)
θ3(p), ∗] ,

γ̂47 = i
∫

d3 p [− ∂

∂θ4(p)
θ1(p)− ∂

∂θ1(p)
θ4(p) +

∂

∂θ3(p)
θ2(p) +

∂

∂θ2(p)
θ3(p), ∗] ,

γ̂67 = −i
∫

d3 p [
∂

∂θ1(p)
θ1(p) +

∂

∂θ2(p)
θ2(p)− ∂

∂θ3(p)
θ3(p)− ∂

∂θ4(p)
θ4(p), ∗] .

(A3)
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Formulas of Lorentz invariant gamma operators Γ̂a are as follows:

Γ̂0 =
∫

d3 p [b1(p)b̄1(p) + b2(p)b̄2(p) + b3(p)b̄3(p) + b4(p)b̄4(p), ∗] ,

Γ̂1 =
∫

d3 p [b1(p)b4(p)− b̄4(p)b̄1(p) + b2(p)b3(p)− b̄3(p)b̄2(p), ∗] ,

Γ̂2 = i
∫

d3 p [−b1(p)b4(p)− b̄4(p)b̄1(p) + b2(p)b3(p) + b̄3(p)b̄2(p), ∗] ,

Γ̂3 =
∫

d3 p [b1(p)b3(p)− b̄3(p)b̄1(p)− b2(p)b4(p) + b̄4(p)b̄2(p), ∗] ,

Γ̂4 = iΓ̂5 = i
∫

d3 p [b1(p)b3(p) + b̄3(p)b̄1(p) + b2(p)b4(p) + b̄4(p)b̄2(p), ∗] ,

Γ̂6 = i
∫

d3 p [b1(p)b2(p) + b̄2(p)b̄1(p)− b3(p)b4(p)− b̄4(p)b̄3(p), ∗] ,

Γ̂7 =
∫

d3 p [b1(p)b2(p)− b̄2(p)b̄1(p) + b3(p)b4(p)− b̄4(p)b̄3(p), ∗] .

(A4)

Formulas of Lorentz invariant gamma operators of rotations Γ̂ab are as follows:

Γ̂01 =
∫

d3 p [b1(p)b4(p) + b̄4(p)b̄1(p) + b2(p)b3(p) + b̄3(p)b̄2(p), ∗] ,

Γ̂02 = −i
∫

d3 p [b1(p)b4(p)− b̄4(p)b̄1(p)− b2(p)b3(p) + b̄3(p)b̄2(p), ∗] ,

Γ̂03 =
∫

d3 p [b1(p)b3(p) + b̄3(p)b̄1(p)− b2(p)b4(p)− b̄4(p)b̄2(p), ∗] ,

Γ̂04 = i
∫

d3 p [b1(p)b3(p)− b̄3(p)b̄1(p) + b2(p)b4(p)− b̄4(p)b̄2(p), ∗] ,

Γ̂06 = i
∫

d3 p [b1(p)b2(p) + b̄2(p)b̄1(p)− b3(p)b4(p) + b̄4(p)b̄3(p), ∗] ,

Γ̂07 =
∫

d3 p [b1(p)b2(p) + θ(p)b̄1(p) + b3(p)b4(p) + b̄4(p)b̄3(p), ∗] ,

Γ̂12 = −i
∫

d3 p [b1(p)b̄1(p)− b2(p)b̄2(p)− b3(p)b̄3(p) + b4(p)b̄4(p), ∗] ,

Γ̂13 =
∫

d3 p [b1(p)b̄2(p)− b2(p)b̄1(p) + b3(p)b̄4(p)− b4(p)b̄3(p), ∗] ,

Γ̂14 = i
∫

d3 p [b1(p)b̄2(p) + b2(p)b̄1(p) + b3(p)b̄4(p) + b4(p)b̄3(p), ∗] ,

Γ̂16 = i
∫

d3 p [−b3(p)b̄1(p)− b1(p)b̄3(p) + b4(p)b̄2(p) + b2(p)b̄4(p), ∗] ,

Γ̂17 =
∫

d3 p [b3(p)b̄1(p)− b1(p)b̄3(p)− b4(p)b̄2(p) + b2(p)b̄4(p), ∗] ,

Γ̂23 = −i
∫

d3 p [b1(p)b̄2(p) + b2(p)b̄1(p)− b3(p)b̄4(p)− b4(p)b̄3(p), ∗] ,

Γ̂24 =
∫

d3 p [b1(p)b̄2(p)− b2(p)b̄1(p)− b3(p)b̄4(p) + b4(p)b̄3(p), ∗] ,

Γ̂26 =
∫

d3 p [b3(p)b̄1(p)− b1(p)b̄3(p) + b4(p)b̄2(p)− b2(p)b̄4(p), ∗] ,

Γ̂27 = i
∫

d3 p [b3(p)b̄1(p) + b1(p)b̄3(p) + b4(p)b̄2(p) + b2(p)b̄4(p), ∗] ,

Γ̂34 = i
∫

d3 p [b1(p)b̄1(p)− b2(p)b̄2(p) + b3(p)b̄3(p)− b4(p)b̄4(p), ∗] ,

Γ̂36 = i
∫

d3 p [b4(p)b̄1(p) + b1(p)b̄4(p) + b3(p)b̄2(p) + b2(p)b̄3(p), ∗] ,

Γ̂37 =
∫

d3 p [−b4(p)b̄1(p) + b1(p)b̄4(p)− b3(p)b̄2(p) + b2(p)b̄3(p), ∗] ,

Γ̂46 =
∫

d3 p [b4(p)b̄1(p)− b1(p)b̄4(p)− b3(p)b̄2(p) + b2(p)b̄3(p), ∗] ,

Γ̂47 = i
∫

d3 p [−b4(p)b̄1(p)− b1(p)b̄4(p) + b3(p)b̄2(p) + b2(p)b̄3(p), ∗] ,

Γ̂67 = −i
∫

d3 p [b1(p)b̄1(p) + b2(p)b̄2(p)− b3(p)b̄3(p)− b4(p)b̄4(p), ∗] .

(A5)
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