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Abstract: We present a new kind of model, which we call δ Theories, where standard theories are
modified including new fields, motivated by an additional symmetry (δ symmetry). In previous
works, we proved that δ Theories just live at one loop, so the model in a quantum level can be
interesting. In the gravitational case, we have δ Gravity, based on two symmetric tensors, gµν and
g̃µν, where quantum corrections can be controlled. In this paper, a review of the classical limit of δ

Gravity in a Cosmological level will be developed, where we explain the accelerated expansion of
the universe without Dark Energy and the rotation velocity of galaxies by the Dark Matter effect.
Additionally, we will introduce other phenomenon with δ Gravity like the deflection of the light
produced by the sun, the perihelion precession, Black Holes and the Cosmological Inflation.

Keywords: modified gravity; dark energy; dark matter; general relativity

1. Introduction

In the last century, the cosmological observations have revealed that the dynamic of the Universe
is dominated by an accelerated expansion, apparently due to a mysterious component called Dark
Energy [1–3]. Additionally, these observations say that most of the matter is in the form of unknown
particles that interact principally by gravitation with the ordinary matter, called Dark Matter [4].
In this paper, we will refer to Dark Matter (DM) and Dark Energy (DE) effects as the Dark Sector.
Although General Relativity (GR) is able to accommodate the Dark Sector, its interpretation in terms of
fundamental theories of elementary particles is problematic [5].

For one side, some candidates exist that could play the role of DM, but none have been detected
yet. In a galactic scale, DM produces an anomalous rotation velocity which is relatively constant far
from the center of the galaxy [6–12], and a lot of alternative models, where a modification to gravity
is introduced, have been developed to explain this effect. For instance, an explanation based on the
modification of the dynamics for small accelerations cannot be ruled out [13,14].

On the other side, DE can be explained with a small cosmological constant (Λ). At early times,
Λ is not important for the evolution of the Universe, but at later stages it will dominate the expansion,
explaining the observed acceleration. However, the cosmological constant is too small to be generated
in Quantum Field Theory models because it is the vacuum energy, which is usually predicted to be
very large [15].

For all these reasons, one of the most important goals in cosmology and cosmic structure
formation is to understand the Dark Sector in the context of a fundamental physical theory [16,17].
Some explanations include additional fields in approaches like quintessence, chameleon, vector Dark
Energy or massive gravity; the addition of higher order terms in the Einstein–Hilbert action, like f (R)
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theories and Gauss–Bonnet terms and finally the introduction of extra dimensions for a modification
of gravity on large scales (see, for instance, [18]).

Recently, in [19], a model of gravitation that is very similar to GR is presented. In that paper,
two different points were considered. The first is that GR is finite on shell at one loop in vacuum [20],
so renormalization is not necessary at this level. The second is the approach of δ gauge theories (DGT),
studied for the first time in [21,22] and defined as follows: (a) consider a model described by a set of
fields φI and an action S(φI), which is invariant under an algebra of infinitesimal transformations G.
(b) A new kind of field φ̃I is introduced, different from the original set φI . In the extended set of fields,
an extra symmetry that we call δ symmetry is realized. It is formally obtained as the variation of the
original symmetry G. (c) We find an action for the extended set of fields which is invariant under the
extended symmetry. The action is unique if we impose the additional condition that the original action
for φI is recovered if all φ̃I vanish. (c) It turns out that the classical equations of motion of φI with
the action S(φI) are still satisfied, even in the quantum level where the corrections live only at one
loop. Therefore, when we implement this extension to General Coordinates Transformations (GCT),
which we call Extended General Coordinates Transformations (ExGCT), and imposing the extended
symmetry provides a unique extension for the Einstein–Hilbert action, which define the dynamics of
the new model, called in this paper δ Gravity. For these reasons, the original motivation was to develop
the quantum properties of this model (see [19]). In this work, we will study the classical properties of
δ Gravity.

A first approximation was developed in Section [23,24], presenting a truncated version of δ

Gravity applied to Cosmology. The δ symmetry was fixed in different ways in order to simplify the
analysis of the model and explain the accelerated expansion of the universe without DE. The results
were quite reasonable taking into account the simplifications involved, but δ Matter was ignored in
the process. After in [25], we developed the Cosmological solution in a δ Gravity version where δ

symmetry is preserved, which means that we are forced to include δ Matter. In that case, the accelerated
expansion can be explained in the same way and additionally we have a new component of matter
as DM candidate. In addition, we guaranteed that the special properties of δ Theories previously
mentioned are preserved. In this work, we will continue with the full-fledged δ Gravity presented
in [25].

We will develop this paper as follows. In Section 2, a complete resume about the bases of δ

Theories will be presented. Then, we will show the δ Gravity action that is invariant under ExGCT,
including the equations of motion. We will see that the Einstein’s equations with the usual Energy
momentum Tensor, Tµν, continue to be valid, but new equations of motion appears for g̃µν, depending
on a new Energy momentum Tensor, T̃µν, by the presence of δ Matter. Additionally, we will derive the
equation of motion for the test particle. We distinguish the massive case, where the equation is not
a geodesic, and the massless case, where we have a null geodesic with an effective metric. A complete
derivation of all these is presented in [23,24].

To give a complete description of δ Gravity in this paper, in Section 3, we will present the
cosmological case developed in [25]. We obtain the accelerated expansion of the universe assuming
a universe without DE, i.e., only having non-relativistic matter and radiation which satisfy a fluid-like
equation p = ωρ, for both normal and δ Matter. A preliminary computation was done in [23],
where an approximation is discussed. Later, in [24], we developed an exact solution of the equations,
but in both cases we assumed that we do not have δ Matter, such that the new symmetry is broken.
For that reason, in [25], we studied δ Gravity with δ Matter to preserve the new symmetry. This is
very interesting because the presence of δ Matter gives us a possibility to explain DM. In both limits,
the solution is used to fit the supernovae data and get predictions for the cosmological parameters.
In this calculation, we obtained that the physical reason for the accelerated expansion of the universe
is a geometric effect, where an effective scale factor is defined by the model, producing the accelerated
expansion of the universe without a Cosmological Constant and predicting a Big-Rip as [26–30].
This effective scale factor agrees with the standard cosmology at early times and shows acceleration
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only at late times. Therefore, we expect that primordial density perturbations should not have large
corrections. Moreover, in [25], the value of the cosmological parameters improve greatly by the
inclusion of δ Matter, increasing the importance of this component. For instance, the age of the
Universe is much closer to the Planck satellite value now than the value we got in [24]. Finally, we will
include a brief analysis of the Inflation Case to present how δ Gravity could explain the exponential
expansion in this era just like the accelerated expansion by DE.

To study the DM phenomenon and complete the Dark Sector in δ Gravity, in Section 4, we will
study the Non-Relativistic case to understand the behavior of the model in the (Post)-Newtonian
limit. We have that δ Gravity agrees with GR at the classical level far from the sources. However,
inside a matter fluid like a galaxy, new effects appear because of δ Matter. In that sense, δ Matter
could be considered like a DM candidate. In this limit, a relation between the ordinary density
and δ Matter density will be found. With this and some realistic density profiles as Einasto and
Navarro–Frenk–White (NFW) profiles for a galaxy [31–36], we can study the modifications in the
rotation velocity. We will see that δ Matter effect is not related to the scale, but rather to the behavior
of the distribution of ordinary matter. In the solar system scale, where the large structures as planets
and stars have a concentrated and almost constant distributions, δ Matter is practically negligible.
However, in a galactic scale, where the distribution is strongly dynamic, δ Matter will be important to
explain the DM effect. Thus, the amount of ordinary DM could be much less, explaining its extremely
problematic detection.

We know that the causal structure of δ Gravity in vacuum is the same as in GR. However,
important effects could appear when really massive object, as Black Holes, are taken into account.
Thus, in Section 5, we will solve the equation of motion of gµν and g̃µν for the Schwarzschild Case in
the vacuum with appropriate boundary conditions. Then, we will use this solution to compute the
deflection of light by the sun and analyze the perihelion precession [37]. We have to guarantee that
these results are very close to GR, unless we consider highly massive object.

We have to say that models like δ Gravity are not ghost-free, which can produce some problems
like non-unitarity or instabilities [22,38–41]. This ghost component produces a phantom behaviour.
A scalar phantom has been used in the current literature to describe the current data of the most
classical tests of cosmology [26–30], but this background solution becomes unstable by the ghost field.
Without a doubt, the ghost problem must be kept in mind, but some solutions can be implemented
to obtain harmless ghosts (see, for instance, [42–46]). In spite of the ghost problem, the nature of the
Dark Sector is such an important and difficult problem that cosmologists do not expect to solve in one
stroke, so we must be open to explore new possibilities. For that reason, we will study δ Gravity as
a classical effective model and use it in Cosmology. This means to approach the problem from the
phenomenological side instead of neglecting it a priori because it does not satisfy yet all the properties
of a fundamental quantum theory. Now, the phantom problem is being studied in this moment for δ

Gravity and the results will be presented in a future work.
With respect to the extended symmetry, we must emphasize that a closed algebra is formed

(see [47]), producing a Noether conserved current to define the usual Energy-Momentum Tensor Tµν

with the usual conservation equation and another one with a new Energy-Momentum Tensor T̃µν,
representing the δ Matter component. In addition, to solve the equations of gµν and g̃µν, we need to fix
an extended harmonic gauge due to the existence of the GCT and ExGCT symmetries. The closure of
the algebra, the ensuing Noether currents and the gauge fixing show that ExGCT is an extension of
GCT. The existence of this extra symmetry is crucial to the model. Finally, it should be remarked that δ

Gravity is not a metric model of gravity because only massless particles move on null geodesics, given
by a linear combination of both tensor fields. For this, see Section 2.3.
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2. δ Gravity

In this paper, we are studying δ Gravity at a classical level. This gravity model was developed
from a special kind of modified theories named δ Theories. In this section, we will define the δ Theories
in general and their properties and then we will apply this modification to the Einstein–Hilbert model.
For more details, see [19,24,47].

2.1. δ Theories Formalism and Modified Action

These modified theories consist of the application of a variation represented by δ̃. As a variation,
it will have all the properties of the usual variation such as:

δ̃(AB) = δ̃(A)B + Aδ̃(B),

δ̃δA = δδ̃A, (1)

δ̃(Φ,µ) = (δ̃Φ),µ,

where δ is another variation. The particular point with this variation is, when we apply it on a field
(function, tensor, etc.), it will give new elements that we define as δ fields, which is an entirely new
independent object from the original, Φ̃ = δ̃(Φ). We use the convention that a tilde tensor is equal to
the δ transformation of the original tensor when all its indexes are covariant, which is:

S̃µνα... ≡ δ̃
(
Sµνα...

)
(2)

and we raise and lower indexes using the metric gµν. Therefore:

δ̃
(

Sµ
να...

)
= δ̃(gµρSρνα...)

= δ̃(gµρ)Sρνα... + gµρ δ̃
(
Sρνα...

)
(3)

= −g̃µρSρνα... + S̃µ
να...,

where we used that δ(gµν) = −δ(gαβ)gµαgνβ. Now, with the previous notation in mind, we can define
how the tilde elements, given by Equation (2), transform. In general, we can represent a transformation
of a field Φi like:

δ̄Φi = Λj
i(Φ)εj, (4)

where εj is the parameter of the transformation. Then, Φ̃i = δ̃Φi transforms:

δ̄Φ̃i = Λ̃j
i(Φ)εj + Λj

i(Φ)ε̃j, (5)

where we used that δ̃δ̄Φi = δ̄δ̃Φi = δ̄Φ̃i and ε̃j = δ̃εj is the parameter of the new transformation.
For example, if we consider General Coordinates Transformation (GCT) or diffeomorphism in its
infinitesimal form, we have:

x′µ = xµ − ξ
µ
0 (x) → δ̄xµ = −ξ

µ
0 (x) (6)

and defining:

ξ
µ
1 (x) ≡ δ̃ξ

µ
0 (x), (7)
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we can use Equation (5) to see a few examples of how some elements transform:

(I) A scalar φ:

δ̄φ = ξ
µ
0 φ,µ, (8)

δ̄φ̃ = ξ
µ
1 φ,µ +ξ

µ
0 φ̃,µ . (9)

(II) A vector Vµ:

δ̄Vµ = ξ
β
0 Vµ,β + ξα

0,µVα, (10)

δ̄Ṽµ = ξ
β
1 Vµ,β + ξα

1,µVα + ξ
β
0 Ṽµ,β + ξα

0,µṼα. (11)

(III) Rank two Covariant Tensor Mµν:

δ̄Mµν = ξ
ρ
0 Mµν,ρ + ξ

β
0,ν Mµβ + ξ

β
0,µ Mνβ, (12)

δ̄M̃µν = ξ
ρ
1 Mµν,ρ + ξ

β
1,ν Mµβ + ξ

β
1,µ Mνβ + ξ

ρ
0 M̃µν,ρ + ξ

β
0,ν M̃µβ + ξ

β
0,µ M̃νβ. (13)

This means that all the fields have δ partner and their transformations depend on their nature (scalar,
vector, tensor, etc.). Particularly, in gravitation, we will have a model with two tensor fields. The first
one is just the usual gravitational field gµν and the second one will be g̃µν. Then, we will have two gauge
transformations associated with GCT. We will call it Extended General Coordinate Transformation
(ExGCT), given by:

δ̄gµν = ξ0µ;ν + ξ0ν;µ, (14)

δ̄g̃µν = ξ1µ;ν + ξ1ν;µ + g̃µρξ
ρ
0,ν + g̃νρξ

ρ
0,µ + g̃µν,ρξ

ρ
0 . (15)

With all these, we can introduce the δ Theories. We start by considering a model that is based on
a given action S0[ΦI ], where ΦI are generic fields. Then, we add to it a piece which is equal to a δ

variation with respect to the fields and we let δ̃ΦJ = Φ̃J , so that we have:

S[Φ, Φ̃] = S0[Φ] +
∫

d4x
δS0(Φ)

δΦI(x)
Φ̃I(x), (16)

where the indexes I can represent any kind of indexes. Then, the Action in (16) is invariant under
transformations given by (4) and (5), if S0[Φ] is invariant under (4). A first important property of
this action is that the classical equations of the original fields are preserved. We can see this when
Equation (16) is varied with respect to Φ̃I :

δS0(Φ)

δφI
= 0. (17)

Obviously, we have new equations when varied with respect to ΦI . These equations determine Φ̃I
and they can be reduced to:

∫
d4x

δ2S0(Φ)

δΦI(y)δΦJ(x)
Φ̃J(x) = 0, (18)

where δ2S0
δΦI(y)δΦJ(x) has to be considered as an operation on Φ̃J , so the solution of this equation is not

trivial. Now, we will apply this result to ExGCT, given by Equations (8)–(15), for gravity.
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2.2. δ Gravity Action and Equations of Motion

In this paper, we will use the δ Theories formalism on the Einstein–Hilbert Action to obtain our
modified action of gravity, which we call δ Gravity. That is:

S0 =
∫

d4x
√
−g
(

R
2κ

+ LM

)
, (19)

S =
∫

d4x
√
−g
(

R
2κ

+ LM −
1

2κ

(
Gαβ − κTαβ

)
g̃αβ + L̃M

)
, (20)

where κ = 8πG
c2 , LM = LM(φI , ∂µφI) is the Lagrangian of the matter fields φI , g̃µν = δ̃gµν,

Tµν = 2√−g
δ(
√−gLM)

δgµν
and L̃M = φ̃I

(
δLM
δφI

)
+ (∂µφ̃I)

(
δLM

δ(∂µφI)

)
, where φ̃I = δ̃φI are the δ Matter fields.

Previously, we mentioned that a truncated version of δ Gravity was presented in [23,24] and applied to
Cosmology. To simplify the analysis of the model, we did not consider the δ Matter components,
which means L̃M = 0, breaking the ExGCT. In this work, we present the full-fledged δ Gravity,
introducing the δ Matter in order to preserve the δ symmetry. In this case, the equations of motion are:

Gµν = κTµν, (21)

F(µν)(αβ)ρλDρDλ g̃αβ +
1
2

gµνRαβ g̃αβ −
1
2

g̃µνR = κT̃µν, (22)

with T̃µν = δ̃Tµν and:

F(µν)(αβ)ρλ = P((ρµ)(αβ))gνλ + P((ρν)(αβ))gµλ − P((µν)(αβ))gρλ − P((ρλ)(αβ))gµν,

P((αβ)(µν)) =
1
4

(
gαµgβν + gανgβµ − gαβgµν

)
,

where (µν) denotes that µ and ν are in a totally symmetric combination. An important fact to notice
is that the Einstein equations, given by Equation (21), are preserved. Thus, the only difference
with General Relativity (GR) are the additional equations presented in (22) to find g̃µν. Moreover,
our equations are of second order in derivatives, which is needed to preserve causality. Finally, we have
that the action (20) is invariant under the transformations (14) and (15), so two conservation rules are
satisfied. They are:

DνTµν = 0, (23)

DνT̃µν =
1
2

TαβDµ g̃αβ −
1
2

TµβDβ g̃α
α + Dβ(g̃β

α Tαµ). (24)

They are related to the Noether conserved current of the extended symmetry. Then, we have two
Energy-Momentum Tensors, the usual Tµν and T̃µν. The last one is due to the new symmetry and δ

Matter. Thus, to solve the equations of motion of δ Gravity, given by (21)–(24), we need an expression
of the perfect fluid’s energy momentum tensors, given by (A24) and (A25) in Appendix A.

2.3. Test Particle

In the previous subsection, we found the equations of motion for δ Gravity. However, we need to
know how the new fields affect the trajectory of a test particle. For this, we will study the test particle
action separately for massive and massless particles. The first discussion of this issue in δ Gravity is
in [23].
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2.3.1. Massive Particles

In GR, the action for a test particle, including the Einstein–Hilbert term, is given by:

S0[x, g] =
1

2κ

∫
d4y
√
−gR−m

∫
dt
√
−gµν(x)ẋµ ẋν, (25)

with ẋµ = dxµ

dt and the variation in xµ produces the geodesic equation. This action is invariant under
reparametrizations, t′ = t− ε(t), where the infinitesimal form is:

δRxµ = ẋµε, (26)

and the action (25) is similar to (19), where xµ is a field in LM in a sense. To obtain the modified action,
we have to use Equation (20), where a new field should be obtained, given by δ̃xµ. However, this new
field does not make sense because it should represent an additional coordinate system and our model
just lives in four dimensions. Therefore, we will impose that xµ does not have a δ partner, so the action
in (25) will be modified to:

S[X, g, g̃] =
1

2κ

∫
d4y
√
−gR−m

∫
dt
√
−gµν(x)ẋµ ẋν − 1

2κ

∫
d4y
√
−g
(
Gµν − κTµν(x)

)
g̃µν, (27)

where:

Tµν(x) =
m√−g

∫
dt

ẋµ ẋν√
−gαβ(x)ẋα ẋβ

δ (y− x) . (28)

Notice that Tµν is t-parametrization invariant, but our action breaks the ExGCT symmetry.
Now, extracting the pure δ Gravity components from the action (27), we obtain the modified test
particle action:

Sp = m
∫

dt


(

gµν +
1
2 g̃µν

)
ẋµ ẋν√

−gαβ ẋα ẋβ

 . (29)

This action for a test particle in a gravitational field is the starting point for the physical
interpretation of this model. It is t-reparametrization invariant, invariant under general coordinate
transformations, but it is not invariant under ExGCT.

Now, the trajectory of massive test particles is given by the equation of motion of xµ. This equation
say us that gµν ẋµ ẋν = cte, just like GR. Now, if we choose t equal to the proper time, then gµν ẋµ ẋν = −1
and the equation of motion is reduced in this case to:

ĝµν ẍν + Γ̂µαβ ẋα ẋβ =
1
4

K̃,µ, (30)

with:

Γ̂µαβ =
1
2
(

ĝµα,β + ĝβµ,α − ĝαβ,µ
)

,

ĝαβ =

(
1 +

1
2

K̃
)

gαβ + g̃αβ,

K̃ = g̃αβ ẋα ẋβ.

Equation (30) is a second order equation, but it is not a classical geodesic, because we have additional
terms and an effective metric can not be defined. Moreover, the equation of motion is independent of
the mass of the particle, so all particles will fall with the same acceleration.
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2.3.2. Massless Particles

The massless case is particularly important in this work because we need to study photons
trajectories to define distances. Unfortunately, the action (25) is useless for massless particles because it
is null when m = 0. To solve this problem, it is a common practice to start from the action [48]:

S0[ẋ, g, v] =
1
2

∫
dt
(

vm2 − v−1gµν ẋµ ẋν
)

, (31)

where v is an auxiliary field. From Equation (31), we can obtain the equation of motion for v:

v = −
√
−gµν ẋµ ẋν

m
. (32)

If we substitute Equation (32) in (31), we recover the action (25). This means that (31) is equivalent
to (25), but additionally includes the massless case.

In our case, a suitable action, similar to (31), is:

S[ẋ, g, g̃, v] =
∫

dt

(
m2v−

(
gµν + g̃µν

)
ẋµ ẋν

4v
+

m2v3

4gαβ ẋα ẋβ

(
m2 + v−2 g̃µν ẋµ ẋν

))
. (33)

In δ Gravity, the equation of v is still (32), and if we use it in (33), we obtain the massive test particle
action given by (29). However, now, we can study the massless case.

If we evaluate m = 0 in (31) and (33), we can compare GR and δ Gravity, respectively. They are:

S(m=0)
0 [ẋ, g, v] = −1

2

∫
dtv−1gµν ẋµ ẋν, (34)

S(m=0)[ẋ, g, g̃, v] = −1
4

∫
dtv−1gµν ẋµ ẋν, (35)

with gµν = gµν + g̃µν. In both cases, the equation of motion for v implies that a massless particle move
in a null-geodesic. In the usual case, we have gµν ẋµ ẋν = 0. However, in our model, the null-geodesic is
given by gµν ẋµ ẋν = 0, so the trajectory obey an effective metric given by gµν = gµν + g̃µν. The equation
of motion for the path of a test massless particle is given by:

gµν ẍν + Γµαβ ẋα ẋβ = 0, (36)

gµν ẋµ ẋν = 0,

with:

Γµαβ =
1
2
(gµα,β + gβµ,α − gαβ,µ).

On the other side, in [19], a quantum analysis of δ Gravity was presented, where the quantum
corrections just live at one loop only, producing an interesting chance to obtain a quantum gravity
model. In that work, we did a counting of degrees of freedom, where the combination gµν + g̃µν

is a normal particle, whereas g̃µν is a ghost. This result and the fact that the effective metric
gµν = gµν + g̃µν defines the geometry in our model say that this particular combination must be
seen as the unique graviton [38–41].

Additionally, we know that the proper time must be defined for massive particles. The equation
of motion for massive particles satisfies the important property of preserving the form of the proper
time in a particle in free fall. Notice that, in our case, the quantity that is constant using the equation of
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motion for massive particles, derived from Equation (30), is gµν ẋµ ẋν. This single out this definition of
proper time and not other. Thus, we must define proper time using the original metric gµν. That is:

gµν

(
1
c

dxµ

dτ

)(
1
c

dxν

dτ

)
= −1,

⇒ dτ =
1
c

√
−gµνdxµdxν →

√
−g00dt, (37)

where g00 < 0. We must consider these two facts to study the cosmological phenomenon in the
next sections.

At this point, it should be remarked that δ Gravity is not a traditional bigravity model. Only gµν

is used to raise and lower indexes, the differential volume component in the action (20) just depend on
gµν and, the most important fact, the dynamic of the universe is governed by the combination gµν + g̃µν,
given by the free massless particle action in (35). This means that the phantom behaviour can be
preserved even if we restrict the ghost component to turn it harmless [42–46]. Adding to quantum
corrections truncated to one loop, δ Gravity could be a good model to deal with the ghost problem.
On the other side, it is not a metric model of gravity too because massive particles do not move on
geodesics as opposed to massless particles.

3. Cosmological Case

In this section, we will study photons emitted from a supernova using δ Gravity to explain the
accelerated expansion of the universe without DE, with a little more detail compared with [25]. For this,
we have to use the correct cosmological geometry to represent an homogeneous and isotropic universe,
given by the Friedmann–Lemaître–Robertson–Walker (FLRW) metric:

gµνdxµdxν = −T2(u)c2du2 + R2(u)
(

dx2 + dy2 + dz2
)

,

g̃µνdxµdxν = −Fb(u)T2(u)c2du2 + Fa(u)R2(u)
(

dx2 + dy2 + dz2
)

, (38)

such that T(u) = dt
du (u) and t is the cosmological time. If we apply the Extended Harmonic Gauge

defined in Appendix B to Equation (38), we obtain that T(u) = T0R3(u) and Fb(u) = 3(Fa(u) + T1),
where T0 and T1 are gauge constants. We use T0 = 1 and T1 = 0 to fix the gauge completely. Thus,
with these conditions, the system (u,x,y,z) correspond to harmonic coordinate. Later, we can return to
the usual system (t,x,y,z), where gµν and g̃µν are given by:

gµνdxµdxν = −c2dt2 + R2(t)
(

dx2 + dy2 + dz2
)

, (39)

g̃µνdxµdxν = −3Fa(t)c2dt2 + Fa(t)R2(t)
(

dx2 + dy2 + dz2
)

. (40)

These expressions represent an isotropic and homogeneous universe. From Section 2.3, we know that
the proper time is measured using the metric gµν, but the space-time geometry is determined by the
null-geodesic of gµν + g̃µν. Then, with Equations (39) and (40), we have in the Cosmological case that t
is the proper time and: (

gµν + g̃µν

)
dxµdxν = 0

⇒ −(1 + 3Fa(t))c2dt2 + R2(t)(1 + Fa(t))dr2 = 0. (41)

All of these will be essential considerations to explain the expansion of the universe with δ Gravity,
using the supernova data.
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3.1. Photon Trajectory and Luminosity Distance

When a photon emitted from a supernova travels to the Earth, the Universe is expanding.
This means that the photon is affected by the cosmological Doppler effect. For this, we must use a
null geodesic in a radial trajectory from r1 to r = 0. Then, we can define an effective scale factor with
Equation (41) as:

R̃(t) = R(t)

√
1 + Fa(t)

1 + 3Fa(t)
(42)

such that cdt = −R̃(t)dr. Now, if we integrate this expression from r1 to 0, we obtain:

r1 = c
∫ t0

t1

dt
R̃(t)

, (43)

where t1 and t0 are the emission and reception times. If a second wave crest is emitted at t = t1 + ∆t1

from r = r1, it will reach r = 0 at t = t0 + ∆t0, so:

r1 = c
∫ t0+∆t0

t1+∆t1

dt
R̃(t)

. (44)

Therefore, if ∆t0 and ∆t1 are small, which is appropriate for light waves, we get:

∆t0

∆t1
=

R̃(t0)

R̃(t1)
⇔ ∆ν1

∆ν0
=

R̃(t0)

R̃(t1)
, (45)

where ν0 is the light frequency detected at r = 0, corresponding to a source emission at frequency ν1.
Thus, the redshift is given by:

1 + z(t1) =
R̃ (t0)

R̃(t1)
. (46)

We see that R̃ (t) replaces the usual scale factor R(t) to compute z. This means that we need to redefine
the luminosity distance too. For this, let us consider a mirror of radius b that receive light from our
distant source at r1. The photons that reach the mirror are within a cone of half-angle ε with origin at
the source.

Let us compute ε. The path of the light rays is given by~r(ρ) = ρn̂ +~r1, where ρ > 0 is a parameter
and n̂ is the direction of the light ray. Since the mirror is in~r = 0, then ρ = r1 and n̂ = −r̂1 +~ε, where
ε is the angle between −~r1 and n̂ at the source, forming a cone. The proper distance is determined by
the tri-dimensional metric, given by:

dl2 = R̃2(t)δijdxidxj (47)

in the cosmological case. Then, b = R̃(t0)r1ε and the solid angle of the cone is:

∆Ω =
∫ 2π

0
dφ
∫ ε

0
sin(θ)dθ = 2π(1− cos(ε)) = πε2 =

A
r2

1R̃2(t0)
, (48)

where A = πb2 is the proper area of the mirror. Thus, the fraction of all isotropically emitted photons
that reach the mirror is:

f =
∆Ω
4π

=
A

4πr2
1R̃2(t0)

. (49)
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We know that the apparent luminosity, l, is the received Power per unit mirror area and Power is
energy per unit time, so the received power is P = hν0

∆t0
f , where hν0 is the energy corresponding to the

received photon. On the other side, the total emitted power by the source is L = hν1
∆t1

, where hν1 is the
energy corresponding to the emitted photon. Therefore, we have that:

P =
R̃2(t1)

R̃2(t0)
L f , (50)

l =
P
A

=
R̃2(t1)

R̃2(t0)

L
4πr2

1R̃2(t0)
, (51)

where we have used that ∆t0
∆t1

= ν1
ν0

= R̃(t0)
R̃(t1)

. In addition, we know that, in an Euclidean space,

the luminosity decreases with distance dL according to l = L
4πd2

L
. Therefore, using Equation (43),

the luminosity distance is:

dL =
R̃2(t0)

R̃(t1)
r1 = c

R̃2 (t0)

R̃(t1)

∫ t0

t1

dt
R̃(t)

. (52)

On the other side, we can define the angular diameter distance, dA. If we consider a light ray emitted
at time t1 and moving in the θ coordinate, our null geodesic, given by (36), tells us that the proper
distance is s = ct1 = R̃(t1)r1θ. The angular diameter distance is defined by θ = s

dA
, so dA = R̃(t1)r1.

If we compare it with Equation (52), we obtain that:

dA =
R̃2(t1)

R̃2(t0)
dL =

dL

(1 + z1)2 . (53)

Therefore, the relation between dA and dL is the same as in GR [49]. This result is important because,
in other modified gravity theories, this relation is not satisfied [50]. We will use dL to analyze the
supernovae data, but dA could be useful for other phenomena.

3.2. Solution of the Equations of Motion

In cosmology, the metric gµν is given by (39). In addition, by Equations (21) and (23), we know
that Einstein’s equations do not change and Tµν is conserved. Therefore, the usual cosmological
solution is still valid. Thus, using the expression in (A24) with Uµ = (c, 0, 0, 0), we obtain the
well-known equations:(

Ṙ(t)
R(t)

)2

=
κc2

3 ∑
i

ρi(t), ρ̇i(t) = −
3Ṙ(t)
R(t)

(ρi(t) + pi(t)), (54)

with ḟ (t) = d f
dt (t) and we assumed that the interaction between different components of the universe is

null. To solve Equation (54), we need equations of state as pi(t) = ωiρi(t). Since we wish to explain DE
with δ Gravity, we will assume that we only have non-relativistic matter (cold DM, baryonic matter)
and radiation (photons, massless particles) in the Universe. Thus, we will require two equations of
state. For non-relativistic matter, we use pM(t) = 0 and for radiation pR(t) = 1

3 ρR(t). Replacing in (54)
and solving them, we find the exact solution:

ρ(Y) =
3H2

0 ΩR

κc2C
Y + C

Y4 , (55)

p(Y) =
H2

0 ΩR

κc2
1

Y4 , (56)

t(Y) =
2
√

C
3H0
√

ΩR

(√
Y + C(Y− 2C) + 2C

3
2

)
, (57)
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where Y = R(t)
R0

, t(Y) is the time variable, R0 is the scale factor in the present, C = ΩR
ΩM

, and ΩR
and ΩM = 1−ΩR are the radiation and non-relativistic matter density in the present, respectively.
We know that ΩR � 1, so ΩM ∼ 1 and C � 1. We can see that Y can be used as the independent
variable. By definition, Y � C describes the non-relativistic era and Y � C describes the radiation era.

The equation of motion for g̃µν is given by (22) and (24), where T̃µν is a new energy-momentum
tensor for δ non-relativistic matter and radiation densities, given by ρ̃M and ρ̃R, respectively. Thus,
using (A25) and (55)–(57), the Equations (22) and (24) are reduced to:

F′a(Y) +
2cκ

9H2
0 ΩM

Y2 (Yρ̃′M(Y) + 3ρ̃M(Y)
)

= 0, (58)

F′a(Y) +
cκ

6H2
0 ΩR

Y3 (Yρ̃′R(Y) + 4ρ̃R(Y)
)

= 0, (59)

YF′a(Y)− 3Fa(Y)−
cκ

3H2
0 ΩM

Y4

(C + Y)
(ρ̃M(Y) + ρ̃R(Y)) = 0, (60)

where we used p̃M = 0, p̃R = 1
3 ρ̃R and UT

µ = 0. The solution of these equations are:

Fa(Y) =
3
2
(2C2 − C1)

Y
C

√Y
C
+ 1 ln


√

Y
C + 1 + 1√
Y
C + 1− 1

− 2

− 2C2 + C3
Y
C

√
Y
C
+ 1, (61)

ρ̃M(Y) =
9H2

0 ΩR

2κc2C
(C1 − Fa(Y))

Y3 , (62)

ρ̃R(Y) =
6H2

0 ΩR

κc2
(C2 − Fa(Y))

Y4 , (63)

where C1, C2 and C3 are integration constants. ρ̃M(Y) and ρ̃R(Y) are densities of δ Matter, so they must
be not-negative functions. Then,

C1 − Fa(Y) ≥ 0 ∧ C2 − Fa(Y) ≥ 0, (64)

for all Y ≥ 0. Evaluating (64) at Y = 0, we get C2 ≥ 0 and 2C2 + C1 ≥ 0. On the other side, at Y � C,

we get C3 ≤ 0. Now, if we use Equation (61) in (42) and define Ỹ = R̃(t)
R(t0)

, we can see that:

Ỹ
Y
∼

√
1− 2C2

1− 6C2

(
1 +

3 (2C2 − C1)

2C (1− 6C2) (1− 2C2)
Y log(Y)

)
+ O(Y), (65)

when Y � C. Ỹ is the effective scale factor, so it represents the evolution of the universe. We know
that an accelerated expansion must be produced at late times, but the expansion must be driven by the
non-relativistic matter and radiation at early times, this means Ỹ

Y = 1 + O(Y). For this, we have to
fix C1 = 0 and C2 = 0 to guarantee the temporal behavior of expansion is just like GR at early times.
The other constants will be chosen such that a Big-Rip is produced. That is, Ỹ(YRip) = ∞. We need
a Big-Rip to explain the accelerated expansion of the universe because we want that Ỹ grows quickly
when Y is bigger.

The Big-Rip is determined by C3, but a very small value for this parameter is necessary, otherwise
the Big-Rip would be too early. However, if we use C3 = 0, the Big-Rip is not produced and we

cannot explain the accelerated expansion of the universe. Thus, using C3 = −C
3
2 L2
3 ,with 1� C 6= 0,

the effective scale factor and the Big-Rip are given by:
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Ỹ(Y, L1, L2, C) = Y

√
1− L2

Y
3

√
Y + C

1− L2Y
√

Y + C
, (66)

YRip =

(
1
L2

) 2
3

. (67)

In summary, we have that Ỹ ∼ Y in the radiation era, where Y � C, so the Universe evolves without
differences with GR. However, in some moment during the non-relativistic matter era, where Y � C,
an accelerated expansion is produced, ending in a Big-Rip. We will give more details for this when we
study the supernovae data. Additionally, inequalities in (64) are always satisfied; then, the δ densities
are non-negative.

3.3. Analysis and Results

Before we start the data analysis, we must define the parameters of the model. In the first place,
dL in GR depends upon four parameters: Y, H0 = 100h km s−1 Mpc−1, ΩM and ΩR. However,
from CMB black body spectrum, we obtain the photons density in the present, Ωγ. Now, if we

assume that ΩR = Ωγ + Ων =

(
1 + 3

( 7
8
) ( 4

11

)4/3
)

Ωγ (Ωνis the primordial neutrino density), we get

h2ΩR = 4.15× 10−5. Therefore, the parameters in dL can be reduced to three: Y, h and h2ΩM. In the
same way, in δ Gravity with δ Matter, dL depends on three parameters: Y, C and L2. We will use
H0
√

ΩR = 0.644 km s−1 Mpc−1.
The supernovae data give the apparent magnitude, m, as a function of redshift, z. For this reason,

it is useful to use z instead of Y. The apparent magnitude is:

m(z) = M + 5 log10

(
dL(z)
10 pc

)
, (68)

where M is the absolute magnitude, constant and common for all supernovae.
Finally, the difference between GR and δ Gravity will be given by dL(z). Thus, the luminosity

distance expressions are:

GR: dL(z) =
c(1 + z) Mpc s

100 km

∫ 1

1
1+z

dY′√
h2 (1−ΩM −ΩR)Y′4 + h2ΩMY′ + h2ΩR

, (69)

δ Gravity: dL(z) = c(1 + z)
√

C
H0
√

ΩR

∫ z

0

(1 + u)Y(u) dY
du (u)√

Y(u) + C
du, (70)

where we used Equations (52) and (57) for δ Gravity. Besides, Y(z) must satisfy Ỹ(Y(z)) = Ỹ0
1+z in (70),

with Ỹ0 = Ỹ(1) and Ỹ(Y(z)) given by Equation (66).
The statistical method used to interpret errors in data is given by the variance σ in a normally

distributed random variable. In our case, the data is given by (zi, µi), where:

µ(z) ≡ m(z)−M = 5 log10

(
dL(z)
10 pc

)
is the distance modulus. Then, we must minimize:

χ2(per point) =
1
N

N

∑
i=1

(µi − µ(zi))
2

σ2
µi

, (71)
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where N is the number of data points and σµi is the error of µi. Now, we can proceed to analyze
the data given in [51] with N = 580 supernovae. In both cases, GR and δ Gravity, dL is given by
an exact expression, but we need to use a numerical method to solve the integral and fit the data to
determinate the optimum values for the parameters that represent the µ v/s z of the supernovae data1.
The parameters that minimize Equation (71) are:

• GR: h = 0.7± 3.37× 10−3 and h2ΩM = 0.136± 8.5× 10−3 with χ2(per point) = 0.985,
• δ Gravity with δ Matter: L2 = 0.457 ± 0.0114 and C = 1.89 × 10−4 ± 4.92 × 10−6 with

χ2(per point) = 0.985.

We can see in Figure 1 that δ Gravity with δ Matter fit the data very well. Now, with these values,
we can compute the age of the universe and the Big-Rip era. For GR, the age of the universe
is 1.377× 1010 years. However, in our model, the time is given by (57). Thus, substituting the
corresponding values for L2, C and taking Y = R(t)

R(t0)
= 1, we obtain 1.391 × 1010 years for the

age of the universe. To compute when the Big-Rip will happen, we need to use Equation (67). That is,
YRip = 1.684, so tBig-Rip = 3.042× 1010 years. Therefore, the Universe has lived less than half of its life.

On the other side, in [24], we obtained that, in δ Gravity without δ Matter, the age of the universe
is 1.92× 1010 years and tBig-Rip = 4.3× 1010 years. The problem in this case is the huge age of the
universe, compared with Planck Collaboration given by 1.381× 1010 years2. However, we cannot say
that this case is totally rejected yet, but the age of the universe for δ Gravity with δ Matter is more
similar to Planck.

Figure 1. Distance modulus vs. Redshift. We have fitted 580 supernovae to δ Gravity, using the parameters that

minimize Equation (71).

Now, using Equations (62) and (63), the δ Matter in the present is given by:

Ω̃M =
κc2ρ̃M(1)

3H2
0
≈ L2

2
ΩM = 0.23ΩM ∧ Ω̃R =

κc2ρ̃R(1)
3H2

0
≈ 2L2

3
ΩR = 0.3ΩR, (72)

1 To obtain the best combination of parameters, we used NonLinearModelFit from Mathematica 11.0. Then, we used these
parameters to minimize Equation (71). For more details, see the Mathematica 11.0 help.

2 The age of the universe of Planck was calculated using the cosmological parameters obtained in [52]. That is, ΩM = 0.308
and H0 ≡ 100h = 67.8 km/s/Mpc.
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where Ω̃M and Ω̃R are the normalized δ densities in the present. Therefore, we have two components
of δ Matter, related to ordinary matter at cosmological level. These components can be considered
like a contribution to DM; however, a more accuracy analysis in a field theory level is necessary to
understand the nature of δ Matter. In the next section, we will study the Non-Relativistic limit to
understand the phenomenological effect δ Matter in the Dark Sector. In any case, Ω̃M and Ω̃R are
important to explain the dynamic of the expansion of the universe.

3.4. Introduction to δ Inflation

To finish with the cosmological case, we will make a few comments about the general equations
of motion for only one fluid in δ Gravity for future references. Using the cosmological solution for gµν

and g̃µν, given by (39) and (40) respectively, we obtain:

κρ(t) = 3H2(t), (73)

κp(t) = −2Ḣ(t)− 3H2(t), (74)

κρ̃(t) = 3H(t)
(

Ḟa(t)− 3H(t)Fa(t)
)

, (75)

κ p̃(t) = −F̈a(t) + 3
(

2Ḣ(t) + 3H2(t)
)

Fa(t), (76)

where H(t) = Ṙ(t)
R(t) is the Hubble parameter and p̃(t) = δ̃p(t). To complete the system, we need

equations of state to solve them. They are p(t) = ω(t)ρ(t) and p̃(t) = ω(t)ρ̃(t) + ω̃(t)ρ(t). In a perfect
fluid, ω(t) usually is assumed to be constant and ω̃(t) must be zero in that case. Thus, using these
equations of state in (73)–(76), we obtain:

Ḣ(t) +
3
2
(ω(t) + 1) H2(t) = 0, (77)

F̈a(t) + 3ω(t)H(t)Ḟa(t) = −3ω̃(t)H2(t). (78)

In order to understand the behavior of these equations, we will solve the case where ω(t) is almost
constant, to be close to the usual perfect fluid. The solution is:

R(t) =

{
R0 (t + t0)

2
3(1+ω) , with: ω 6= −1,

R1eλt, with: ω = −1,

Fa(t) =

 a0

(
R(t)
R2

) 3
2 (1−ω)

+ 2ω̃
1−ω ln

(
R(t)
R2

)
, with: ω 6= 1,

a1 ln
(

R(t)
R3

)
− 3ω̃

2 ln2
(

R(t)
R3

)
, with: ω = 1,

(79)

where R0, R1, R2, R3, t0, a0 and a1 are integration constants. From this result, we notice that R(t) obey
the standard power-law solution in a perfect fluid with a constant ω. However, we must remember
that the dynamic of the universe in δ Gravity is given by the effective scale factor, (42), which produce
an accelerated expansion. This means that we can define an effective Hubble parameter given by

H(t) ≡
˙̃R(t)
R̃(t) . In this case, with ω̃ = 0, it is:

H(X) =


H(X)

1 + 3c2(1−ω)X
3
2 (1−ω)

2
(

c1+2c2−X
3
2 (1−ω)

)(
c1−X

3
2 (1−ω)

)
 , with: ω 6= 1,

H(X)
(

1 + d2
(d1+2d2−ln(X))(d1−ln(X))

)
, with: ω = 1,

(80)
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where X = R(t)
R0

and c1, c2, d1 and d2 are integration constants. Therefore, even with a standard
power-law solution, we can obtain a different behavior. However, we have to say that the power-law
solution is just for a perfect fluid. Actually, the solution of R(t) in some specific model will be the same
solution obtained in GR. This is because the Einstein’s equations are preserved in δ Gravity, but the
dynamic is affected by the effective scale factor. For example, in inflation, a scalar field is used to
produce the exponential expansion. In that case:

ρ(t) =
1
2

ϕ̇2
0(t) + V(ϕ0(t)),

p(t) =
1
2

ϕ̇2
0(t)−V(ϕ0(t)),

ρ̃(t) = ϕ̇0(t) ˙̃ϕ0(t)−
3
2

Fa(t)ϕ̇2
0(t) + V,ϕ(ϕ0(t))ϕ̃0(t),

p̃(t) = ϕ̇0(t) ˙̃ϕ0(t)−
3
2

Fa(t)ϕ̇2
0(t)−V,ϕ(ϕ0(t))ϕ̃0(t).

With GR, inflation must obey V(ϕ0(t))� ϕ̇2
0(t) to obtain ω(t) = p(t)

ρ(t) ∼ −1, such that the expansion
is exponential (see Equation (79)). However, in δ Gravity, the accelerate expansion could be produced
by a divergence in R̃(t), just like we explained DE. Additionally, in inflation, we have a new field, ϕ̃0,
giving us a non-zero ω̃(t). In conclusion, in inflation with δ Gravity, an accelerated expansion can

be produced by additional factors. Basically, the expansion rate is governed by H(t) =
˙̃R(t)
R̃(t) . Now,

an effective ω parameter can be defined as:

ωe f f (t) = −
2Ḣ(t)
3H2(t)

− 1. (81)

If we apply Equation (80) in (81), we can study the expansion behaviour of our model. If ωe f f (t) < −1,
the expansion is like a phantom model. This calculation is briefly developed in [53], where we
demonstrated that δ Gravity works like a phantom model. In addition, Equation (81) can be used to
compare other alternative theories with δ Gravity in a cosmological level. A more detailed version of
this work is in progress.

4. Non-Relativistic Case

In this section, we will consider the Newtonian and Post-Newtonian limit to study new effects on
δ Gravity. We expect a weak deviation of GR at solar system scale, but we want to see in a galactic
scale if DM could be explained with δ Matter.

4.1. Newtonian and Post-Newtonian Limit

If we introduce one order more for the Newtonian limit, the metric will be given by [54]:

gµνdxµdxν = −
(

1 + 2φε2 + 2
(

φ2 + ψ
)

ε4
)( cdt

ε

)2
+
(

1− 2φε2 − 2ψε4
) (

dx2 + dy2 + dz2
)

+2ε3 (χ1dx + χ2dy + χ3dz)
(

cdt
ε

)
+ ε4

(
ξ11dx2 + ξ22dy2 + ξ33dz2 (82)

+2ξ12dxdy + 2ξ13dxdz + 2ξ23dydz) ,

where ε ∼ v
c is the perturbative parameter and gµν → ηµν for r → ∞. We can see the Newtonian

limit represented by φ at order ε2 in the components of gµν. In the Post-Newtonian limit, we have ten
additional functions to represent ten degrees of freedom on the metric. In the same way, g̃µν will be:
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g̃µνdxµdxν = −2
(

φ̃ε2 + (2φφ̃ + ψ̃) ε4
)( cdt

ε

)2
− 2

(
φ̃ε2 + ψ̃ε4

) (
dx2 + dy2 + dz2

)
+2ε3 (χ̃1dx + χ̃2dy + χ̃3dz)

(
cdt
ε

)
+ ε4

(
ξ̃11dx2 + ξ̃22dy2 + ξ̃33dz2 (83)

+2ξ̃12dxdy + 2ξ̃13dxdz + 2ξ̃23dydz
)

,

where we used g̃µν → 0 for r → ∞. All functions in Equations (82) and (83) depend on (t, x, y, z),
but 1

c
∂
∂t ∼ ε. For this reason, we use ct→ ct

ε to obtain the equations. Equations (82) and (83) are the
more general expression for a covariant tensor of rank two, so we need to fix a gauge. One particularly
convenient gauge is given by the extended harmonic coordinate conditions presented in Appendix B.
Using Equations (A26) and (A27), we obtain:

4φ̇ + ∂iχi = 0, (84)

2φ∂iφ− χ̇i −
1
2

∂iξ jj + ∂jξij = 0, (85)

4 ˙̃φ + ∂iχ̃i = 0, (86)

2φ∂iφ̃ + 2φ̃∂iφ− ˙̃χi −
1
2

∂i ξ̃ jj + ∂j ξ̃ij = 0. (87)

On the other side, in Appendix A, it is proved that the energy-momentum tensors for a perfect fluid
are given by (A24) and (A25). Now, in the Non-Relativistic limit, we have that:

ρ = ρ(0) + ε2ρ(2), (88)

ρ̃ = ρ̃(0) + ε2ρ̃(2), (89)

p(ρ) = ε2 p(2)(ρ), (90)

Uµ =

c

1 + ε2
(

φ + 1
2 U(1)

k U(1)
k

)
ε

 , εU(1)
i

 , (91)

UT
µ =

(
cεUT(1)

k U(1)
k , εUT(1)

i

)
, (92)

reducing the equations of motion (21) and (22) to:

∂2φ =
κ

2
ρ(0), (93)

∂2χi = −2κU(1)
i ρ(0), (94)

∂2ψ =
κ

2

(
2
(

U(1)
k U(1)

k − φ
)

ρ(0) + ρ(2) + 3p(2)(ρ)
)
+ φ̈, (95)

∂2ξij = −2κU(1)
i U(1)

j ρ(0) − 4(∂iφ)(∂jφ) + 2κ
((

U(1)
k U(1)

k + φ
)

ρ(0) + 2p(2)(ρ)
)

δij

+4(∂kφ)(∂kφ)δij, (96)

∂2φ̃ =
κ

2
ρ̃(0), (97)

∂2χ̃i = −2κ
(

UT(1)
i ρ(0) + U(1)

i ρ̃(0)
)

, (98)

(99)
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∂2ψ̃ = κ

((
2U(1)

k UT(1)
k − φ̃

)
ρ(0) +

(
U(1)

k U(1)
k − φ +

3
2

p′(2)(ρ)
)

ρ̃(0) +
ρ̃(2)

2

)
+ ¨̃φ, (100)

∂2ξ̃ij = −2κ
((

UT(1)
i U(1)

j + U(1)
i UT(1)

j

)
ρ(0) + U(1)

i U(1)
j ρ̃(0)

)
− 4(∂iφ̃)(∂jφ)− 4(∂iφ)(∂jφ̃)

+2κ
((

2U(1)
k UT(1)

k + φ̃
)

ρ(0) +
(

U(1)
k U(1)

k + φ + 2p′(2)(ρ)
)

ρ̃(0)
)

δij (101)

+8(∂kφ)(∂kφ̃)δij,

where p′(2)(ρ) = ∂p(2)
∂ρ (ρ), ∂2 = ∂i∂i, ∂i =

∂
∂xi and κ ∼ O(ε2). We can see that Equations (93) and (97)

correspond to the Newtonian limit. To complete the system, we have Equations (23) and (24), but they
are automatically satisfied when we consider (84)–(87). However, they are useful because we can
write them in terms of ρ(0), ρ(2), ρ̃(0), ρ̃(2) and p(2). In spherical symmetry with U(1)

i = UT(1)
i = 0,

it is possible to prove that the conservation equations can be reduced to:

∂p(2)

∂r
(r) + ρ(0)(r)

(
∂φ

∂r
(r)
)

= 0, (102)

∂

∂r

(1 + 2ε2φ(r)
)−1

φ̃(r)− ρ̃(0)(r)

(
∂φ
∂r (r)

)
(

∂ρ(0)

∂r (r)
)

 = 0. (103)

From (102), we can obtain p(2)(r) and Equation (103) say us that:

ρ̃(0)(r) =

(
∂ρ(0)

∂r (r)
)

(
∂φ
∂r (r)

) (
φ̃(r)− C

(
1 + 2ε2φ(r)

))
, (104)

where C is an integration constant. We preserve 2ε2φ(r) in the last term of the right side because the
order of C is unknown. Equations (102) and (103) are obtained in a Post-Newtonian level. This means
that we need to study the system at this level to obtain the relation (104) and complete the Newtonian
limit. Finally, Equations (93) and (97) for spherical symmetry are reduced to:

1
r2

∂

∂r

(
r2
(

∂φ(r)
∂r

))
=

κ

2
ρ(0)(r), (105)

1
r2

∂

∂r

(
r2
(

∂φ̃(r)
∂r

))
=

κ

2

(
∂ρ(0)

∂r (r)
)

(
∂φ
∂r (r)

) (
φ̃(r)− C

(
1 + 2ε2φ(r)

))
. (106)

Then, to obtain φ(r) and φ̃(r), we just need ρ(0)(r), completing the Newtonian limit. Now, we can ask
ourselves if it is possible to explain DM with this result. For this, we will need to study the trajectory
of a free particle.

4.2. Trajectory of a Particle:

From Section 2.3, we know that the acceleration is given by (30). In the Post-Newtonian limit,
it is reduced to [54]:

1
c2

d2~x
dt2 = −ε2∇

(
φN +

(
2φ2

N + ψN

)
ε2
)

+ε4
(

3~vφ̇N + 4~v (~v · ∇φN)− v2∇φN − ~̇χN + (~v×∇× ~χN)
)

(107)

+
ε4

2
∇φ̃2 + O

(
ε6
)

,
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where ~v = d~x
dt , φN = φ + φ̃ and analogous expressions for the others fields. From (107), we can deduce

a couple of things. Firstly, in the Newtonian limit, we have:

1
c2

d2~x
dt2 = −ε2∇φN , (108)

so φN is the effective Newtonian potential. Secondly, the acceleration is similar to the usual case if
we replace φ→ φN , with the exception of the last term in (107). If we analyze the case with spherical
symmetry far away from matter, we can see from Equation (106) that φ̃2 ∼ r−2. This means that this
term is ∼−r−3, therefore it is an attractive contribution and can be considered as a contribution to DM.
In this paper, we will focus on the Newtonian approximation, given by (108), which is the dominant
term. The contribution by other terms will be considered in future works.

We have said that φN is the effective potential in the Newtonian limit. This means that the effective
density is ρe f f = ρ(0) + ρ̃(0). In spherical symmetry, that is:

ρe f f (r) = ρ(0)(r) +

(
∂ρ(0)

∂r (r)
)

(
∂φ
∂r (r)

) (
φ̃(r)− C

(
1 + 2ε2φ(r)

))
. (109)

Therefore, the second term in (109) is an additional mass and it could be identified as DM. To verify
this, we will study some density profile used to fit the galaxy distribution and then obtain the effective
density. Next, we will analyze Equation (109) and the equations of motion of φ and φ̃ to see if δ Matter
can explain the DM effect.

4.3. Density Profiles

To study the δ Matter effects, we must analyze Equations (104)–(106). To explain DM, δ Matter
must be negligible in the solar system scale, but important in galactic scale. We will study these
equations with some density profile. In the first place, we will see a spherically homogeneous density
like a first approximation for a planetary or stellar distribution. Then, we will study the exponential
profile and finally we will use the Einasto and Navarro–Frenk–White profiles to describe galaxies’
distributions. We define a normalized radius x such that r = Rx; then, our equations are:

1
x2

∂

∂x

(
x2
(

∂φ(x)
∂x

))
=

κR2

2
ρ(x), (110)

1
x2

∂

∂x

(
x2
(

∂φ̃(x)
∂x

))
=

κR2

2

(
∂ρ
∂x (x)

)
(

∂φ
∂x (x)

) (φ̃(x)− C
(

1 + 2ε2φ(x)
))

, (111)

where R is a convenient radius. With these equations, we can define the ordinary mass and tilde mass.
That is:

m(x) = 4πR3
∫ ∞

0
dxx2ρ(x) =

8πR
κ

x2
(

∂φ(x)
∂x

)
, (112)

m̃(x) = 4πR3
∫ ∞

0
dxx2ρ̃(x) =

8πR
κ

x2
(

∂φ̃(x)
∂x

)
, (113)

such that the effective mass is M(x) = m(x) + m̃(x). Finally, from Equation (108), we have that the
rotation velocity is:
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(
vrot(x)

c

)2

= ε2x
∂

∂x
(φ(x) + φ̃(x)) =

ε2κM(x)
8πRx

, (114)

where we used that d2~x
dt2 = − v2

rot(r)
r θ̂ in this case.

4.3.1. Spherically Homogeneous Profile

We can think, in a first approximation, that planets or stars are spheres with a constant density.
That is, ρ(x) = ρ0Θ(1− x). Thus, Equations (110) and (111) are:

1
x2

∂

∂x

(
x2
(

∂φ(x)
∂x

))
=

κR2ρ0

2
Θ(1− x)

1
x2

∂

∂x

(
x2
(

∂φ̃(x)
∂x

))
= −κR2ρ0

2
δ(1− x)(

∂φ
∂x (x)

) (φ̃(x)− C
(

1 + 2ε2φ(x)
))

ρ̃(x) = −ρ0
δ(1− x)(

∂φ
∂x (x)

) (φ̃(x)− C
(

1 + 2ε2φ(x)
))

,

where R is the radius of the sphere. From the first equation, we can obtain φ(x). Using the boundary
conditions φ(∞)→ 0, φ(0)→ "finity value" and imposing that φ(x) and φ′(x) must be continuous for
all x, we obtain:

φ(x) =

{
κR2ρ0

12
(

x2 − 3
)

x ≤ 1,

− κR2ρ0
6x x > 1.

(115)

On the other side, from the second equation, we obtain φ̃(x), but we can not impose a continuous
φ̃′(x). Instead, the equation of motion of φ̃(x) tells us:

x2
(

∂φ̃(x)
∂x

)∣∣∣∣ext

int
= − κR2ρ0

2φ′(1)

(
φ̃(1)− C

(
1 + 2ε2φ(1)

))
,

where the other conditions on φ̃(x) are the same. They are φ̃(∞)→ 0, φ̃(0)→ "finity value" and φ̃(x)
is continuous for all x. Then, the solution is:

φ̃(x) =


3
2 C
(

1− ε2κR2ρ0
3

)
x ≤ 1,

3
2x C

(
1− ε2κR2ρ0

3

)
x > 1.

(116)

In addition, the δ Matter density is:

ρ̃(x) = − 3C
κR2

(
1− ε2κR2ρ0

3

)
δ(x− 1) ≈ − 3C

κR2 δ(x− 1) (117)

and the acceleration is given by (108), then:

~a = −ε2 c2

R
∂

∂x
(φ(x) + φ̃(x)) r̂. (118)
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Naturally, we expect a continuous~a, but we saw that φ̃′(x) is not. This means that we have to accept
that δ Gravity produces an additional force on the surface of the sphere, or C = 0. In the last case,
all δ components disappear, so δ Gravity is the same as GR. This result is a really important condition
because δ Matter will be negligible when the distribution of ordinary matter can be represented by a
homogeneous sphere. This case can be an acceptable representation of planets and stars, where δ Matter
does not produce important effects. However, δ Matter could be important when the distribution of
ordinary matter is not homogeneous like a galaxy, where the DM effects are important.

4.3.2. Exponential Profile

We will study this profile to develop an acceptable first approximation to a galaxy distribution.
That is, ρ(x) = ρ0e−x. In this case, Equations (110) and (111) are:

1
x2

∂

∂x

(
x2
(

∂φ(x)
∂x

))
=

κR2ρ0e−x

2
,

1
x2

∂

∂x

(
x2
(

∂φ̃(x)
∂x

))
= − κR2ρ0e−x

2
(

∂φ
∂x (x)

) (φ̃(x)− C
(

1 + 2ε2φ(x)
))

.

From the first equation, we can solve φ(x) analytically. Using the boundary conditions φ(∞)→ 0 and
φ(0)→ “finity value”, we obtain:

φ(x) =
κR2ρ0 ((x + 2) e−x − 2)

2x
. (119)

On the other side, the equation of φ̃(x) is too complicated, which is:

∂

∂x

(
x2
(

∂φ̃(x)
∂x

))
= −

x3e−x (xφ̃(x)− C
(
x− ε2κR2ρ0 (2− (x + 2) e−x)

))
2− (x2 + 2x + 2) e−x . (120)

Now, we can solve this equation numerically and find m(x) and m̃(x). First, we must analyze the initial
conditions. We can do it studying the behavior of m(x) and m̃(x), given by (112) and (113), for x � 1
because they are related to x2

(
∂φ(x)

∂x

)
and x2

(
∂φ̃(x)

∂x

)
, respectively. From the solution (119), we have

that φ(x) ≈ κR2ρ0
2 and m(x) ≈ 4πR3ρ0

3 x3 for small x. On the other side, from Equation (120), we need
φ̃(x) ≈ C

(
1− ε2κR2ρ0

)
and m̃(x) ≈ ε2CπR3ρ0x4. Thus, the total mass is completely dominated by

ordinary components in the center.
Previously, we said that the C order is unknown, but the initial conditions say us that m̃(x)

m(x) ≈
3ε2C

4 x.

This means that, the δ Matter is increased from x << 1 too slowly, unless ε2C ∼ O(1). We can see this
in Figure 2a, where we present to m(x) and m̃(x). Additionally, we represent the relation between
m(x) and m̃(x) in Figure 2b. These plots say us that ordinary matter is dominant in the center, but δ

Matter is accumulated when we get away from the center and the behavior of both kinds of matters
become similar when x increase. In fact, the relation between them is practically constant in the edge
of the galaxy, m̃(x)

m(x) → 3ε2C. In conclusion, ordinary and δ Matter evolve in a similar way, but δ Matter
is concentrated outside of the galactic nucleus.

In Figure 2c, we show the rotation velocity in δ Gravity with ε2C =
{

1
2 , 1, 3

2

}
and GR. Clearly,

the similar behavior of both elements and the additional mass from δ Matter produce an amplifying
effect in the rotation velocity. This means that a minimal quantity of ordinary matter could explain the
rotation velocity in a galaxy because of the additional contribution produced by δ Matter.
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Figure 2. Exponential Profile Calculation. (a) ordinary and δ Matter vs. normalized radius,
with m0 = 8πR3ρ0. From the center, more δ Matter is accumulated, but the behavior of both terms
become similar when we distance from the center; (b) m̃(x)

m(x) (in units of ε2C) vs. normalized radius.

We verify the last conclusion. In the center, the relation is almost linear, m̃(x)
m(x) ∼ x, and, at the end of the

galaxy, it is like a constant, m̃(x)
m(x) → 3ε2C; (c) rotation velocity vs. normalized radius for different values

of ε2C. The Black-Dashed line corresponds to GR case, so the ε2C value indicates the contribution
of δ Matter. The similar behavior of both elements and the additional mass from δ Matter produce
an amplifying effect in the rotation velocity. In these calculations, we have used κρ0R2 = 10−4.

4.3.3. Einasto Profile

The Einasto profile is a spherically symmetric distribution used to describe many types of real
system, like galaxies and DM halos (see for instance [31–33]). It is represented by a logarithmic
power-law:

d ln(ρ(r))
d ln r

∝ −rα,

with α > 0, then ρ(x) = ρ0e−xα
. Thus, it is a most general case of the exponential profile and many

simulations of galaxies have been done using this profile, where they obtained values of α given by
0.1 ≤ α ≤ 1 [33]. Evaluating in Equations (110) and (111), we have:

1
x2

∂

∂x

(
x2
(

∂φ(x)
∂x

))
=

κR2ρ0e−xα

2
, (121)

1
x2

∂

∂x

(
x2
(

∂φ̃(x)
∂x

))
= −κR2ρ0αxα−1e−xα

2
(

∂φ
∂x (x)

) (
φ̃(x)− C

(
1 + 2ε2φ(x)

))
. (122)
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As in the exponential profile, we can solve Equations (121) and (122) to find m(x) and m̃(x)3. Thus,
using expressions (112) and (113), we can see that the appropriate initial conditions are given by

m(x) ≈ 4πR3ρ0
3 x3 and m̃(x) ≈ 4πR3ρ0ε2Cα

(3+α)
xα+3. Clearly, we can verify that this result is reduced to

the exponential case with α = 1 and we need ε2C ∼ O(1) to obtain enough δ Matter too. m(x) and
m̃(x) are represented in Figure 3a for α = {0.7, 0.4, 0.1}, and we represent the relation between m(x)
and m̃(x) in Figure 3b. As in the exponential case, more δ Matter is accumulated far from the center.
Actually, we have that m̃(x) increases faster than m(x), especially when α is smaller. However, far from
the center, m̃(x)

m(x) → constant ≤ 3ε2C when α is close to 1. For smaller α’s, it is more like a logarithmic

behavior. Finally, in Figure 3c, we present the rotation velocity for ε2C =
{

1
2 , 1, 3

2

}
and GR. Just like

we expected, the rotation velocity is amplified by the δ Matter effect, in such a way that if C is bigger,
we have higher velocities.

Our conclusions in this case are similar to the exponential profile. The ordinary matter leads
over δ Matter in the center, but rapidly the second one increase until it is completely dominant. Thus,
δ Matter is also concentrated outside of the galactic nucleus in this case, but additionally we obtained
a logarithmic contribution from δ Matter, producing an additional DM behavior to small values of α.
We note this in Figure 3c for α = 0.1.

Figure 3. Einasto Profile Calculation for α = {0.7, 0.4, 0.1}. (a) ordinary and δ Matter vs. normalized radius,

with m0 = 8πR3ρ0. From the center, more δ Matter is accumulated, just like the exponential case; (b) m̃(x)
m(x) (in units of

ε2C) vs. normalized radius. In fact, we have that m̃(x) increases faster than m(x) and it is faster when α is smaller.

On the other side, at the end of the galaxy, it is like a constant too, with m̃(x)
m(x) → 3ε2C, but, for smaller α, the behavior

is more similar to a logarithmic function; (c) rotation velocity vs. normalized radius for different values of ε2C.

The Black-Dashed line corresponds to GR case, so the ε2C value indicates the contribution of δ Matter. In this case,

we have an amplifying effect in the rotation velocity too, such that, if ε2C is bigger, we have higher velocities.

In these calculations, we have used κρ0R2 = 4
(

α
2

) 2
α e

2(1−α)
α × 10−4.

3 The only constant that we can not fix is φ0 = φ(0). Fortunately, this constant is irrelevant to find m(x). This is true for
an NFW profile too.
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4.3.4. Navarro–Frenk–White Profile

The Navarro–Frenk–White (NFW) profile is another kind of distribution of the of DM halo
(see, for instance, [34–36]), given by ρ(x) = ρ0

xγ(x+1)3−γ . In pure DM simulations, γ = 1 is usually
used; however, baryonic matter effects are expected, producing 1 ≤ γ ≤ 1.4 [36]. Now, in this case,
Equations (110) and (111) are:

1
x2

∂

∂x

(
x2
(

∂φ(x)
∂x

))
=

κR2ρ0

2xγ (x + 1)3−γ
, (123)

1
x2

∂

∂x

(
x2
(

∂φ̃(x)
∂x

))
= − κR2ρ0 (γ + 3x)

2xγ+1 (x + 1)4−γ
(

∂φ
∂x (x)

) (φ̃(x)− C
(

1 + 2ε2φ(x)
))

. (124)

We can also use Equations (112) and (113) to obtain the appropriate initial conditions. They are

m(x) ≈ 4πR3ρ0
3−γ x3−γ and m̃(x) ≈ 4πε2CR3ρ0γ

3−γ x3−γ, then ε2C ∼ O(1) too. After solving (123) and (124),
we obtain m(x) and m̃(x), represented in Figure 4a, and the relation between m(x) and m̃(x) in
Figure 4b for γ = {1, 1.2, 1.4}. Just like the exponential and Einasto cases, more δ Matter is accumulated
far from the center. Compared with the other profiles, we have that m̃(x) increases faster than m(x)
too, but in this case the relation between both kinds of matter is practically logarithmic, expected in a
relation DM/Baryonic Matter. We know that γ = 1 correspond to just-dark-matter distribution and the
other cases with γ > 1 consider a baryonic matter effect [36], which means that δ Gravity could give
us a greater value of γ than GR in a data simulation, so we obtain less ordinary Dark-Matter. In any
case, we obtain the same conclusion; the ordinary matter leads over δ Matter in the center, but rapidly
the second one increases until it is completely dominant. Thus, δ Matter is concentrated outside of the
galactic nucleus.

The rotation velocity is presented in Figure 4c for ε2C =
{

1
2 , 1, 3

2

}
and GR. In all our

profiles, the rotation velocity is amplified by the δ Matter effect, such that, if C is bigger, we have
higher velocities.

From exponential, Einasto and NFW profiles, we saw that δ Matter produces an amplified effect
to the ordinary matter, affecting the rotation velocity. Unfortunately, the δ Matter is principally
concentrated outside of the galactic nucleus, as opposed to expected DM distribution. On the other
side, from Einasto and NFW profiles, we observed a logarithmic relation between m(x) and m̃(x).
That is:

m̃(x) ∼ m(x) ln(x). (125)

In this way, we obtained an additional DM effect. Thus, we can divide the ordinary matter in Baryonic
and DM; then, we have δ Baryonic and δ DM. In a cosmological level, the Einstein equations just
take into account the ordinary matter, and δ Matter appears in the equation of g̃µν (see Equations (21)
and (22)). All these mean that the quantity of ordinary (real) DM is less than GR. The rest of the DM
effect is due to δ Matter components and the contribution is bigger when we get away from the center.

Now, if we compare the spherically homogeneous profile with the other ones, we note that
the δ Matter effect is only produced by the distribution of the ordinary matter; the scale is not so
important. Thus, if the DM is principally explained by δ DM, then this effect is only important when
the distribution of ordinary matter is strongly non homogeneous. For example, we could find some
Globular Clusters where the DM, δ Matter in this context, is less than Baryon Matter. Evidence of that
has been found in [55,56], where an enormous quantity of DM is not necessary in the formation of
some GCs. This computation will be developed in a future work.
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Figure 4. Navarro–Frenk–White (NFW) Profile Calculation for γ = {1, 1.2, 1.4}. (a) ordinary and δ Matter vs.

normalized radius, with m0 = 8πR3ρ0. We have that more δ Matter is accumulated from the center, just like

the exponential and Einasto cases; (b) m̃(x)
m(x) (in units of ε2C) vs. normalized radius. Compared with the other

profiles, we have that m̃(x) increases faster than m(x), but, in this case, the relation between both masses is

practically logarithmic; (c) rotation velocity vs. normalized radius for different values of ε2C. The Black-Dashed line

corresponds to GR cases and the other ε2C values indicate the contribution of δ Matter. Here, we verify the result

in the other profiles, δ Matter amplifies the rotation velocity, such that, if ε2C is bigger, we have higher velocities.

In these calculations, we have used κρ0R2 = (3−γ)3−γ

4(2−γ)2−γ × 10−4.

A more accurate calculation could be developed using a specific profile for DM, an Einasto Profile
with a small α or NFW profile with γ = 1 for example, and a second profile for Baryonic Matter.
With these considerations, we can isolate the DM effect from Baryonic contribution, including δ Matter
components. In [32], a multi-component Einasto profile was used. These computations will be also
developed in a future work.

5. Schwarzschild Case

Until now, the accelerated expansion of the universe was explained without a cosmological
constant and δ Matter was studied to explain the DM phenomenon in the rotation velocity in the
galaxies. In this section, we will develop δ Gravity in a Schwarzschild geometry to study the
principal phenomena used to test GR, the deflection of light by gravitational lensing and the perihelion
precession; then, we will introduce the effect of δ Gravity in a black hole. Thus, in this case:

gµνdxµdxν = −A(r)c2dt2 + B(r)dr2 + r2
(

dθ2 + sin2(θ)dφ2
)

, (126)

g̃µνdxµdxν = −Ã(r)c2dt2 + B̃(r)dr2 + F̃(r)r2
(

dθ2 + sin2(θ)dφ2
)

. (127)
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Before to solve gµν and g̃µν, using the equations presented in Section 2, we need to fix the gauge and
the correct boundary conditions. To satisfy Equation (A26), we will use the coordinate transformation:

X1 = (r− µ) sin(θ) cos(φ),

X2 = (r− µ) sin(θ) sin(φ),

X3 = (r− µ) cos(θ),

where µ = GM. In this coordinate system, we have:

gµνdxµdxν = −A(r)c2dt2 +

(
r

r− µ

)2
dX2 +

(
B(r)

(r− µ)2 −
r2

(r− µ)4

)
(X · dX)2 , (128)

g̃µνdxµdxν = −Ã(r)c2dt2 + F̃(r)
(

r
r− µ

)2
dX2 +

(
B̃(r)

(r− µ)2 −
F̃(r)r2

(r− µ)4

)
(X · dX)2 , (129)

where r = µ +
√

X2
1 + X2

2 + X2
3 . Equation (A26) is automatically satisfied, but this system is not

convenient to work, so we will impose (A27) and then we will return to the standard coordinate system,
given by (126) and (127). The additional condition to complete the gauge will be presented below.

5.1. Schwarzschild Solution

The correct boundary conditions, which give us the correct Minkowski limit, are gµν → ηµν

and g̃µν → 0 for r → ∞4. Now, we can solve the equations of motion for the Schwarzschild metric.
To simplify the problem, we will solve the equations in empty space. This means the region where
T̃µν = Tµν = 0. The solutions of our equations of motion (21) and (22) are:

A(r) = 1− 2µ

r
, (130)

B(r) =
1

1− 2µ
r

, (131)

B̃(r) =
r2(r− 2µ)Ã′(r)− 2µrÃ(r) + r(r− 2µ)(r− µ)F̃′(r) + r(r− 2µ)F̃(r)

(r− 2µ)2 (132)

and survive the equation:

rÃ′′(r) + 2Ã′(r)− µF̃′′(r) = 0, (133)

where ′ = d
dr . Equations (130) and (131) is the well-known Schwarzschild solution to Einstein equations,

where we imposed A(∞) = B(∞) = 1, to obtain gµν → ηµν, when r → ∞. As we said previously,
we need to fix the gauge for g̃µν to obtain an additional equation of Ã(r) and F̃(r). This equation
comes from (A27), so:

r2(r− 2µ)Ã′′(r) + 4r(r− 2µ)Ã′(r)− 4µÃ(r) + r(r− 2µ)(r− µ)F̃′′(r) + 4(r− µ)2 F̃′(r) = 0. (134)

4 In [19], we suggested that the boundary condition is given by g̃µν → ηµν for r → ∞ (see Equation (48) in the reference),
but recently we noticed that the conditions presented in this paper are the correct choice. This is because gµν → ηµν,
g̃µν ≡ δ̃gµν and δ̃ηµν = 0, so it is natural to use g̃µν → 0 for r → ∞.
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Therefore, the general solution of (133) and (134) is given by:

F̃(r) = F̃1 −
∫ r

∞

u3 (u− 2µ) Ã′′(u) + 2u (u + µ) (u− 2µ) Ã′(u)− 4µÃ(u)

4µ (u− µ)2 du, (135)

Ã(r) =
Ã1µ(r− µ)

r2 +
Ã2(r2 − 2µ2)

r2 + Ã3µ
2µ + (r− µ) ln

(
1− 2µ

r

)
r2 , (136)

where Ã1, Ã2 and Ã3 are integration constants. By the boundary conditions, we have to impose the
conditions Ã(∞) = B̃(∞) = F̃(∞) = 0 to obtain g̃µν → 0, when r → ∞. These conditions just means
that Ã2 = 0 and F̃1 = 0. Then, the solutions are (Ã1 = −2a0 and Ã3 = −a1):

Ã(r) = −2a0µ(r− µ)

r2 − a1µ
2µ + (r− µ) ln

(
1− 2µ

r

)
r2 , (137)

F̃(r) =
2a0µ

r
− a1

2µ + (r− µ) ln
(

1− 2µ
r

)
r

, (138)

B̃(r) =
2a0µ(r− µ)

(r− 2µ)2 − a1

2µ(r− 2µ) + (r2 − 3µr + µ2) ln
(

1− 2µ
r

)
(r− 2µ)2 . (139)

Thus, we have three parameters: µ comes from the ordinary metric components and represents the
mass of a massive object (planets, stars, black holes, etc.). Finally, we have a0 and a1. These parameters
are adimensional and represent the correction by δ Gravity. Later, we will understand the physical
meaning of these parameters.

Now, we must remember that Equations (130), (131) and (137)–(139) correspond to the solution
in the region without matter. This means that r > R, where R is the radius of a star for example.
Generally, the Newtonian approximation can be used, so that R � 2µ. However, the logarithmic
solution could be important in black holes, where the Newtonian approximation is not valid. Thus,
considering the leading order in µ

r , the solution is reduced to:

A(r) = 1− 2µ

r
, (140)

B(r) = 1 +
2µ

r
+ O

((
2µ

r

)2
)

, (141)

Ã(r) = −2a0µ

r
+ O

((
2µ

r

)2
)

, (142)

F̃(r) =
2a0µ

r
+ O

((
2µ

r

)2
)

, (143)

B̃(r) =
2a0µ

r
+ O

((
2µ

r

)2
)

. (144)

Notice that a1 disappears in Equations (140)–(144). This means that this parameter is only important in
a Post-Newtonian approximation. We will use these expressions in the next section to describe the
Gravitational Lensing effect.

5.2. Gravitational Lensing

To describe this phenomenon, we need the null geodesic, in our case, given by (36). Then,
we will consider a coordinate system where θ = π

2 such that the trajectory is given by Figure 5
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(see, for instance, [54]). The geodesic equations are complicated, but, with some work, we may
reduce it to:

dt
du

=
E

A(r) + Ã(r)
, (145)(

dr
du

)2
=

E2(
A(r) + Ã(r)

) (
B(r) + B̃(r)

) − J2

r2
(

B(r) + B̃(r)
) (

1 + F̃(r)
) , (146)

dφ

du
=

J
r2
(
1 + F̃(r)

) , (147)

where u is the trajectory parameter such that xµ = xµ(u) and E and J are constants of motion. From
Equation (145), we can see that t → Eu when r → ∞. On the other side, Equation (146) defines a
effective potential given by:

Ve f f (r) = 1− 1(
A(r) + Ã(r)

) (
B(r) + B̃(r)

) + (J/E)2

r2
(

B(r) + B̃(r)
) (

1 + F̃(r)
) , (148)

such that:

v2
r (r) ≡

1
E2

(
dr
du

)2
= 1−Ve f f (r). (149)

Using Equations (130)–(132) and (137)–(139), we can see that Ve f f (∞) = 0 and vr(∞) = 1. To obtain a
plot of Ve f f (r), we need to fix a0 and a1. From Figure 5, we know that φ(r) is necessary to study the
gravitational lensing. For this, we use Equations (146) and (147) to obtain:(

r2
(

dφ

dr
(r)
))−2

=
1 + F̃(r)

B(r) + B̃(r)

(
E2 (1 + F̃(r)

)
J2
(

A(r) + Ã(r)
) − 1

r2

)
(

y2
(

dφ

dy
(y)
))−2

=
1 + F̃(r0y)

B(r0y) + B̃(r0y)

( (
1 + F̃(r0y)

) (
A(r0) + Ã(r0)

)(
1 + F̃(r0)

) (
A(r0y) + Ã(r0y)

) − 1
y2

)
, (150)

where y = r
r0
≥ 1 is a normalized radius with r0 the minimal radius, given by dr

du |r=r0 = 0. Thus:

(
J
E

)2
= r2

0
1 + F̃(r0)

A(r0) + Ã(r0)
.

Figure 5. Trajectory by gravitational lensing. R is the radius of the star, r0 is the minimal distance to
the star, b is the impact parameter, φ∞ is the incident direction and ∆φ is the deflection of light.
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Then, the deflection of light can be obtained solving (150). However, the approximation r0 >> 2µ

is usually used to obtain an explicit result of ∆φ when the matter source is not dense enough. Thus,
with this approximation, we obtain:(

dφ

dy
(y)
)−2

' y2
(

y2 − 1
)(

1− ε

y
− (1 + 2a0) yε

1 + y

)
+ a0O

(
ε2
)

, (151)

where ε = 2µ
r0

. We notice that this expression to first order on ε is exact in GR, but in δ Gravity we have
higher order terms. Now, to obtain the deflection of light, we develop Equation (151) such that:

dφ

dy
(y) ' ± 1

y
√

y2 − 1

(
1 +

ε

2y
+

(1 + 2a0) yε

2 (1 + y)

)
+ O

(
ε2
)

,

φ(y)− φ∞ ' ±
∫ ∞

y

dy′

y′
√

y′2 − 1

(
1 +

ε

2y′
+

(1 + 2a0) y′ε
2 (1 + y′)

)
+ O

(
ε2
)

. (152)

We want to describe a complete trajectory, so the photon start from φ(y = ∞) up to φ(y = 1) and then
back again to φ(y = ∞) (see Figure 5). In addition, if the trajectory were a straight line, this would
equal just π. All of this means that the deflection of light is:

∆φ = 2|φ(1)− φ∞| − π

' 2

∣∣∣∣∣
∫ ∞

1

dy′

y′
√

y′2 − 1

(
1 +

ε

2y′
+

(1 + 2a0) y′ε
2 (1 + y′)

)∣∣∣∣∣− π + O
(

ε2
)

' 2 (1 + a0) ε + O
(

ε2
)

' 4µ (1 + a0)

r0
+ O

((
2µ

r0

)2
)

. (153)

From GR, ∆φ = 4µ
r0

. Thus, in our modified gravity, we have an additional term given by 4µa0
r0

. On the
other side, we have an experimental value ∆φExp = 1.761′′ ± 0.016′′ for the sun [37] and it is very
close to the prediction of GR. This means that, to satisfy the experimental value with δ Gravity, it is
necessary that our additional term provide a very small correction, such that:∣∣∣∣4µa0

r0

∣∣∣∣ = 1.761′′|a0| < 0.016′′,

|a0| < 0.009086. (154)

From Equation (153), we can see that a0 represents an additional mass by δ Matter given by
Madd = a0M, where M is the solar mass. Thus, the result of (154) tells us that δ Matter must be
less than 1% close to the Sun. In [57], it was estimated observationally that the DM mass in the sphere
within Saturn’s orbit should be less than 1.7× 10−10%. On the other side, we expect that δ Matter will
be more important in a galactic scale and explain a part of DM.

5.3. Perihelion Precession

In the last section, we used the null geodesic to compute the deflection of light. However, if we
want to study the trajectory of a massive object, we need equations in (30). These equations, for θ = π

2 ,
are given by (see for instance [54]):
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(
dr
du

)2
=

1
B(r)


A(r)− J2

r2
(

E
A(r) +

(
F̃(r)− Ã(r)

A(r)

) (
dt
du

))2

( dt
du

)2
− 1

 , (155)

dφ

du
=

J
(

dt
du

)
r2
(

E
A(r) +

(
F̃(r)− Ã(r)

A(r)

) (
dt
du

)) , (156)

where dt
du obey a fifth order equation:(

1 +
1
2

(
2Ã(r)
A(r)

− B̃(r)
B(r)

+

(
A(r)

(
B̃(r)
B(r)

− Ã(r)
A(r)

)

+
J2
(

F̃(r)− B̃(r)
B(r)

)
r2
(

E
A(r) +

(
F̃(r)− Ã(r)

A(r)

) (
dt
du

))2

( dt
du

)2

( dt

du

)
=

E
A(r)

. (157)

These equations are very difficult to solve, but in the approximation r0 >> 2µ with r0 the minimal
radius, we have:

1
E

(
dt
du

)
' 1 +

(
1− a0

(
j2 − 1

2

))
ε
y

+

(
1 + a0

4y2

(
j2
(
4y3 − 10y2 + 1

)
+ y2 (4y− 1)

)
+

a2
0

4
(
2j2 + 1

) (
4y + 6j2 − 3

))
ε2

y2 + O
(
ε3) ,

(158)

(
dr
du

)2
' j2

(
1− 1

y2

) [
1− 1+a0(2j2+3)

y ε− y(1+j2+a0(1+2j2))
j2(1+y) ε

+ a0
4

(
2j2

y4 −
4j2−a0(28j4+44j2+19)

y2 +
8(1+j2+a0(2j2+1))

y

+
2+6j2+a0(1+12j2+4j4)

j2 +
4
(

1+3j2+2j4+a0(1+2j2)
2)

j2(1+y)

)
ε2 + O

(
ε3)] ,

(159)

dφ
du '

j
r0y2

[
1− a0

(
j2 + 3

2
)

ε
y

−a0

(
5
4 − y− j2(2y−1)(2y2−2y−1)

4y2 − a0
(
3j4 + 2j2 (2 + y) + y + 5

4
))

ε2

y2 + O
(
ε3)] ,

(160)

where y = r
r0

, ε = 2µ
r0

, j = J
r0

and dr
du |r=r0 = 0, so:

E2 ' 1 + j2 −
(

1 + j2 + a0

(
2j2 + 1

))
ε +

a0

2

(
1 + 3j2 + a0

(
2j4 + 6j2 +

1
2

))
ε2 + O(ε3).

From Equations (159) and (160), we obtain:(
dφ

dy
(y)
)2

' y−2
(

y2 − 1
)−1

[
1 +

(
1 +

y2 (1 + j2 + a0
(
2j2 + 1

))
j2 (1 + y)

)
ε

y
(161)

+

(
1 + a0

2
y2 +

(
1 + j2 + a0

(
2j2 + 1

))2

j4 (y + 1)2 −
2
(
1 + a0

(
j2 + 1

)) (
1 + j2 + a0

(
2j2 + 1

))
j4 (y + 1)

+
4
(

j2 + 1
)2

+ 2a0
(
5j4 + 11j2 + 4

)
− a2

0
(
4j6 − 4j4 − 15j2 − 4

)
4j4

)
ε2 + O

(
ε3
)]

.
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However, it is useful to rewrite it using:

λ =
λ0

y
, with λ0 '

2j2

ε (1 + a0 (2j2 + 1)− 2a0 (1 + j2 + a0 (2j2 + 1)) ε)
.

That is: (
dλ

dφ
(φ)

)2
' ē− 1 + 2λ(φ)−

(
1−

a0
(
6− a0

(
4j4 − 4j2 − 7

))
ε

2 (1 + a0 (2j2 + 1))

)
λ2(φ) + ελ3(φ)

+
a0ε2

2
λ4(φ) + a0O

(
ε3
)

, (162)

where:

ε '
[
1 + a0

(
2j2 + 1

)
− 2a0

(
1 + j2 + a0

(
2j2 + 1

))
ε
]

ε2

2j2
(163)

ē ' 1 +
j2
[
4j2 − 4

(
1 + j2 + a0

(
2j2 + 1

))
ε + a0

(
2 + 6j2 + a0

(
4j4 + 12j2 + 1

))
ε2]

(1 + a0 (2j2 + 1)− 2a0 (1 + j2 + a0 (2j2 + 1)) ε)
2

ε2

' 1 +
2
(
E2 − 1

)
(1 + a0 (2j2 + 1)− 2a0 (1 + j2 + a0 (2j2 + 1)) ε) ε

, (164)

with ē the orbital eccentricity. In GR, Equation (162) is exact to first order on ε and the cubic term in
λ(φ) explain the mercury’s perihelion precession. In δ Gravity, we have high order corrections too,
but they are practically suppressed when r0 >> 2µ. In addition, Equation (164) can be interpreted as

an energy redefinition, such that the new energy is given by Ẽ2 ∼ 1+ (E2−1)
(1+a0(2j2+1)) , but this modification

must be small to satisfy Equation (154), so the orbital movements are equal to GR. On the other side,
other corrections appear when r0 is smaller, close to 2µ. In that case, we must use the exact equations,
given by Equations (155)–(157), but they are very complicated. However, we can try to solve them
in a particular radius, for example r0 where dr

du = 0. In that case, Equations (155) and (157) can be
reduced to: A(r0)−

j2(
E

A(r0)
+
(

F̃(r0)− Ã(r0)
A(r0)

) (
dt
du

)∣∣∣
r0

)2


(

dt
du

)2
∣∣∣∣∣
r0

= 1, (165)

1 +
Ã(r0)

A(r0)
− F̃(r0)

2
+

A(r0)

2

(
F̃(r0)−

Ã(r0)

A(r0)

) (
dt
du

)2
∣∣∣∣∣
r0

 ( dt
du

)∣∣∣∣
r0

=
E

A(r0)
, (166)

where j = J
r0

. They are a fourth and a third order equation in
(

dt
du

)∣∣∣
r0

, respectively. Thus, by iteration,

we can reduce the order of these equation, such as:(
dt
du

)∣∣∣∣
r0

=
E

A(r0)
Σ(r0), (167)
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with:

Σ(r0) =
1− f1(r0) f2(r0)(

1 + Ã(r0)
A(r0)

− F̃(r0)
2

) (
1− 4

3 f1(r0) f2(r0)
)
+ f1(r0)

, (168)

f1(r0) =
3E2

(
Ã(r0)
A(r0)

− F̃(r0)
)

2A(r0)
(

E2

A(r0)
− j2 +

(
2 + Ã(r0)

A(r0)

) (
Ã(r0)
A(r0)

− F̃(r0)
)) , (169)

f2(r0) =
4
(

1 + Ã(r0)
A(r0)

− F̃(r0)
2

)
E2

A(r0)
− j2 +

(
2 + Ã(r0)

A(r0)

) (
Ã(r0)
A(r0)

− F̃(r0)
) (170)

and the minimum radius can be obtained numerically from:(
E2

A(r0)
− j2 +

(
2 +

Ã(r0)

A(r0)

)(
Ã(r0)

A(r0)
− F̃(r0)

))
Σ2(r0)

−4
(

1 +
Ã(r0)

A(r0)
− F̃(r0)

2

)
Σ(r0) + 3 = 0, (171)

where we have to use the exact solution of A(r0), B(r0), Ã(r0), B̃(r0) and F̃(r0) in Section 5.1.
In the process, we imposed that Equations (165) and (166) possess one pole in common for Σ(r0).
r0 is an important element to understand the orbital trajectories, but we need to fix a0 and a1 to solve it.
On the other side, we can verify that in the limit where

(
Ã(r0), B̃(r0), F̃(r0)

)
→ 0, our results are

reduced to GR, which is:

(168) →
(

dt
du

)∣∣∣∣
r0

=
E

A(r0)
=

E

1− 2µ
r0

,

(171) → E2 = A(r0)
(

1 + j2
)
→ r0 =

2µ
(
1 + j2

)
1 + j2 − E2 .

In conclusion, δ Gravity gives us important corrections to orbital trajectories, but they do not produce
big differences with GR when the trajectory is far away from the Schwarzschild radius, rs = 2µ, on the
condition that a0 is small enough (See Equation (154)). This is always true for stars, planets and any
low-density object. We saw that a0 represents the δ Matter contribution; however, the physical meaning
of a1 is unknown yet. To solve this, the study of massive object is necessary. To finish, in the next
section, we will introduce the analysis of Black Holes to complete the Schwarzschild case.

5.4. Black Holes

In Section 2.3, we saw that the proper time is defined using the metric gµν, such as GR where
gµν ẋµ ẋν = −1. Then, the proper time is given by (37). On the other side, the null geodesic of massless
particles tells us that the space geometry is determined by both tensor fields, gµν and g̃µν. This means
that the three-dimensional metric in a Schwarzschild geometry is given by [58]:

dl2 = γijdxidxj

=
A(r)

(
B(r) + B̃(r)

)(
A(r) + Ã(r)

) dr2 +
r2 A(r)

(
1 + F̃(r)

)(
A(r) + Ã(r)

) (
dθ2 + sin2(θ)dφ2

)
. (172)

To guarantee that the three-dimensional metric is definite positive, we need:

γ11 > 0,

∣∣∣∣∣ γ11 γ12

γ21 γ22

∣∣∣∣∣ > 0 and

∣∣∣∣∣∣∣
γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33

∣∣∣∣∣∣∣ > 0. (173)
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Thus, if we apply the conditions (173) plus g00 < 0 to Equation (172), we obtain:

A(r) > 0∧ fA(r) > 0∧ fB(r) > 0∧ fF(r) > 0, (174)

where:

fA(r) = A(r) + Ã(r)

= 1− 2µ

r
− 2a0µ (r− µ)

r2 − a1µ
2µ + (r− µ) ln

(
1− 2µ

r

)
r2 , (175)

fB(r) = B(r) + B̃(r)

=
r

r− 2µ
+

2a0µ (r− µ)

(r− 2µ)2 − a1

2µ (r− 2µ) +
(
r2 − 3µr + µ2) ln

(
1− 2µ

r

)
(r− 2µ)2 , (176)

fF(r) = 1 + F̃(r)

= 1 +
2a0µ

r
− a1

2µ + (r− µ) ln
(

1− 2µ
r

)
r

. (177)

We can see that these rules are automatically satisfied when r � 2µ, so we must consider extreme cases
to prove these conditions. In GR, they are reduced to A(r) > 0 and B(r) > 0, then r > 2µ. This means
that these rules define the black hole horizon, rH = 2µ. Therefore, Equation (174) defines a modified
horizon to δ Gravity, but we need to fix a0 and a1 first.

Motivated by the result in Section 5.2, we know that a0 is related to δ Matter, so a0 > 0 and
probably bigger than the result in (154) to consider a higher quantity of δ Matter (DM in this case).
Just as an example, we can choose some combination:

• If a0 = 1 and a1 = 1, we have rH = 3.37µ,
• If a0 = 1 and a1 = −1, we have rH = 3.46µ.

In both cases, the horizon radius is given by fA(rH) = 0. However, if |a1| � 1 and a0 ∼ 1, then the
horizon is given by fB(r) (a1 > 0) or fF(r) (a1 < 0). In any case, we will obtain a horizon radius
≥ rH = 2µ.

In GR, the event horizon radius is defined when grr component of the metric is null. In fact,
when we include Electric Charge and/or Angular Momentum in a black hole, inner and outer event
horizons are produced and, additionally, an ergosphere appears, given by gtt = 0, defining different
regions around the black hole. In δ Gravity, we saw that the three-dimensional metric gives us the
event horizon radiuses and, in the same way as GR, different regions are produced, but Electric Charge
or Angular Momentum are not necessary. In a Schwarzschild black hole, these regions are produced
whenever the conditions in (174) are violated. Now, the nature of these regions will depend of the
value of a0 and a1.

In conclusion, we have that the effects of δ Gravity are represented by a0 and a1. a0 has a clear
physical meaning; it represents the quantity of δ Matter and could be considered as DM. On the other
side, the meaning of a1 is more difficult to define. This parameter only appears when we consider
a highly massive object, as black holes, defining different kinds of regions around of this object. In that
sense, it could redefine the concept of black holes. For that reason, black holes in δ Gravity will be
studied in more detail in a future work.

6. Conclusions

We have proposed a modified model of gravity. It incorporates a new gravitational field g̃µν

that transforms correctly under GCT and exhibits a new symmetry: the δ symmetry. The new action
is invariant under these transformations. We call this new gravity model δ Gravity. In this paper,
we studied δ Gravity at a classical level. For this, we were required to set up the following three issues.
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First, we needed to find the equations of motion for δ Gravity. One of them are Einstein’s equations,
which gives us gµν, and additionally we have the equation of g̃µν. Secondly, we presented the modified
geometry for this model, incorporating the new field g̃µν, where the massless particles, like a photon
for example, move in a null geodesic of the effective metric gµν = gµν + g̃µν. Third, we needed to
fix the gauge for gµν and g̃µν. For this, we developed the extended harmonic gauge given by (A26)
and (A27).

In this paper, we studied three particular phenomenons in a cosmological level. In the first place,
we present the calculation developed in [25]. Unlike [23] and [24], we found the exact solution for FLRW
geometry in δ Gravity and preserving δ Matter, assuming a universe with just non-relativistic matter
and radiation. Then, we verified that δ Gravity does not require DE to explain the accelerated expansion
of the universe because a new scale factor R̃(t) is defined with the effective metric, given by (66). Then,
we computed the age of the Universe and it is practically the same as in GR and Planck. On the other
side, our model ends in a Big-Rip and we computed that the universe has lived less than half of its life.
In addition, we computed the δ Matter in the present, where the δ non-relativistic matter is 23% of the
ordinary non-relativistic matter. This result may imply that DM is in part δ Matter. In addition, a very
small quantity of δ radiation has been found.

In second place, we studied the Non-Relativistic case. In the Newtonian limit, we obtained
a similar expression as in GR, where we have an effective potential. This potential depends on ρ(0)

and ρ̃(0), where the last one corresponds to δ Matter. We found a relation between ρ(0) and ρ̃(0) and
we used it in different density profiles for a galaxy to explain DM. In the first place, we can see that,
in a spherically homogenous density, the δ Matter effect is completely null. If we consider this profile
like a first approximation to a planet or a star, we conclude that in these cases do not have δ Matter
contributions, so it is equivalent to GR. On the other side, with other kinds of densities, where the
matter distribution changes in the space, we obtain important modifications. Particularly, we used the
exponential, Einasto and NFW profiles, where we noted that δ Matter produces an amplifying effect in
the total mass and rotation velocity in a galaxy. Considering all these, we can say that the δ Matter
effect is only important when the distribution of ordinary matter is strongly non homogeneous,
so the scale is not so important. Therefore, considering δ Matter as DM, large structures with
a small quantity of DM should be found [55,56]. In addition, we saw that δ Matter has a special
behavior, more similar to DM compared with its equivalent ordinary component. We can see this
in Figures 3 and 4, where a logarithmic relation between δ and Ordinary Matter is observed, so δ

Matter contribution is bigger when we get away from the center. A more complete calculation can
be developed if we use a multi-components profile to simulate data of some galaxies [32]. In this
way, we can isolate the different contributions: Ordinary Baryonic Matter, Ordinary DM, δ Baryonic
Matter and δ DM. An analogous result must be obtained in the CMB Power Spectrum. With all these,
we concluded that the DM effect could be explained with a considerably less quantity of Ordinary DM,
considering that the principal source of this effect is δ DM. This result would explain the problematic
detection of DM; however, a field theory description of δ Gravity is necessary to understand the nature
of δ Matter.

Finally, we analyzed the Schwarzschild case outside matter. We found an exact solution for the
equations of motion and used the Newtonian approximation in these solutions to find the deflection of
light by the Sun. To explain the experimental data, the correction must be small, such that δ Matter is
<1% of the total mass at a solar system scale. Then, we study the perihelion precession. The exact
solution is very complicated because a fifth order equation must be solved. However, even in the
Newtonian approximation, we can see interesting, but really small, corrections. Basically, δ Gravity
does not have important corrections to GR for low-density object like stars or planets. This means that
we need to study high-density objects to observe important effects by δ Gravity. To have an idea of
how the trajectory of a massive particle is affected by massive objects, we solved the equations in the
minimum radius. For that reason, we presented an introduction to Black Holes, where some conditions
to guarantee that the three-dimensional metric is definite positive are studied. In the same way than
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GR, the three-dimensional metric for δ Gravity gives us the inner and outer event horizon radiuses,
defining different regions like an ergosphere whenever the conditions in (174) are violated, even in
a Schwarzschild black hole. We understood that a0 gives us the quantity of δ Matter (maybe DM),
but the meaning of a1 is more difficult to define. In any case, it is only relevant to highly massive object,
so it is important to define these regions. Black holes in δ Gravity must be studied in more detail.

We have shown that gµν = gµν + g̃µν is the graviton, whereas g̃µν is a ghost [19,38–41]. In the
non ghost-free models, like δ Theories [22], the Hamiltonian is not bounded from below. On the
other side, phantom cosmological models, produced by a ghost component, are used to explain the
accelerated expansion of the Universe [26–30], but this background solution becomes unstable by
the ghost field. However, some mechanisms can be implemented to restrict the ghost component,
avoid the instability and resurrect some of these theories [42–46]. Examples of this are developed
in the Lee and Wick finite electrodynamic theory, non-Hermitian models with PT symmetry and others
where some restrictions to the configuration space are introduced to make the ghost modes harmless.
Added to the quantum corrections limited to one loop, it is not clear whether this problem will persist
or not in a diffeomorphism-invariant model as δ Gravity.

At this moment, we have studied some phenomenon (Expansion of the Universe, DM,
the Deflection of Light, etc.) and introduced a preliminary discussion of others (Black Holes and
Inflation). Further tests of the model must include the computation of the CMB power spectrum,
the evolution and formation of large-scale structure in the universe and a more detailed analysis of
DM. These works are in progress now.
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Abbreviations

The following abbreviations are used in this manuscript:

DM Dark Matter
DE Dark Energy
GR General Relativity
DGT δ Gauge Theories
GCT General Coordinates Transformation
ExGCT Extended General Coordinates Transformation
NFW Navarro–Frenk–White
FLRW Friedmann–Lemaître–Robertson–Walker

Appendix A. Perfect Fluid

To parameterize a perfect fluid, the usual action is [59]:

S0 =
∫

d4x
√
−g
(

R
2κ
− r(1 + ε(r))− λ1(uaua + 1)− λ2Dα(rUα)

)
, (A1)

where r is the number of particles per unit volume in the mean frame of reference of these particles,
ε(r) is the internal energy density per unit mass of the fluid, ua is the speed of the fluid in the local
frame and λ1 and λ2 are Lagrange multipliers that ensure the normalization of ua and conservation
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of mass, respectively. Finally, we have that Uα = ea
αua, where ea

α is the Vierbein. From this action,
we can see that the independent variables are gµν, r, ua, λ1 and λ2, where ea

α depends on gµν. Thus,
our modified action is:

S =
∫

d4x
√
−g
(

R
2κ
− r (1 + ε(r))− λ1 (uaua + 1)− λ2Dα (rUα)

− 1
2κ

(
Gαβ − κTαβ

)
g̃αβ + L̃M

)
, (A2)

L̃M = −r̃
(
1 + ε(r) + rε′(r)

)
− λ̃1 (uaua + 1)− 2λ1uaũa − λ̃2Dα (rUα)

−λ2Dα (r̃Uα + rUα
T) , (A3)

with r̃ = δ̃r, ε′(r) = ∂ε
∂r (r), ũa = δ̃ua, Uα

T = eaαũa, λ̃1 = δ̃λ1 and λ̃2 = δ̃λ2 are new Lagrange multipliers.
The energy-momentum tensor is:

Tµν = − (r(1 + ε(r)) + λ1(uaua + 1)− λ2,αrUα) gµν −
1
2

λ2,αr
(

δα
ν Uµ + δα

µUν

)
(A4)

and we have used δea
α

δgµν
= 1

4

(
δ

µ
α eaν + δν

αeaµ
)

. In addition, we can compute that:

T̃µν = −1
4

λ2,βr
(

δ
β
ν Uα g̃µα + δ

β
µUα g̃να + 2gµνUα g̃β

α

)
(A5)

−
(
r(1 + ε(r)) + λ1(uaua + 1)− λ2,ρrUρ

)
g̃µν

−1
2

λ̃2,αr
(

δα
ν Uµ + δα

µUν

)
− 1

2
λ2,α r̃

(
δα

ν Uµ + δα
µUν

)
− 1

2
λ2,αr

(
δα

ν UT
µ + δα

µUT
ν

)
−
(
r̃(1 + ε(r) + rε′(r)) + λ̃1(uaua + 1) + 2λ1uaũa − λ̃2,αrUα − λ2,α(r̃Uα + rUα

T)
)

gµν.

Then, we have a modified action with ten independent variables: gµν, r, ua, λ1, λ2, g̃µν, r̃, ũa, λ̃1 and λ̃2.
Thus, we must solve Equations (21) and (22) using (A4) and (A5) to obtain gµν and g̃µν. Fortunately, we
can use the equations of motion for r, ua, λ1, λ2, r̃, ũa, λ̃1 and λ̃2. These equations can be reduced to:

uaua + 1 = 0, (A6)

Dα(rUα) = 0, (A7)

2λ1ua − reaαλ2,α = 0, (A8)

1 + ε(r) + rε′(r)−Uαλ2,α = 0, (A9)

uaũa = 0, (A10)

Dα

(
r̃Uα + rUα

T −
1
2

rg̃αβUβ +
1
2

rg̃β
βUα

)
= 0, (A11)

2λ̃1ua + 2λ1ũa − eaα

(
rλ̃2,α + r̃λ2,α −

1
2

g̃β
α rλ2,β

)
= 0, (A12)

r̃
(
2ε′(r) + rε′′(r)

)
−Uαλ̃2,α −Uα

Tλ2,α +
1
2

Uβ g̃αβλ2,α = 0. (A13)

Now, we can use these equations to simplify the expressions in (A4) and (A5), eliminating the Lagrange
multipliers rewriting Equations (A8), (A9), (A12) and (A13) as:

λ1 = −1
2

r
(
1 + ε(r) + rε′(r)

)
, (A14)

λ2,µ = −
(
1 + ε(r) + rε′(r)

)
Uµ, (A15)

λ̃1 = −1
2

r̃
(

1 + ε(r) + 3rε′(r) + r2ε′′(r)
)

, (A16)

λ̃2,µ = −r̃
(
2ε′(r) + rε′′(r)

)
Uµ −

(
1 + ε(r) + rε′(r)

) (
UT

µ +
1
2

g̃β
µUβ

)
. (A17)
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Then, the equations that survive are:

UαUα + 1 = 0, (A18)

Dα(rUα) = 0, (A19)(
1 + ε(r) + rε′(r)

)
UαDαUµ +

(
δα

µ + UαUµ

) (
2ε′(r) + rε′′(r)

)
∂αr = 0, (A20)

UαUT
α = 0, (A21)

Dα

(
r̃Uα + rUα

T −
1
2

rg̃αβUβ +
1
2

rg̃β
βUα

)
= 0, (A22)

r̃
(
2ε′(r) + rε′′(r)

)
UαDαUµ +

(
1 + ε(r) + rε′(r)

) (
Uα

T −
1
2

g̃αβUβ

)
DαUµ

+
(
1 + ε(r) + rε′(r)

)
UαDα

(
UT

µ +
1
2

g̃µβUβ

)
+

1
2
(
1 + ε(r) + rε′(r)

)
UαUβDµ g̃αβ,

+

((
Uα

T −
1
2

g̃αβUβ

)
Uµ + Uα

(
UT

µ +
1
2

g̃µβUβ

)) (
2ε′(r) + rε′′(r)

)
∂αr

+
(

δα
µ + UαUµ

) (
r̃
(
3ε′′(r) + rε′′′(r)

)
∂αr +

(
2ε′(r) + rε′′(r)

)
∂α r̃
)
= 0. (A23)

These equations are related to (23) and (24). Thus, they are a complete system of equations. Finally,
if we use Equations (A14)–(A17) and identify ρ = r (1 + ε(r)) and p(ρ) = r2ε′(r), the final expressions
of the energy-momentum tensors are:

Tµν = p(ρ)gµν + (ρ + p(ρ))UµUν, (A24)

T̃µν = p(ρ)g̃µν +
∂p
∂ρ

(ρ)ρ̃gµν +

(
ρ̃ +

∂p
∂ρ

(ρ)ρ̃

)
UµUν

+ (ρ + p(ρ))
(

1
2
(
UνUα g̃µα + UµUα g̃να

)
+ UT

µ Uν + UµUT
ν

)
. (A25)

Now, we can use (A24) and (A25) to solve Equations (21)–(24) for a perfect fluid. In this paper, we will
use a perfect fluid for the Non-Relativistic and cosmological cases.

Appendix B. Harmonic Gauge

We know that the Einstein’s equations do not fix all degrees of freedom of gµν. This means that,
if gµν is a solution, then there exists another solution g′µν given by a general coordinate transformation
x → x′. We can eliminate these degrees of freedom by adopting some particular coordinate system,
fixing the gauge.

One particularly convenient gauge is given by the harmonic coordinate conditions, which is:

Γµ ≡ gαβΓµ
αβ = 0. (A26)

Under general coordinate transformation, Γµ transform:

Γ′µ =
∂x′µ

∂xα
Γα − gαβ ∂2x′µ

∂xα∂xβ
.

Therefore, if Γα does not vanish, we can define a new coordinate system x′µ where Γ′µ = 0. Thus, it is
always possible to choose a harmonic coordinate system (For more details about harmonic gauge, see,
for example, [54]).

In the same form, we need to fix the gauge for g̃µν. It is natural to choose a gauge given by:

δ̃ (Γµ) ≡ gαβ δ̃
(

Γµ
αβ

)
− g̃αβΓµ

αβ = 0, (A27)
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where δ̃
(

Γµ
αβ

)
= 1

2 gµλ
(

Dβ g̃λα + Dα g̃βλ − Dλ g̃αβ

)
. Then, when we will refer to harmonic gauge,

we will use Equations (A26) and (A27).
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