
universe

Article

Exact Solutions in Poincaré Gauge Gravity Theory

Yuri N. Obukhov
Russian Academy of Sciences, Nuclear Safety Institute (IBRAE), B. Tulskaya 52, 115191 Moscow, Russia;
obukhov@ibrae.ac.ru

Received: 21 April 2019; Accepted: 16 May 2019; Published: 24 May 2019
����������
�������

Abstract: In the framework of the gauge theory based on the Poincaré symmetry group,
the gravitational field is described in terms of the coframe and the local Lorentz connection.
Considered as gauge field potentials, they give rise to the corresponding field strength which
are naturally identified with the torsion and the curvature on the Riemann–Cartan spacetime.
We study the class of quadratic Poincaré gauge gravity models with the most general Yang–Mills
type Lagrangian which contains all possible parity-even and parity-odd invariants built from the
torsion and the curvature. Exact vacuum solutions of the gravitational field equations are constructed
as a certain deformation of de Sitter geometry. They are black holes with nontrivial torsion.
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1. Introduction

The gauge-theoretic understanding of the fundamental physical interactions is one of the solid
cornerstones of the modern science. In simple terms, the gauge principle relates physical forces to
the underlying symmetry groups. The corresponding Yang–Mills type formalism was developed
for the internal symmetries, which form the foundation for the theories of electromagnetic, weak and
strong interactions, and consistently generalized to the spacetime symmetries [1,2] which give rise to the
gravitational interaction. In the current research, much attention is paid to the gauge-theoretic models
based on the Poincaré group, see [3,4] for an introduction. The monograph [2] provides an extensive
list of references.

It is now well established that Einstein’s general relativity (GR) theory provides a valid description
of the gravitational phenomena on macroscopic scales. Compared to GR, the gauge gravity theory
is expected to improve our understanding of the gravitational physics at microscopic scales (and,
likewise, at an early stage of the cosmological evolution of the universe), giving rise to GR in a certain
macroscopic limit. The simplest version of the Poincaré gauge gravity, known as the Einstein–Cartan
theory, is a viable gravitational model which is consistent with all experimental tests, and it only
deviates from GR at extremely high matter densities 2m2c4

πGh̄2 (with m mass of a fermion), where it
predicts an avoidance of the cosmological singularity [4]. As one knows, the quantized GR is
non-renormalizable, and taking into account the success of the Yang–Mills gauge approach for the
strong and electro-weak interactions, one hopes that a development of the gauge-theoretic framework
for gravity may help in constructing a consistent quantum theory of the gravitational field.

We focus here on the class of Poincaré gauge gravity models based on the general quadratic
Lagrangians of the Yang–Mills type. Both the parity-even and parity-odd terms are included,
extending the previous studies which were mainly confined to the parity symmetric theories.
Construction of exact solutions of the field equations is important for checking the validity of the
theory, and its consistency with GR and experiments. Here, we report on the black hole solutions with
dynamical torsion.

Our basic notation and conventions are consistent with [5,6]. In particular, Greek indices α, β, · · · =
0, . . . , 3, denote the anholonomic components (for example, of a coframe ϑα), while the Latin indices
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i, j, · · · = 0, . . . , 3, label the holonomic components (e.g., dxi). The anholonomic vector frame basis eα is
dual to the coframe basis in the sense that eαcϑβ = δ

β
α , where c denotes the interior product. The volume

4-form is denoted by η, and the η-basis in the space of exterior forms is constructed with the help of the
interior products as ηα1 ...αp := eαpc . . . eα1cη, p = 1, . . . , 4. They are related to the ϑ-basis via the Hodge
dual operator ∗, for example, ηαβ = ∗

(
ϑα ∧ ϑβ

)
. The Minkowski metric is gαβ = diag(c2,−1,−1,−1).

We do not use special unit systems and, accordingly, do not put the fundamental physical constants
(such as the light velocity c, Planck’s constant h̄, and Newton’s gravitational constant G) equal to one,
thereby keeping for all objects their natural dimensions. All the objects related to the parity-odd sector
(coupling constants, irreducible pieces of the curvature, etc.) are marked by an overline, to distinguish
them from the corresponding parity-even objects.

2. Formal Structure of Poincaré Gauge Gravity

The 10-parameter Poincaré symmetry group G = T4 o SO(1, 3) is a semidirect product
of the 4-parameter group of translations and the 6-parameter local Lorentz group, and the
Yang–Mills–Utiyama–Kibble formalism can be consistently developed on a spacetime manifold [1,2].
The corresponding gravitational field potentials (“translational” and “rotational”, respectively) are
then naturally identified with the 1-forms of the coframe and the local Lorentz connection:

ϑα = eα
i dxi, (1)

Γαβ = − Γβγ = Γi
αβdxi. (2)

The “translational” and “rotational” field strength 2-forms

Tα = Dϑα = dϑα + Γβ
α ∧ ϑβ, (3)

Rαβ = dΓαβ + Γγ
β ∧ Γαγ, (4)

have standard geometrical interpretation as the torsion and the curvature of the Riemann–Cartan
spacetime. As usual, the covariant differential is denoted D.

2.1. Gravitational Field Equations

The gravitational Lagrangian 4-form is quite generally an arbitrary invariant function of the
geometrical variables:

V = V(ϑα, Tα, Rαβ). (5)

Its variation, with respect to the gravitational (translational and Lorentz) potentials, yields the
field equations

δV
δϑα

= −DHα + Eα = 0, (6)

δV
δΓαβ

= −DHαβ + Eαβ = 0. (7)

Here, the Poincaré gauge field momenta 2-forms are introduced by

Hα := − ∂V
∂Tα

, Hαβ := − ∂V
∂Rαβ

, (8)

and the 3-forms of the canonical energy-momentum and spin for the gravitational gauge fields are
constructed as
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Eα :=
∂V
∂ϑα

= eαcV + (eαcTβ) ∧ Hβ + (eαcRβ
γ) ∧ Hβ

γ, (9)

Eαβ :=
∂V

∂Γαβ
= − ϑ[α ∧ Hβ] . (10)

The field Equations (6) and (7) are written here for the vacuum case. In the presence of matter,
the right-hand sides of Equations (6) and (7) contain the canonical energy-momentum and the canonical
spin currents of the physical sources, respectively.

2.2. Quadratic Poincaré Gravity Models

The torsion 2-form can be decomposed into the 3 irreducible parts, whereas the curvature 2-form
has 6 irreducible pieces. Their definition is presented in Appendix A.

The general quadratic model is described by the Lagrangian 4-form that contains all possible
linear and quadratic invariants of the torsion and the curvature:

V =
1

2κc

{(
a0ηαβ + a0ϑα ∧ ϑβ

)
∧ Rαβ − 2λ0η − Tα ∧

3

∑
I=1

[
aI
∗((I)Tα) + aI

(I)Tα

] }
− 1

2ρ
Rαβ ∧

6

∑
I=1

[
bI
∗((I)Rαβ) + bI

(I)Rαβ

]
. (11)

This Lagrangian has a clear structure: The first line encompasses the terms linear in the curvature
and the torsion quadratic terms (all of which have the same dimension of an area [`2]), whereas the
second line contains the curvature quadratic invariants. For completeness, the cosmological constant is
included (with the dimension of an inverse area, [λ0] = [`−2]). Furthermore, each line is composed of
parity-even pieces and parity-odd parts (with the coupling constants marked by an overline). A special
case a0 = 0 and a0 = 0 describes the purely quadratic model without the Hilbert–Einstein linear term
in the Lagrangian.

A general Poincaré gauge model contains a set of the coupling constants which determine the
structure of the quadratic part of the Lagrangian: ρ, a1, a2, a3, b1, · · · , b6 and a1, a2, a3, b1, · · · , b6. It is
important to note that not all of the latter constants are independent—we take a2 = a3, b2 = b4 and
b3 = b6 because some of the terms in Lagrangian (11) are the same in view of Equations (A12)–(A17).
As we already mentioned, the overbar denotes the constants responsible for the parity-odd sector.
In recent times, there is a growing interest to such interactions [7–13]. Quite generally, there are no
compelling theoretical arguments or experimental evidence which could rule out the violation of parity
in gravity, and in 1964 Leitner and Okubo [14] looked into a possibility of extending the gravitational
Lagrangian by parity odd terms. Later such extensions were widely studied in the context of the
classical and quantum gravity theory [15,16], in particular in Ashtekar’s approach and loop quantum
gravity [17,18]. Moreover, the inclusion of parity-nonconserving terms is important for the discussion
of such fundamental physical issues as the baryon asymmetry of the universe, where the parity-odd
terms can be induced by the quantum vacuum structure [19–21].

All coupling constants aI , aI , bI , and bI are dimensionless, whereas the dimension [ 1
ρ ] = [h̄].

Keeping in mind the importance of the macroscopic limit to GR, we have κ = 8πG/c4 as Einstein’s
gravitational constant. The microscopic gravitational phenomena are naturally characterized by
the parameter

`2
ρ =

κc
ρ

. (12)

Since [ 1
ρ ] = [h̄], this new coupling parameter has the dimension of an area, [`2

ρ] = [`2]. Below we

will see that `2
ρ parameter describes the contribution of the curvature square terms in the Lagrangian (11)

to the gravitational field dynamics in Equations (17) and (18).
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For the Lagrangian (11), from Equations (8)–(10) we derive the gauge gravitational field momenta

Hα =
1
κc

hα , Hαβ = − 1
2κc

(
a0 ηαβ + a0ϑα ∧ ϑβ

)
+

1
ρ

hαβ, (13)

and the canonical energy-momentum and spin currents of the gravitational field

Eα =
1

2κc

(
a0 ηαβγ ∧ Rβγ + 2a0 Rαβ ∧ ϑβ − 2λ0ηα + q(T)α

)
+

1
ρ

q(R)
α , Eαβ =

1
κc

h[α ∧ ϑβ]. (14)

For convenience, we introduced here the 2-forms that are linear functions of the torsion and the
curvature, respectively, by

hα =
3

∑
I=1

[
aI
∗((I)Tα) + aI

(I)Tα

]
, hαβ =

6

∑
I=1

[
bI
∗((I)Rαβ) + bI

(I)Rαβ

]
, (15)

and the 3-forms which are quadratic in the torsion and in the curvature, respectively:

q(T)α =
1
2

[
(eαcTβ) ∧ hβ − Tβ ∧ eαchβ

]
, q(R)

α =
1
2

[
(eαcRβγ) ∧ hβγ − Rβγ ∧ eαchβγ

]
. (16)

By construction, [hα] = [`] has the dimension of a length, whereas the 2-form [hαβ] = 1 is

obviously dimensionless. Similarly, we find for Equations (16) the dimension of length [q(T)α ] = [`],
and the dimension of the inverse length, [q(R)

α ] = [1/`], respectively.
The resulting vacuum Poincaré gravity field Equations (6) and (7) then read:

a0

2
ηαβγ ∧ Rβγ + a0Rαβ ∧ ϑβ − λ0ηα + q(T)α + `2

ρ q(R)
α − Dhα = 0, (17)

a0

2
ηαβγ ∧ Tγ + a0 T[α ∧ ϑβ] + h[α ∧ ϑβ] − `2

ρ Dhαβ = 0. (18)

3. Prelude: De Sitter Spacetime

As a preliminary step, we discuss the de Sitter spacetime in an unusual disguise. This manifold
has many faces, and here we consider one of them which is not quite well known. Using a spherical
local coordinate system (t, r, θ, ϕ), it is given by the coframe

ϑ̂α =



ϑ̂0̂ = ∆+mr
∆

√
∆
Σ
[
cdt− j0 sin2 θ dϕ

]
+ mr

∆

√
Σ
∆ dr,

ϑ̂1̂ = mr
∆

√
∆
Σ
[
cdt− j0 sin2 θ dϕ

]
+ ∆−mr

∆

√
Σ
∆ dr,

ϑ̂2̂ =
√

Σ
f dθ,

ϑ̂3̂ =
√

f
Σ sin θ

[
−j0 cdt + (r2 + j20) dϕ

]
.

(19)

Here, the rotation parameter is denoted by j0 (in order to distinguish it from the torsion coupling
constants we avoid a more common notation a), and the functions and constants are defined by

∆ := (r2 + j20)(1− λ r2)− 2mr, (20)

Σ := r2 + j20 cos2 θ, (21)

f := 1 + λ j20 cos2 θ, (22)

m :=
GM
c2 , (23)

and 0 < t < ∞, 0 < r < ∞, 0 < θ < π and 0 < ϕ < 2π.
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The corresponding line element ds2 = gαβϑ̂α ⊗ ϑ̂β = ĝijdxidxj, with the spacetime metric ĝij =

êα
i êβ

j gαβ, reads:

ds2 =
[

f − λ(r2 + j20)
]

c2dt2 − 4mr
∆

cdt dr + 2λ (r2 + j20) j0 sin2θ cdt dϕ

+
4mr

∆
j0 sin2θ dr dϕ− ∆− 2mr

∆2 Σ dr2 − Σ
f

dθ2 − (1 + λj20)(r
2 + j20) sin2θ dϕ2. (24)

When m = 0 and j0 = 0, this line element reduces to

ds2 = (1− λr2) c2dt2 − dr2

1− λr2 − r2(dθ2 + sin2θ dϕ2), (25)

which represents the static spherically symmetric form of the de Sitter spacetime. Quite remarkably,
however, also in the general case with m 6= 0 and j0 6= 0, despite a complicated form of the coframe (19)
and the metric (24), the components of which appear to be highly nontrivial functions of the spacetime
coordinates and parameters m, j0, λ, the corresponding Riemannian connection satisfies

T̂α = dϑ̂α + Γ̂β
α ∧ ϑ̂β = 0, (26)

R̂αβ = dΓ̂αβ + Γ̂γ
β ∧ Γ̂αγ = λ ϑ̂α ∧ ϑ̂β. (27)

The components of the connection Γ̂αβ are explicitly given in Appendix B. By making use of
Equations (A19)–(A21), it is straightforward (although the corresponding computation is somewhat
lengthy) to verify Equation (27).

In other words, even for nonvanishing m and j0, the coframe (19) and the metric (24) describe
the torsionless de Sitter spacetime of the constant curvature λ. Note that depending on the sign of
λ, one sometimes speaks of de Sitter and anti-de Sitter geometries. Here, we do not use this refined
language and—irrespective of the sign of the constant curvature—call all these spaces de Sitter.

4. Interlude: From de Sitter to Kerr–de Sitter

As a next step, we introduce the 1-form

k :=

√
Σ
∆

(
ϑ̂ 0̂ − ϑ̂ 1̂

)
= cdt− Σ

∆
dr− j0 sin2 θ dϕ, (28)

and define the covector components by kα = êαck. One can straightforwardly check that this
construction yields a null geodetic congruence:

k ∧ ∗̂k = 0, k ∧ ∗̂D̂kα = 0. (29)

Hereafter the hat marks the objects and operators in the de Sitter space (ϑ̂α, Γ̂αβ). Namely, D̂ is
the covariant differential corresponding to the connection Γ̂αβ, and ∗̂ is the Hodge duality operator
corresponding to the coframe ϑ̂α.

Now we use the null 1-form (28) to define a new coframe

ϑα = ϑ̂α −Ukαk, (30)

which can be considered as a kind of perturbation of the de Sitter coframe (19). The components of the
modified coframe ϑα = eα

i dxi are now eα
i = êα

i −Ukαki, and the corresponding spacetime metric has
the Kerr–Schild form

gij = eα
i eβ

j gαβ = ĝij − 2Ukik j. (31)
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Here U = U(r, θ) is a function of the radial coordinate r and the angle θ. In order to preserve the
stationarity and the axial symmetry, we assume that all the geometric variables do not depend on t
and ϕ. If we choose

U =
mr
Σ

, (32)

the coframe (30) reads explicitly

ϑα =



ϑ0̂ =
√

∆
Σ
[
cdt− j0 sin2 θ dϕ

]
,

ϑ1̂ =
√

Σ
∆ dr,

ϑ2̂ =
√

Σ
f dθ,

ϑ3̂ =
√

f
Σ sin θ

[
−j0 cdt + (r2 + j20) dϕ

]
.

(33)

We immediately recognize the coframe of the Kerr–de Sitter geometry [22].

5. Postlude: Ansatz for Poincaré Gauge Theory

In Poincaré gauge theory, the ansatz for the translational potential (coframe 1-form) should be
supplemented by the ansatz for the local Lorentz connection 1-form. After all the preparations, we are
now in a position to formulate the Baekler ansatz for the Poincaré gauge fields:

ϑα = ϑ̂α −Ukαk, (34)

Γαβ = Γ̂αβ. (35)

Earlier, a similar technique was successfully used for the construction of the exact plane wave
solutions in the Poincaré gauge theory [23,24].

6. Solving Gravitational Field Equations

It is important to notice that the null 1-form (28) preserves its structure with respect to the new
coframe (30):

k =

√
Σ
∆

(
ϑ0̂ − ϑ1̂

)
, (36)

and consequently the covector components kα = eαck =
√

Σ
∆ (1,−1, 0, 0) have the same values.

Moreover, it is still a null geodetic congruence,

k ∧ ∗k = 0, k ∧ ∗Dkα = 0. (37)

It is straightforward to derive the torsion and the Riemann–Cartan curvature for the Baekler
ansatz (34) and (35). Combining Equations (27), (34), and (35) we find

Tα = Dϑα = D̂ϑα = − D̂(Ukαk), (38)

Rαβ = R̂αβ = λ ϑ̂α ∧ ϑ̂β = λ ϑα ∧ ϑβ + 2λUk ∧ k[αϑβ]. (39)

One can check the following properties of the Poincaré gauge field strengths:

kαTα = 0, kα(Rαβ − λϑα ∧ ϑβ) = 0, (40)

ϑα ∧ Tα = 0, ϑα ∧ Rαβ = 0. (41)
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Next, we need to find the irreducible parts. Using the identities (40) and (41), we can verify that
most of the irreducible parts of the curvature vanish, except for the 4th and 6th:

(1)Rαβ = (2)Rαβ = (3)Rαβ = (5)Rαβ = 0, (42)
(4)Rαβ = 2λUk ∧ k[αϑβ], (6)Rαβ = λ ϑα ∧ ϑβ. (43)

As compared to the curvature (39), the structure of the torsion (38) is more nontrivial. Making use
of the components of the connection (Equations (A19)–(A21)) and Equation (32), one can evaluate the
covariant derivative in (38) to get

Tα = − v5 k ∧ ϑα + v4
∗(k ∧ ϑα) + kαw, (44)

where we introduce the 2-form

w = (v1 + v5) ϑ0̂ ∧ ϑ1̂ + 3v4 ϑ2̂ ∧ ϑ3̂ − k ∧ (v2ϑ2̂ + v3ϑ3̂), (45)

and denoted the functions

v1 = −
m(r2 − j20 cos2 θ)

Σ2 , v2 =

√
f
Σ

mrj20 sin θ cos θ

Σ2 , (46)

v3 =

√
f
Σ

mr2 j0 sin θ

Σ2 , v4 =
mrj0 cos θ

Σ2 , v5 = − mr2

Σ2 . (47)

Explicitly, the components of the torsion 2-form (44) read:

Tα =


T0̂ = k0̂ [v1ϑ0̂ ∧ ϑ1̂ + 2v4 ϑ2̂ ∧ ϑ3̂ − k ∧ (v2ϑ2̂ + v3ϑ3̂)],

T1̂ = k1̂ [v1ϑ0̂ ∧ ϑ1̂ + 2v4 ϑ2̂ ∧ ϑ3̂ − k ∧ (v2ϑ2̂ + v3ϑ3̂)],

T2̂ = − k ∧ (v5ϑ2̂ + v4ϑ3̂),

T3̂ = − k ∧ (− v4ϑ2̂ + v5ϑ3̂).

(48)

One can verify that the torsion trace is proportional to the 1-form k:

T = eαcTα = (2v5 − v1) k = − m
Σ

k. (49)

As a result, we find the irreducible parts of the torsion: (3)Tα = 0 and

(1)Tα = − (v1 + v5)

3
k ∧ ϑα + v4

∗(k ∧ ϑα) + kαw, (50)

(2)Tα =
(v1 − 2v5)

3
k ∧ ϑα. (51)

The Riemann–Cartan geometry of Baekler’s configuration (34) and (35) is globally regular in the
sense that all the torsion invariants vanish, whereas curvature invariants are constant. In particular,

Tα ∧ ∗Tα = 0, Rαβ ∧ ∗Rαβ = 12λ2η. (52)

To solve the coupled system of the Poincaré gauge field Equations (17) and (18), we have to
evaluate q(T)α , q(R)

α , hα, hαβ, and the covariant derivative Dhα, Dhαβ. We begin by noticing that the
structure of the 2-form hαβ realizes the generalized double-duality ansatz [3], namely:

hαβ = λ1
1
2

ηαβµνRµν + λ2 Rαβ + λ3 ηαβ + λ4 ϑα ∧ ϑβ. (53)
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In view of Equations (42) and (43), we have explicitly

λ1 = − b4, λ2 = b4, λ3 = (b4 + b6)λ, λ4 = − (b4 − b6)λ. (54)

Making use of Equation (53), we find

q(R)
α = − λ3ηαβγ ∧ Rβγ − 2λ4Rαβ ∧ ϑβ + 6λλ3ηα, (55)

and recast the field equations (17) and (18) into

aeff
2

ηαβγ ∧ Rβγ + aeffRαβ ∧ ϑβ − λeffηα + q(T)α − Dhα = 0, (56)

aeff
2

ηαβγ ∧ Tγ + aeff T[α ∧ ϑβ] + h[α ∧ ϑβ] = 0, (57)

where we introduce the effective constants

aeff = a0 − 2`2
ρλ3, aeff = a0 − 2`2

ρλ4, λeff = λ0 − 6`2
ρλ3λ. (58)

In order to simplify the first field equation (56), we use the explicit form of the curvature (39) to
find for the first term

1
2

ηαβγ ∧ Rβγ =
λ

2
ηαβγ ∧ ϑβ ∧ ϑγ + λUηαβγ ∧ kkβ ∧ ϑγ = 3λ ηα + 2λUkαk ∧ ϑ2̂ ∧ ϑ3̂, (59)

whereas the second term vanishes Rαβ ∧ ϑβ = 0 in view of (41).
A direct computation yields

q(T)α =
2m
3Σ

[(2a1 + a2)v5 − (a1 − a2)v4] kαk ∧ ϑ2̂ ∧ ϑ3̂, (60)

whereas after a long algebra we find for the components of the derivative Dhα:

−Dh0̂ = − 2(a1 − a2)v4

3r
ϑ̂0̂ ∧ ϑ2̂ ∧ ϑ3̂ +

2a1 + a2

3r
k ∧ ϑ0̂ ∧

(
v3ϑ2̂ + v2ϑ3̂

)
+

v5

3r

√
∆
Σ

k ∧ ϑ2̂ ∧ ϑ3̂
{
− 6a1λ

Σ2

∆
+ (2a1 + a2)

[
1− Σ

∆
(1− λj20 − 2λr2)

]}
, (61)

−Dh1̂ =
2(a1 − a2)v4

3r
ϑ̂1̂ ∧ ϑ2̂ ∧ ϑ3̂ − 2a1 + a2

3r
k ∧ ϑ1̂ ∧

(
v3ϑ2̂ + v2ϑ3̂

)
+

v5

3r

√
∆
Σ

k ∧ ϑ2̂ ∧ ϑ3̂
{

6a1λ
Σ2

∆
+ (2a1 + a2)

[
1 +

Σ
∆
(1− λj20 − 2λr2)

]}
, (62)

−Dh2̂ =
1
3r

[(2a1 + a2)v4 + 2(a1 − a2)v5] ϑ0̂ ∧ ϑ1̂ ∧ ϑ2̂

+
2a1 + a2

3r

[
v5ϑ0̂ ∧ ϑ1̂ ∧ ϑ3̂ + v2 k ∧ ϑ2̂ ∧ ϑ3̂

]
, (63)

−Dh3̂ =
1
3r

[(2a1 + a2)v4 + 2(a1 − a2)v5] ϑ0̂ ∧ ϑ1̂ ∧ ϑ3̂

+
2a1 + a2

3r

[
− v5ϑ0̂ ∧ ϑ1̂ ∧ ϑ2̂ + v3 k ∧ ϑ2̂ ∧ ϑ3̂

]
. (64)

As we can see, Equations (60)–(64) are significantly simplified when the coupling constants satisfy
2a1 + a2 = 0 and a1 = a2. Namely, we then get q(T)α = 0 and, by making use of Equations (46) and (32),
we find

− Dhα = − 6a1λ v5Σ
3r

kαk ∧ ϑ2̂ ∧ ϑ3̂ = 2a1λ U kαk ∧ ϑ2̂ ∧ ϑ3̂. (65)
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Now let us turn to the second field Equation (57) which, in view of the definition (15), imposes an
algebraic constraint on the spacetime torsion. Indeed, by making use of the properties of irreducible
parts of the torsion, we recast Equation (57) into an equivalent form

− (aeff + a1)
∗((1)Tα) + (2aeff − a2)

∗((2)Tα)− (aeff + a1)
(1)Tα − (aeff + a2)

(2)Tα = 0. (66)

This admits a nontrivial field configuration when aeff + a1 = 0 and aeff + a1 = 0. Combining the
definitions (58) with Equation (54), we then finally obtain the constraints on the coupling constants

a0 + a1 − 2`2
ρλ (b4 + b6) = 0, a0 + a1 + 2`2

ρλ (b4 − b6) = 0. (67)

Substituting Equation (65) and Equation (59) into Equation (56), we discover that the 1st field
equation reduces to a simple relation 3aeffλ = λeff. Recalling the definitions of the effective coupling
constants (58), the latter is equivalent to

3a0λ = λ0. (68)

7. Discussion and Conclusions

The algebraic constraints on the torsion is a well known feature of the double-duality technique [3]
which leads to restrictions on the coupling constants. Nevertheless, the class of quadratic theories still
remains very wide, and it includes many physically viable models. Moreover, one of the outstanding
problems in the Poincaré gauge gravity is the search for the physically meaningful conditions that
improve the structure of general Lagrangians so as to pass the “consistency check” with GR. The latter
means a possibility of a smooth recovery of GR results in a certain macroscopic limit. In particular, the
existence of the black hole solutions can be considered a manifestation of such a consistency with GR
for the class of models which allow for the exact solutions obtained above.

In this sense, it is worthwhile to mention one of the most interesting Poincaré gravity models,
which was proposed by von der Heyde [25] and attracted much attention in the early stages of
development of the gauge approach in gravitational theory [26]. A peculiar feature of the von der Heyde
Lagrangian is that it does not contain the Hilbert term linear in the curvature, therefore it is a purely
quadratic model both in the torsion and the curvature. Explicitly, this Lagrangian reads

VvdH =
1

2κc

{
(ϑα ∧ Tβ) ∧ ∗(ϑβ ∧ Tα) +

1
4λ

Rαβ ∧ ∗Rαβ

}
. (69)

The parity-odd terms are absent, whereas the parity-even sector is described by the set of the
coupling constants as a0 = 0, λ0 = 0, b1 = b2 = b3 = b4 = b6 = b, and

a1 = − 1, a2 = 2, a3 = 0,
b
ρ
= − 1

4κcλ
. (70)

Another feasible gauge gravity model arises in a de Sitter gauge approach when the Poincaré
symmetry is extended to a 10-parameter de Sitter group [27,28]. The corresponding model is described
by the Lagrangian

VdS =
1

2κc

{
Rαβ ∧ ηαβ − 6λη − 1

4λ
Rαβ ∧ ∗Rαβ

}
. (71)

The coupling constants set then reduces to a0 = 1, λ0 = 3λ, b1 = b2 = b3 = b4 = b6 = b, and

a1 = a2 = a3 = 0,
b
ρ
=

1
4κcλ

. (72)
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As compared to the von der Heyde model (69), the Lagrangian (71) does include the explicit
Hilbert term.

The two gravity theories (69) and (71) are explicit examples of the models which satisfy the
consistency principle with GR, they both admit the black hole solutions described above. However,
the results obtained here are important in view of their widest possible applicability. The quadratic
Yang–Mills type Lagrangian (11) describes the class of the most general Poincaré gauge gravity models
with the dynamical torsion. The existence of the black hole solutions (with Schwarzschild, Kerr,
or Kerr–de Sitter metric) was earlier reported for the case of the parity symmetric theories [29–36].
Now we demonstrated this for the general case with both parity-even and parity-odd sectors taken
into account.

In addition, we have clarified the underlying geometrical structure of these exact solutions.
Namely, in the framework of the first-order formalism with the Poincaré gauge potentials (ϑα, Γαβ)

as the fundamental field variables (as compared to the second-order formalism used in [29–36] with
the metric and torsion as the basic variables), the black hole solution is constructed with the help
of the beautiful ansatz (34) and (35). Thereby, we have essentially developed a generalization to
the post-Riemannian geometries of the Kerr–Schild technique which was successfully used in the
Riemannian case [37].

Quite interestingly, in the literature there are similar solutions reported [38,39] with the
black hole metric configurations of the same type, however, with different torsion configurations.
They are not described by the ansatz (34) and (35), a possibility of constructing an appropriate
generalization of this ansatz will be discussed elsewhere. More recently, spherically symmetric
solutions were obtained [40,41] for the special case of the parity-even class of quadratic Poincaré
gravity models. These configurations do not satisfy the double-duality ansatz, with the dynamical
axial trace torsion field playing the role of a Maxwell–Coulomb field which gives rise to an effective
Reissner–Nordström-type line element. Such solutions explicitly demonstrate that the generalized
Birkhoff’s theorem is not valid for the whole class of quadratic Poincaré gauge gravity models, see the
relevant discussion in [4,7].

The final remark is as follows. There is common belief in the validity of the statement “black
holes do not have hair” which means that there are no non-metric field configurations that satisfy
the vacuum field equations and are regular across a black hole horizon. This seems to be generally
true for all matter fields with an exception of the electromagnetic field. Our solutions provide a kind
of counter-example to the no-hair conjecture in the sense that the corresponding dynamical torsion
field is regular across the black hole horizon. The crucial role is played by the properties (52) which
show a global regularity of the Riemann–Cartan geometry for our solutions. In other words, we have
demonstrated that a black hole may have a nontrivial “geometrical hair” (in the form of the spacetime
torsion) which does not affect the structure of a usual Kerr–de Sitter black hole.

Funding: This work was partially supported by the Russian Foundation for Basic Research (Grant No.
18-02-40056-mega).

Acknowledgments: Early discussions with Jens Boos are gratefully acknowledged. I thank the Organizers of
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Appendix A. Irreducible Decompositions

Appendix A.1. Torsion

The torsion 2-form can be decomposed into the three irreducible pieces, Tα = (1)Tα + (2)Tα + (3)Tα,
where the torsion trace, the axial torsion, and the purely tensor torsion are defined by
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(2)Tα =
1
3

ϑα ∧ (eνcTν), (A1)

(3)Tα =
1
3

eαc(Tν ∧ ϑν), (A2)

(1)Tα = Tα − (2)Tα − (3)Tα. (A3)

Appendix A.2. Curvature

The Riemann–Cartan curvature 2-form is decomposed Rαβ = ∑6
I=1

(I)Rαβ into the 6
irreducible parts

(2)Rαβ = − ∗(ϑ[α ∧Ψβ]), (A4)

(3)Rαβ = − 1
12
∗(X ϑα ∧ ϑβ), (A5)

(4)Rαβ = − ϑ[α ∧Ψβ], (A6)

(5)Rαβ = − 1
2

ϑ[α ∧ eβ]c(ϑγ ∧ Xγ), (A7)

(6)Rαβ = − 1
12

X ϑα ∧ ϑβ, (A8)

(1)Rαβ = Rαβ −
6

∑
I=2

(I)Rαβ, (A9)

where

Xα := eβcRαβ, X := eαcXα, Xα := ∗(Rβα ∧ ϑβ), X := eαcXα, (A10)

Ψα := Xα − 1
4 ϑα X− 1

2 eαc(ϑβ ∧ Xβ), Ψα := Xα − 1
4 ϑα X− 1

2 eαc(ϑβ ∧ Xβ). (A11)

Appendix A.3. Elementary Properties

Directly from the definitions (A1)–(A3) and (A4)–(A9), one can prove the relations

Tα ∧ (1)Tα = (1)Tα ∧ (1)Tα, (A12)

Tα ∧ (2)Tα = Tα ∧ (3)Tα = (2)Tα ∧ (3)Tα, (A13)

Rαβ ∧ (1)Rαβ = (1)Rαβ ∧ (1)Rαβ, (A14)

Rαβ ∧ (5)Rαβ = (5)Rαβ ∧ (5)Rαβ, (A15)

Rαβ ∧ (2)Rαβ = Rαβ ∧ (4)Rαβ = (2)Rαβ ∧ (4)Rαβ, (A16)

Rαβ ∧ (3)Rαβ = Rαβ ∧ (6)Rαβ = (3)Rαβ ∧ (6)Rαβ. (A17)

Appendix B. De Sitter Geometry

The Riemannian connection is uniquely determined by the torsion-free condition (26):

Γ̂αβ =
1
2

(
êαcdϑ̂β − êβcdϑ̂α − ϑ̂γ êαcêβcdϑ̂γ

)
. (A18)

Explicitly, we find for the components of the local Lorentz connection:

Γ̂0̂1̂ = − (β1 + β2)ϑ̂
0̂ + β2ϑ̂ 1̂ + α1ϑ̂ 3̂, Γ̂2̂3̂ = − α2ϑ̂ 0̂ + α4ϑ̂ 1̂ − β5ϑ̂ 3̂, (A19)

Γ̂0̂2̂ = α3ϑ̂ 0̂ + β3ϑ̂ 2̂ + α2ϑ̂ 3̂, Γ̂3̂1̂ = α1ϑ̂ 0̂ − α4ϑ̂ 2̂ + β4ϑ̂ 3̂, (A20)

Γ̂0̂3̂ = α1ϑ̂ 1̂ − α2ϑ̂ 2̂ + β3ϑ̂ 3̂, Γ̂1̂2̂ = − α3ϑ̂ 1̂ − β4ϑ̂ 2̂ − α4ϑ̂ 3̂, (A21)
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where we introduced the abbreviations

α1 =
√

f
Σ

j0r sin θ
Σ , α2 = 1√

∆Σ
j0 cos θ(∆+mr)

Σ , α3 =
√

f
Σ

j20r sin θ cos θ
Σ , (A22)

α4 = 1√
∆Σ

j0mr cos θ
Σ , β1 = 1

2

√
∆
Σ

(
∆′
∆ −

Σ′
Σ

)
, β2 = m

2
√

∆Σ

(
2− r ∆′

∆ − r Σ′
Σ

)
, (A23)

β3 = 1√
∆Σ

mr2

Σ , β4 = 1√
∆Σ

r(∆+mr)
Σ , β5 =

√
f
Σ

[
cot θ + j20 sin θ cos θ

(
1
Σ −

λ
f

)]
. (A24)

Here, the prime denotes the derivative with respect to the radial coordinate ′ = ∂r. We split
the coefficients into two groups: α1, . . . , α4 vanish in the absence of rotation (when j0 = 0), whereas
β1, . . . , β5 are always nontrivial.
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13. Blagojević, M.; Cvetković, B. General Poincaré gauge theory: Hamiltonian structure and particle spectrum.
Phys. Rev. D 2018, 98, 024014. [CrossRef]

14. Leitner, J.; Okubo, S. Parity, charge conjugation, and time reversal in the gravitational interaction. Phys. Rev.
1964, 136, B1542–B1546. [CrossRef]

15. Hari Dass, N.D. Experimental test for some quantum effects in gravitation. Ann. Phys. 1977, 107, 337–359.
[CrossRef]

16. Hojman, R.; Mukku, C.; Sayed, W.A. Parity violation in metric-torsion theories of gravitation. Phys. Rev. D
1980, 22, 1915–1921. [CrossRef]

17. Holst, S. Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action. Phys. Rev. D 1996,
53, 5966–5969. [CrossRef]

18. Kiefer, C. Quantum Gravity, 3rd ed.; Oxford University Press: Oxford, UK, 2012.
19. Randono, A. Gravity from a fermionic condensate of a gauge theory. Class. Quantum Grav. 2010, 27, 215019.

[CrossRef]
20. Popławski, N. Matter-antimatter asymmetry and dark matter from torsion. Phys. Rev. D 2011, 83, 084033.

[CrossRef]

http://dx.doi.org/10.1142/S021988780600103X
http://dx.doi.org/10.1142/S0219887818400054
http://dx.doi.org/10.1016/0370-1573(94)00111-F
http://dx.doi.org/10.1007/BF00763457
http://dx.doi.org/10.1002/andp.201100101
http://dx.doi.org/10.1103/PhysRevD.84.124042
http://dx.doi.org/10.1088/0264-9381/28/21/215017
http://dx.doi.org/10.1103/PhysRevD.83.024001
http://dx.doi.org/10.1088/0264-9381/32/5/055012
http://dx.doi.org/10.1103/PhysRevD.98.024014
http://dx.doi.org/10.1103/PhysRev.136.B1542
http://dx.doi.org/10.1016/0003-4916(77)90215-9
http://dx.doi.org/10.1103/PhysRevD.22.1915
http://dx.doi.org/10.1103/PhysRevD.53.5966
http://dx.doi.org/10.1088/0264-9381/27/21/215019
http://dx.doi.org/10.1103/PhysRevD.83.084033


Universe 2019, 5, 127 13 of 13

21. Bjorken, J.D. Emergent photons and gravitons: The problem of vacuum structure. In CPT and Lorentz
Symmetry, Proceedings of the Fifth Meeting, Bloomington, IN, USA, 28 June–2 July 2010; Kostelecký, V.A., Ed.;
World Scientific: Singapore, 2010; pp. 1–5.

22. Heinicke, C.; Hehl, F.W. Schwarzschild and Kerr solutions of Einstein’s field equation: An Introduction.
Int. J. Mod. Phys. D 2015, 24, 1530006. [CrossRef]

23. Obukhov, Y.N. Gravitational waves in Poincaré gauge gravity theory. Phys. Rev. D 2017, 95, 084028.
[CrossRef]
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