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Abstract: We report on the behavior of two-level quantum systems, or qubits, in the background
of rotating and non-rotating metrics and provide a method to derive the related spin currents and
motions. The calculations are performed in the external field approximation.
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1. Introduction

Spin effects in gravity straddle the boundary between quantum and classical physics.
The difference between quantum and classical behavior becomes particularly transparent with spin,
which is relevant to low energy approaches to quantum gravity.

Quantum beats are an unequivocal indication that the system considered obeys the laws of
quantum mechanics. Quantum systems with a two-dimensional Hilbert space are also called qubits.
This definition is borrowed from quantum computing where two-level quantum systems play a
predominant role. Qubits provide examples of systems that are genuinely quantum mechanical and,
at the same time, simple, can be studied within the confines of first quantization, and are ideal in the
study of relativistic gravity close to, or at the quantum level. There are gravitational qubits in the
universe. Some of them are disussed below.

In what follows, use is made of the external field approximation [1,2] that treats gravity as
a classical theory when it interacts with quantum particles. This approximation can be applied
successfully to all those problems involving gravitational sources of weak to intermediate strength for
which the full-fledged use of general relativity is not required [3–11], it is encountered in the solution
of relativistic wave equations, and takes different forms according to the statistics obeyed by the
particles [2,6,12–14]. The approximation can also be applied to theories in which acceleration has an
upper limit [15–24] and that allow for the resolution of astrophysical and cosmological singularities in
quantum gravity [25,26]. It is of interest to those theories of asymptotically safe gravity that can be
expressed as Einstein gravity coupled to a scalar field [27], and can produce results complementary to
those of the method of space-time deformation [28].

At the same time, theoretical developments by Mashhoon [19,20,29–31], and by other authors [12,32–36]
in the field of spin-gravity coupling require a scheme that involves all components of the metric tensor.
Finally, recent experimental observations of important rotation-related classical effects [37–39], of
spin-rotation coupling for photons [40] and neutrons [41], the development of a spin rotator for
neutron interferometry [42], and the generation of spin currents via spin-rotation coupling [43] indicate
the degree of maturity and breadth of scope reached by the field.

In the formalism introduced in references [1,2], the effect of gravity on wave functions is contained
in a phase factor. If phase differences develop in processes involving the qubits studied below,
measurements become possible. This is the common thread that links the various sections of this work.
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If gravitation produces qubits, then these may be observable and yield useful experimental results.
Quantum physics and gravity may meet well before the onset of the quantum gravity regime usually
associated with Planck’s length and there still are interesting problems to investigate at lower scales.
For instance, in addition to the important classical effect observed and discussed in references [37–39],
there also is a quantum Lense–Thirring effect, that represents the action of the Lense–Thirring metric
on a particle wave function. By applying the procedure of [1,2], one finds [36] that the phase difference
produced by a gravitational source of mass M, radius R and angular velocity ω is ∆χLT = ΩLTΠ, where
ΩLT = 2GMω/(5c2R) is the effective Lense–Thirring frequency of a gyroscope and Π = 4m`2/h̄
replaces the period of a satellite in the classical calculation. Its observation with neutron interferometers
of typical dimension ` ∼ 3cm, still seems difficult but would complete nicely what we know at present
about rotation in relativity.

For the sake of completeness, some essential points are being repeated. The key player in what
follows is the covariant Dirac equation

[iγµ(x)Dµ −m]Ψ(x) = 0 , (1)

that determines the behavior of spin-1/2 particles in the presence of a gravitational field gµν. In
Equation (1), Dµ = ∇µ + iΓµ(x), ∇µ is the covariant derivative, Γµ(x) the spin connection and the
matrices γµ(x) satisfy the relations {γµ(x), γν(x)} = 2gµν. Both Γµ(x) and γµ(x) can be obtained
from the usual constant Dirac matrices γα̂ by using the vierbein fields eµ

α̂ and the relations

γµ(x) = eµ
α̂(x)γα̂ , Γµ(x) = −1

4
σα̂β̂eν

α̂eνβ̂; µ , (2)

where σα̂β̂ = i
2 [γ

α̂, γβ̂]. We use units h̄ = c = 1 and the notations are as in [3].
Equation (1) can be solved exactly [12,44] to first order in the metric deviation γµν(x) = gµν − ηµν,

where the Minkowski metric ηµν has signature -2. This is achieved by first transforming Equation (1)
into the equation

[iγ̃ν(x)∇ν −m]Ψ̃(x) = 0 , (3)

where

Ψ̃(x) = S−1Ψ(x) , S(x) = e−iΦs(x) , Φs(x) = P
∫ x

P
dzλΓλ(z) , γ̃µ(x) = S−1γµ(x)S . (4)

By multiplying Equation (3) on the left by (−iγ̃ν(x)∇ν −m), we obtain the equation

(gµν∇µ∇ν + m2)Ψ̃(x) = 0 , (5)

whose solution
Ψ̃(x) = e−iΦ̂G(x)Ψ0(x) , (6)

is exact to first order. The operator Φ̂G(x) is defined as

Φ̂G = −1
4

∫ x

P
dzλ

[
γαλ,β(z)− γβλ,α(z)

]
L̂αβ(z) +

1
2

∫ x

P
dzλγαλ k̂α , (7)

[L̂αβ(z), Ψ0(x)] =
(
(xα − zα)k̂β − (xβ − zβ)k̂α

)
Ψ0(x) , [k̂α, Ψ0(x)] = i∂αΨ0 ,

and Ψ0(x) satisfies the usual free Dirac equation(
iγµ̂∂µ −m

)
Ψ0(x) = 0 . (8)

In Equations (4) and (7), the path integrals are taken along the classical world line of the particle starting
from an arbitrary reference point P. Only the path to O(γµν) needs to be known in the integrations
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indicated because Equation (4) already is a first order solution. The positive energy solutions of
Equation (8) are given by

Ψ0(x) = u(k)e−ikαxα
= N

(
φ

œ·k
E+m φ

)
e−ikαxα

, (9)

where N =
√

E+m
2E , u+u = 1, ū = u+γ0, u+

1 u2 = u+
2 u1 = 0 and œ = (σ1, σ2, σ3) represents the Pauli

matrices. In addition, φ can take the forms φ1 and φ2 where φ1 =

(
1
0

)
, and φ2 =

(
0
1

)
.

L̂αβ and k̂α are the angular and linear momentum operators of the particle. It follows from
Equations (6) and (4) that the solution of Equation (1) can be written in the form [6]

Ψ(x) = e−iΦs
(
−iγ̃µ(x)∇µ −m

)
e−iΦG Ψ0(x) ≡ T̂Ψ0 , (10)

and also as
Ψ(x) = − 1

2m
(
−iγµ(x)Dµ −m

)
e−iΦT Ψ0(x) ≡ T̂Ψ0 , (11)

where ΦT = Φs + ΦG is of first order in γαβ(x). The factor −1/2m on the r.h.s. of Equation (11)
appears because both sides of the equation must agree when the gravitational field vanishes.

On multiplying Equation (1) on the left by (−iγν(x)Dν −m) and using the relations

∇µΓν(x)−∇νΓµ(x) + i[Γµ(x), Γν(x)] = −1
4

σαβ(x)Rαβµν , (12)

and
[Dµ,Dν] = −

i
4

σαβ(x)Rαβµν , (13)

we obtain the equation (
gµνDµDν −

R
4
+ m2

)
Ψ(x) = 0 . (14)

In Equations (13) and (14), Rαβλµ(z) = − 1
2
(
γαλ,βµ + γβµ,αλ − γαµ,βλ − γβλ,αµ

)
is the linearized

Riemann tensor, R the corresponding Ricci scalar, and σαβ(x) = (i/2)[γα(x), γβ(x)].
By using Equation (4), we also find

(−iγν(x)Dν −m) S (iγ̃µ∇µ −m)Ψ̃(x) = S (gµν∇µ∇ν + m2)Ψ̃(x) = 0 . (15)

Equation (14) implies that the gyro-gravitational ratio of a massive Dirac particle is one, as found
in [45–47].

The transformations of coordinates xµ → xµ + ξµ, with ξµ(x) small of first order, lead to the
“gauge” transformations γµν → γµν − ξµ,ν − ξν,µ. It is therefore necessary to show that ΦT in
Equation (11) is gauge invariant. In fact, on applying Stokes theorem to a closed spacetime path
C and using Equation (12), we find that ΦT changes by

∆ΦT =
1
4

∫
Σ

dτµν JαβRµναβ , (16)

where Σ is a surface bound by C and Jαβ is the total angular momentum of the particle. Equation (16)
shows that Equations (10) and (11) are gauge invariant and confirms that, to first order in the
gravitational field, the gyro-gravitational ratio of a Dirac particle is one. Use of Equation (10) or
Equation (11) assures the correct treatment of both spin and angular momentum.

The plan of this work is as follows. In Section 2 we discuss qubits represented by particles
in accelerators. In Section 3 we derive the gravitational deflection of particles propagating in a
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gravitational background represented by the Lense–Thirring metric and obtain the contribution due
to the rotation of the source. The neutrino helicity transitions are derived in Section 4 and some
astrophysical consequences are discussed in Section 5. Spin currents and spin motion are presented in
Section 6 and are followed by a summary.

2. Spin-Rotation Coupling in Accelerators

The spin-rotation effect described by Mashhoon is conceptually important, since it extends our
knowledge of rotational inertia to the quantum level and violates the principle of equivalence [29,31]
that is well-tested at the classical level.

It has, of course, been argued that the principle of equivalence does not hold true in the quantum
world. This is the case for phase shifts in particle interferometers [44,48] and wave functions depend
on the masses of the particles involved [49]. In addition, the equivalence principle does not apply
in the context of the causal interpretation of quantum mechanics as shown by Holland [50]. Several
models predicting quantum violations of the equivalence principle have also been discussed in the
literature [51], also in connection with neutrino oscillations [52–55]. The Mashhoon term, in particular,
yields different potentials for different particles and for different spin states and cannot, therefore, be
regarded as universal. It plays, nonetheless, an essential role in precise measurements of the g− 2
factor of the muon.

The experiment [56,57] involves muons in a storage ring. Muons on equilibrium orbits within a
small fraction of the maximum momentum are almost completely polarized with spin vectors pointing
in the direction of motion. As the muons decay, those electrons projected forward in the muon rest
frame are detected around the ring. Their modulated angular distribution reflects the precession of the
muon spin along the cyclotron orbits.

Our calculations use the covariant Dirac equation and are performed in the rotating frame of the
muon and do not therefore require a relativistic treatment of inertial spin effects [58]. Then the vierbein
formalism yields Γi = 0 and

Γ0 = −1
2

aiσ
0i − 1

2
ωiσ

i , (17)

where ai and ωi are the three-acceleration and three-rotation of the observer and

σ0i ≡ i
2
[γ0, γi] = i

(
σi

0
0
−σi

)
in the chiral representation of the usual Dirac matrices. The second term in Equation (17) represents
the Mashhoon effect. The first term drops out. The remaining contributions to the Dirac Hamiltonian,
to first order in ai and ωi, are [32,44]

H ≈ ~α · ~p + mβ +
1
2
[(~a ·~x)(~p ·~α) + (~p ·~α)(~a ·~x)] (18)

−~ω ·
(
~L +

~σ

2

)
.

All quantities in H are time-independent and are referred to a left-handed set of three axes rotating
about the x2-axis in the clockwise direction of motion of the muons. The muon momentum is directed
along the x3-axis which is tangent to the muon orbits. The magnetic field is B2 = −B. Only the
Mashhoon term then couples the helicity states of the muon. The remaining terms contribute to the
overall energy E of the states, and we indicate by H0 the corresponding part of the Hamiltonian.

Before decay the muon states can be represented as

|ψ(t) >= a(t)|ψ+ > +b(t)|ψ− > , (19)
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where |ψ+ > and |ψ− > are the right and left helicity states of the Hamiltonian H0 and satisfy
the equation

H0|ψ+,− >= E|ψ+,− > .

The total effective Hamiltonian is He f f = H0 + H′, where

H′ = −1
2

ω2σ2 + µBσ2 . (20)

µ =

(
1 +

g− 2
2

)
µ0 represents the total magnetic moment of the muon and µ0 is the Bohr magneton.

We will neglect the presence of electric fields that also affect the muon spin. Their effects can be
controlled in suitable ways [57].

The coefficients a(t) and b(t) in Equation (19) evolve in time according to

i
∂

∂t

(
a(t)
b(t)

)
= M

(
a(t)
b(t)

)
, (21)

where M is the matrix

M =

[
E− i Γ

2 i
(ω2

2 − µB
)

−i
(ω2

2 − µB
)

E− i Γ
2

]
(22)

and Γ represents the width of the muon and is not particularly relevant to what follows. Equations (21)
and (22) describe a two-dimensional qubit. The non-diagonal form of M (when B = 0) implies that
rotation does not couple universally to matter.

M has eigenvalues

h1 = E− i
Γ
2
+

ω2

2
− µB ,

h2 = E− i
Γ
2
− ω2

2
+ µB ,

and eigenstates

|ψ1 > =
1√
2
[i|ψ+ > +|ψ− >] ,

|ψ2 > =
1√
2
[−i|ψ+ > +|ψ− >] .

The muon states that satisfy Equation (21), and the condition |ψ(0) >= |ψ− > at t = 0, are

|ψ(t) > =
e−Γt/2

2
e−iEt

{
i
[
e−iω̃t − eiω̃t

]
|ψ+ > (23)

+
[
e−iω̃t + eiω̃t

]
|ψ− >

}
,

where
ω̃ ≡ ω2

2
− µB .

The spin-flip probability is therefore

Pψ−→ψ+ = | < ψ+|ψ(t) > |2 (24)

=
e−Γt

2
[1− cos(2µB−ω2)t] .

The Γ-term in Equation (24) accounts for the observed exponential decrease in electron counts due to
the loss of muons by radioactive decay [57]. The term in square brackets represents the well known
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phenomenon of quantum beats which one should expect because muons are quantum systems. It also
represents the characteristic behavior of a two-dimensional qubit.

The spin-rotation contribution to Pψ−→ψ+ is represented by ω2 which is the cyclotron angular

velocity
eB
m

[57]. The spin-flip angular frequency is then

Ω = 2µB−ω2 (25)

=

(
1 +

g− 2
2

)
eB
m
− eB

m

=
g− 2

2
eB
m
≡ 1

∆
,

which is precisely the observed modulation frequency of the electron counts [57,59] and yields the
value ∆ of the energy level splitting. This result is independent of the value of the anomalous magnetic
moment of the particle. It is therefore the spin-rotation coupling that gives evidence to the g− 2 term
in Ω by exactly cancelling, in 2µB, the much larger contribution µ0 that one would get if the fermion
had no anomalous magnetic moment. The cancellation is made possible by the non-diagonal form of
M and is therefore a direct consequence of the violation of the equivalence principle.

It is perhaps surprising that spin-rotation coupling as such has almost gone unnoticed for such
a long time. It is, however, significant that its effect is observed in an experiment that has already
provided crucial tests of quantum electrodynamics and a test of Einstein’s time-dilation formula to
better than a 0.1 percent accuracy.

Applications of these ideas to compound spin systems like heavy ions in accelerators can be found
in [60–62].

3. Geometrical Optics of Spin-1/2 Particles

In this Section we study the propagation of a spin-1/2 particle in the Lense–Thirring metric [63]
represented, in its post-Newtonian form, by

γ00 = 2ϕ , γij = 2ϕδij , γ0i = hi =
2
r3 (J∧ r)i , (26)

where

ϕ = −GM
r

, h =
4GMR2ω

5r3 (y,−x, 0) , (27)

and M, R, ! = (0, 0, ω) and J are mass, radius, angular velocity, and angular momentum of the source.
The vierbein field to O(γµν) is

e0
î = 0 , e0

0̂ = 1− ϕ , ei
0̂ = hi , el

k̂ = (1 + ϕ) δl
k . (28)

The gravitational contribution in Equation (28) can be further isolated by writing eµ
α̂ ' δ

µ
α̂ + hµ

α̂ .
The components of the spin connection can be calculated using Equations (2) and (28) and are

Γ0 = −1
2

ϕ,j σ0̂ ĵ − 1
8
(hi,j − hj,i)σ

î ĵ (29)

Γi = −1
8
(hi,j − hj,i)σ

0̂ ĵ − 1
2

ϕ,j σî ĵ ,
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and have the explicit form

Γ0 = −GM
2r3

(
xσ0̂1̂ + yσ0̂2̂ + zσ0̂3̂

)
+

GMR2ω

5r5

[
(r2 − 3z2)σ1̂2̂ + 3yzσ1̂3̂ − 3xzσ2̂3̂

]
(30)

Γ1 =
3GMR2ω

5r5

[
2xyσ0̂1̂ + (y2 − x2)σ0̂2̂ + yzσ0̂3̂

]
+

GM
2r3

(
yσ1̂2̂ + zσ1̂3̂

)
Γ2 =

3GMR2ω

5r5

[
(y2 − x2)σ0̂1̂ − 2xyσ0̂2̂ − xzσ0̂3̂

]
+

GM
2r3

(
−xσ1̂2̂ + zσ2̂3̂

)
Γ3 =

3GMR2ω

5r5

(
yzσ0̂1̂ − xzσ0̂2̂

)
+

GM
2r3

(
xσ1̂3̂ + yσ2̂3̂

)
.

In what follows, use is made of the Dirac representation of the γµ̂, of the first derivative of ΦG
with respect to xµ

ΦG,µ = −1
2

∫ x

P
dzλ(γµλ,β − γβλ,µ)kβ +

1
2

γαµkα , (31)

and of the second derivative
ΦG,µν = kαΓα

µν , (32)

where Γα
µν are the Christoffell symbols of the second type.

For the Lense–Thirring metric and to O(γµν), these are

Γ0
00 = 0 , Γ0

0i = ϕ,i , Γ0
ij =

1
2
(hi,j + hj,i) , (33)

Γi
00 = ϕ,i , Γi

0j =
1
2
(hj,i − hi,j) , Γi

jk = δ
j
k ϕ,i − δi

j ϕ,k − δi
k ϕ,j .

In the geometrical optics approximation |∂iγµν| � |kγµν|, where k is the momentum of the
particle, the geometrical phase ΦG is sufficient to reproduce the classical angle of deflection, as it
should, but also some effects due to the angular velocity of rotation of the source.

The deflection angle δ is defined by

tan δ =

√
−gij pi

⊥pj
⊥

p‖
' |p⊥|

k‖
, (34)

where k‖ = p‖ is the unperturbed momentum and |p⊥| =
√
−ηij pi

⊥pj
⊥, for pi

⊥ ∼ O(γµν).
It follows from Equations (7) and (10) that, once Ψ0(x) is chosen to be a plane wave solution of

the flat spacetime Dirac equation, the geometrical phase of a particle of four-momentum kµ is given by

υ(x) = −kαxα −ΦG(x) , (35)

where Φ̂GΨ0 = ΦGΨ0 and

ΦG(x) = −1
4

∫ x

P
dzλ

[
γαλ,β(z)− γβλ,α(z)

]
((xα − zα)kβ − (xβ − zβ)kα) +

1
2

∫ x

P
dzλγαλkα . (36)

The components of p⊥ can be determined from the equation

pi =
∂υ

∂xi = −ki −ΦG,i = (37)

= −ki −
1
2

γαi(x)kα +
1
2

∫ x

P
dzλ(γiλ,β(z)− γβλ,i(z))kβ .
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We consider the two cases of propagation along the z-axis, which is parallel to the angular
momentum of the source, and along the x-axis, orthogonal to it. In both instances, the fermions are
assumed to be ultrarelativistic, i.e., dz0 ' dz(1 + m2/2E2), E ' k(1 + m2/2E2).

When motion is along the z-direction φ1 =

(
1
0

)
and φ2 =

(
0
1

)
(i.e., φ1,2 are eigenstates

of σ3).
We consider fermions starting from z = −∞ with impact parameter b ≥ R and propagating along

x = b, y = 0. We find

p1 = −1
2

[∫ z

−∞
dz0γ00,1k0 +

∫ z

−∞
dz3γ33,1k3

]
(38)

= −2k
(

1 +
m2

2E2

) ∫ z

−∞
ϕ,1dz ,

p2 = −1
2

γ02k0 +
1
2

∫ z

−∞
dz0γ20,3k3 = 0

and

(p⊥)1 = g1µ pµ ' −p1 = −2GMk
b

(
1 +

m2

2E2

)(
1 +

z
r

)
, (39)

(p⊥)2 = g2µ pµ ' h2E = −4GMR2ωbk
5r3

(
1 +

m2

2E2

)
.

We finally obtain

δ =
2GM

b

(
1 +

m2

2E2

)√(
1 +

z
r

)2
+

(
2R2b2ω

5r3

)2

, (40)

which is the deflection predicted by general relativity for photons, with corrections due to the fermion
mass and to ω. In the limit z→ ∞ Equation (40) reduces to

δ =
4GM

b

(
1 +

m2

2E2

)
. (41)

When the fermions propagate along x, the deflection angle is

δ =
2GM

b

(
1− 2R2ω

5b

)(
1 +

m2

2E2

)(
1 +

x
r

)
. (42)

The first term is just that predicted by general relativity.
Contrary to the case of propagation along z, the contribution of ω does not vanish in the limit

x → ∞. In fact, in this limit we get

δ =
4GM

b

(
1− 2R2ω

5b

)(
1 +

m2

2E2

)
. (43)

4. Neutrino Helicity Transitions

In what follows, it is convenient to write the left and right neutrino wave functions in the form

Ψ0(x) = ν0L,Re−ikαxα
=

√
E + m

2E

(
νL,R

œ·k
E+m νL,R

)
e−ikαxα

, (44)
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where σ = (σ1, σ2, σ3) represents the Pauli matrices. νL,R are eigenvectors of (œ · k) corresponding
to negative and positive helicity and ν̄0 L,R(k) ≡ ν†

0 L,R(k)γ
0̂, ν†

0 L,R(k)ν0 L,R(k) = 1. This notation
already takes into account the fact that if ν± are the helicity states, then we have φ2 ' ν−, φ1 ' ν+ for
relativistic neutrinos. The propagation is in vacuo.

In general, the spin precesses during the motion of the neutrino. This can be expected because of
the presence of Φs in ΦT .

We now study the helicity flip of one flavor neutrinos as they propagate in the gravitational field
produced by a rotating mass. The neutrino state vector can be written as

|ψ(λ)〉 = α(λ)|νR〉+ β(λ)|νL〉 , (45)

where |α|2 + |β|2 = 1 and λ is an affine parameter along the world-line. In order to determine α and β,
we can write Equation (10) as

|ψ(λ)〉 = T̂(λ)|ψ0(λ)〉 , (46)

where
T̂ = − 1

2m
(
−iγµ(x)Dµ −m

)
e−iΦT , (47)

and |ψ0(λ)〉 is a plane wave solution of Equation (9). The latter can be written as

|ψ0(λ)〉 = e−ik·x [α(0)|νR〉+ β(0)|νL〉] . (48)

|ψ(λ)〉 should also be normalized. However, this is unnecessary, because it is shown below that α(λ)

is already of O(γµν) and can only produce higher order terms. From Equations (45), (46), and (48) we
obtain

α(λ) = 〈νR|ψ(λ)〉 = α(0)〈νR|T̂|νR〉+ β(0)〈νR|T̂|νL〉 . (49)

An equation for β can be derived in an entirely similar way.
If we consider neutrinos which are created in the left-handed state, then |α(0)|2 = 0, |β(0)|2 = 1,

and we obtain

PL→R = |α(λ)|2 =
∣∣〈νR|T̂|νL〉

∣∣2 =

∣∣∣∣∫ λ

λ0

〈νR|ẋµ∂µT̂|νL〉dλ

∣∣∣∣2 , (50)

where ẋµ = kµ/m. As remarked in [64], ẋµ need not be a null vector if we assume that the neutrino
moves along an “average” trajectory. We also find, to lowest order,

∂µT̂ =
1

2m

(
−i2mΦG,µ − i(γα̂kα + m)Φs,µ + γα̂(hβ

α̂,µkβ + ΦG,αµ)
)

(51)

Φs,λ = Γλ , ΦG,αµ = kβΓβ
αµ , ν†

0 (γ
α̂kα + m) = 2Eν†

0 γ0̂ ,

where Γβ
αµ are the usual Christoffel symbols, and

〈νR|ẋµ∂µT̂|νL〉 =
E
m

[
−i

kλ

m
ν̄RΓλνL +

kλkµ

2mE
(hµ

α̂, λ + Γµ
αλ)ν

†
Rγα̂νL

]
. (52)

In order to solve the evolution equations for α and β and complete the equations describing this
two-dimensional qubit, one also needs the terms

〈
νL|ẋµ∂µT̂|νL

〉
and

〈
νR|ẋµ∂µT̂|νR

〉
of the usual

qubit matrix M. In what follows, we compute the probability amplitude Equation (52) for neutrinos
propagating along the z and the x directions explicitly.

For propagation along the z-axis, we have k0 = E and k3 ≡ k ' E(1−m2/2E2) and we choose
y = 0, x = b. We find
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−i
kλ

m
ν̄RΓλνL =

k
m

ϕ,1 + i
m
4E

h2,3 , (53)

kλkµ

2mE
(hµ

α̂, λ + Γµ
αλ)ν

†
Rγα̂νL = − k

2m

(
1 +

k2

E2

)
GM
2b

.

Summing up, and neglecting terms of O((m/E)2), Equation (52) becomes

〈νR|ẋµ∂µT̂|νL〉 =
1
2

ϕ,1 +
i
4

h2,3 . (54)

As a consequence
dα

dz
' m

E
dα

dλ
=

m
E

(
1
2

ϕ,1 +
i
4

h2,3

)
, (55)

and the probability amplitude for the νL → νR transition is of O(m/E), as expected.
Integrating Equation (55) from −∞ to z, yields

α ' m
E

[
1
2

∫ z

−∞
dzϕ,1 +

i
4

h2(z)
]

(56)

=
m
E

GM
2b

[
1 +

z
r
− i

2ωR2b2

5r3

]
.

It also follows that

PL→R(−∞, z) '
(m

E

)2
(

GM
2b

)2
[(

1 +
z
r

)2
+

(
2ωb2R2

5r3

)2]
. (57)

In this qubit, the first term in Equation (57) comes from the mass of the gravitational source. The second
from the source’s angular momentum and vanishes for r → ∞ because the contribution from −∞ to
0 exactly cancels that from 0 to +∞. In fact, if we consider neutrinos propagating from 0 to +∞, we
obtain

PL→R(0,+∞) '
(m

E

)2
(

GM
2b

)2
[

1 +
(

2ωR2

5b

)2]
. (58)

According to semiclassical spin precession equations [65], there should be no spin motion because spin
and ~ω are parallel. The probabilities Equations (57) and (58) mark therefore a departure from expected
results. They yield however results that are small of second order. Both expressions vanish for m→ 0,
as it should because helicity is conserved [66]. It is interesting to observe that spin precession also
occurs when ω vanishes [67,68]. In the case of Equation (57) the mass contribution is larger when

b < (r/R)
√

5r
2ω , which, close to the source, with b ∼ r ∼ R, becomes Rω < 5/2 and is always satisfied.

In the case of Equation (58), the rotational contribution is larger if b/R < 2ωR/5 which restricts the
region of dominance to a strip about the z-axis in the equatorial plane, if the source is compact and ω

is relatively large.
In proximity of the source where the gravitational field is stronger and r ∼ b ∼ R the evolution

equations for α and β are dα
dλ ≈ D̃β and dβ

dλ ≈ D̃∗α, D̃ is almost constant, and α and β oscillate
with frequency

Ω =
√

D̃D̃∗ ≈ m
E

GM
2b2

{
1 +

(
6ωb

5

)2
} 1

2

. (59)

The contribution of the source rotation is therefore (ωb/c)2 ∼ (v/c)2. The helicity oscillations
discussed are, in principle, relevant in astrophysics because right-handed neutrinos are considered
sterile. This point is discussed in the next section.
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When propagation is along x, we put k0 = E, k1 ≡ k ' E(1−m2/2E2). The calculation can be
simplified by assuming that the motion is in the equatorial plane with z = 0, y = b. We then have

−i
kλ

m
ν̄RΓλνL = i

k
m

ϕ,2 + i
E2 + k2

4mE
h1,2 − i

E2 − k2

4mE
h2,1 , (60)

kλkµ

2mE
(hµ

α̂, λ + Γµ
αλ)ν

†
Rγα̂νL = −i

k
2m

(
1 +

k2

E2

)
ϕ,2 − i

k2

2mE
h1,2 .

Summing up, and neglecting terms of O(m/E)2, Equation (52) becomes

〈νR|ẋµ∂µT̂|νL〉 =
i
2

ϕ,2 +
i
4
(h1,2 − h2,1) . (61)

The contributions to O((E/m)2) again vanish and we get

dα

dx
' m

E
dα

dλ
=

m
E

[
i
2

ϕ,2 +
i
4
(h1,2 − h2,1)

]
∼ O(m/E) . (62)

Integrating Equation (62) from −∞ to x, we obtain

α ' i
m
E

GM
2b

(
1− 2ωR2

5b

)(
1 +

x
r

)
(63)

and

PL→R(−∞, x) '
(m

E

)2
(

GM
2b

)2 (
1− 2ωR2

5b

)2 (
1 +

x
r

)2
. (64)

Obviously, the contribution of M is the same as for z-axis propagation. However, the two cases differ
substantially in the behavior of the term containing ω. In this case, in fact, the term does not vanish for
r → ∞. If we consider neutrinos generated at x = 0 and propagating to x = +∞, we find

PL→R(0,+∞) '
(m

E

)2
(

GM
2b

)2 (
1− 2ωR2

5b

)2

. (65)

The M term is larger when 2ωR2

5b < 1. At the poles b ∼ R and the M term dominates because the
condition ωR < 5/2 is always satisfied. The angular momentum contribution prevails in proximity of
the equatorial plane. The transition probability vanishes at b = 2ωR2/5.

An altogether different type of qubit is represented by neutrino flavor oscillations. They have
been discussed in the context of the Lense–Thirring metric in [6]. The qubit frequency is in this case
proportional to ∆m2 = m2

2 −m2
1, where m1 and m2 are the masses of the neutrino mass eigenstates.

5. Neutrino Conversion in Supernovae

The results of the previous section may be applied to the propagation of a beam of neutrinos in
vacuo. The presence of a medium is realized by means of a potential V. The neutrinos are massive
and may therefore have a magnetic moment µ. In the presence of an external magnetic field ~B and
of the Mashhoon term proportional to the angular velocity of the source ~Ω, the evolution equations
become [33,69]

i
dν

dz
=

m2

2E
− 1

2

(
P+~Ω ·~σP− + P−~Ω ·~σP+

)
ν

−µ
(

P+~B ·~σP− + P−~B ·~σP+
)

ν, (66)
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where ν =

(
νR
νL

)
and P± = (1± σ3)/2 are the R and L projection operators. Equation (66) leads to

neutrino oscillations.
The frequency of oscillation is then Ω⊥/2 where Ω⊥ is the component of the angular velocity

normal to the neutrino trajectory. In particular, if a beam of neutrinos consists of NL(0) particles at
z = 0, the relative numbers of νL and νR at z will be

NL(z) = NL(0) cos2
(

Ω⊥z
2

)
, NR(z) = NR(0) sin2

(
Ω⊥z

2

)
, (67)

These oscillations are interesting because the νR ’s, if they exist, do not interact. They would therefore
provide an energy dissipation mechanism with possible astrophysical implications. The conversion rate
is not large for galaxies and white dwarfs. In fact one can obtain from Equation (67) NR ∼ 10−6NL(0)
for galaxies of size L for which Ω⊥L ∼ 200 km/s. Similarly, for white dwarfs for which Ω⊥ ∼ 1.0 s−1,
one finds NR ∼ 10−4NL(0). On the other hand, the νL ’s diffuse out of a canonical neutron star in a
time 1 to 10 s, during which they travel a maximum distance 3× 109 cm between collisions. This and
the fact that for a millisecond pulsar the conversion rate νL → νR is ∼ 0.5 at distances L ∼ 5× 106 cm
suggest that the dynamics of the star could be affected by such a cooling mechanism. Indeed the star
may even cool too rapidly at higher rotational speeds for a pulsar to form.

The magnetic moment of the neutrino does not appear in the calculations because magnetic
spin-flip rates of magnitude comparable to Equation (67) would require magnetic moments in excess
of the value µ ∼ 10−19µB

( mν
1eV
)

predicted by the standard model.
The behavior of neutrinos in a medium is modified by a potential V that vanishes for νR ’s.

In the core of a supernova V can be written as [70]

V(νe) = 14eV
ρ

ρc
y(~r, t), (68)

where y(~r, t) ≡ 3Ye(~r, t) + 4Yνe(~r, t) − 1, the Y’s represent the lepton fractions present, and ρc =

4× 1014 g/cm3. For supernovae V can be large, of the order of several electron volts, and rotation
may be neglected. Only the acceleration term in Equation (67) need be considered and the effective
Hamiltonian then has the form [69]

H =

∣∣∣∣∣∣∣
V

h̄a⊥
2c

h̄a⊥
2c

c4δm2

2E

∣∣∣∣∣∣∣ , (69)

where δm2 ≡ m2
νL
− m2

νR
and a⊥ is the component of the acceleration transverse to the neutrino

trajectory. If the initial state is pure νL and the number of particles in this state is N0 at z = 0, then the
corresponding numbers of νL and νR at z are

NL = N0

[
cos2(Ω̃z) + cos2(2θa) sin2(Ω̃z)

]
, NR = N0 sin2(2θa) sin2(Ω̃z), (70)

where

sin2(2θa) ≡

(
h̄a⊥
2c

)2

(
h̄a⊥
2c

)2
+ 4

(
V − c4δm2

2E

) ; Ω̃ ≡

√
1
c2

( a⊥
2c

)2
+

1
4h̄2c2

(
V − c4δm2

2E

)2

. (71)

If 1
2

(
V − c4δm2

2E

)
> h̄a⊥

2c , spin precession is strongly suppressed and the flux of particles at z consists

mainly of νL ’s. The conversion takes place at resonance if V = c4δm2

2E .
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Summarizing, the components of acceleration transverse to the particle path couple to its spin.
This and the Mashhoon term applied to massive neutrinos produce νL ↔ νR oscillations, which may
have macroscopic effects if the νR ’s are sterile, as frequently assumed. In fact, νL → νR conversion
by rotation-spin coupling may help to explain why pulsars of period shorter than a millisecond are
relatively rare.

6. Spin Currents

The realization that the flow of spin angular momentum can be separated from that of charge
has recently stimulated intense interest in fundamental spin physics [71], particularly in view of its
applications [43,72,73].

In this section we study the generation and control of spin currents by rotation and acceleration [3].
In this context the fundamental tool still is the covariant Dirac equation.

We use the first order solutions of Equation (1) that have the form

Ψ(x) = T̂(x)Ψ0(x) , (72)

where Ψ0(x) is a solution of Equation (8) and the operator T̂ is given by Equation (10) or Equation (11).
When acceleration and rotation are present, γµν is given by [32,44]

γ00 ≈ 2(a · x) + (a · x)2 −Ω2x2 + (Ω · x)2 , γ0i = −(Ω× x)i , γij = ηij , (73)

where a and Ω represent acceleration and rotation respectively. To first order the tetrad is given by

eµ
α̂ ≈ δ

µ
α + hµ

α̂ , h0
0̂ = −a · x , h0

î = 0 , hk
î = 0 , hi

0̂ = −εijkΩjxk , (74)

h0̂
0 = a · x , hk̂

0 = εijkΩixj , h0̂
i = 0, hk̂

i = δk
i .

from which the spinorial connection can be calculated in the usual way. The result is Γi = 0 and
Γ0 = − 1

2 aiσ
0̂î − 1

2 Ω ·œI.
For electrons, u1 corresponds to the choice φ = φ1 and u2 to φ = φ2. Substituting into Equation (9),

one finds the spinors u1 and u2. These are not eigenspinors of the matrix Σ3 = σ3 I and do not, therefore,
represent the spin components in the z-direction. They become however eigenspinors of Σ3 when
k1 = k2 = 0, or when k = 0 (electron rest frame).

The appropriate way to determine whether there is transfer of angular momentum between the
external non-inertial field and the electron spin is to use the third rank spin current tensor [74]

Sρµν =
1

4im
[(∇ρΨ̄) σµν(x)Ψ− Ψ̄σµν(x) (∇ρΨ)] , (75)

that in Minkowski space satisfies the conservation law Sρµν,ρ = 0 when all γαβ(x) vanish and yields
in addition the expected result Sρµν = S0µν in the rest frame of the particle. Writing σµν(x) ≈
σµ̂ν̂ + hµ

τ̂ στ̂ν̂ + hν
τ̂σµ̂τ̂ , using the relation ΦG,µν = kαΓα

µν and substituting Equations (72) and (11) into
Equation (75), one obtains, to O(γαβ),

Sρµν =
1

16im3 ū0

{
8im2kρσµ̂ν̂ + 8imkρh[µτ̂ στ̂ν̂]+ (76)

4imkρ (ΦG,α + kσhσ
α̂)
{

σµ̂ν̂, γα̂
}
− 8imkρΦGk[µγν̂]+

4mkρkα

[
σµ̂ν̂,

(
γα̂ΦS − γ0̂Φ+

S γ0̂γα̂
)]

+ 4m2kρ
[
σµ̂ν̂,

(
ΦS − γ0̂Φ+

S γ0̂
)]
−

8m2kρh0
α̂

[
γ0̂,
[
σ0̂α̂, σµ̂ν̂

]]
− 8im2kσ

(
Γσ

αβηβρ + ∂ρhσ
α̂

)
ηα[µγν̂]+
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8im2∂ρΦG

(
4mσµ̂ν̂ − 2ik[µγν̂]

)
+ 4im2γ0̂Γρ+γ0̂

{(
γα̂kα + m

)
, σµ̂ν̂

}
Γρ
}

u0 .

It is therefore possible to separate Sρµν in inertial and non-inertial parts. The first term on the r.h.s.
of Equation (76) gives the result expected when~k = 0 and the external field vanishes. From Equation
(76) one finds

∂ρSρµν =
1

16im3 ū0

{
8imkρ∂ρh[µτ̂ στ̂ν̂] − 8imkρΦG,ρk[µγν̂]+ (77)

4imkρ
(

kσΓσ
αρ + ∂ρhσ

α̂kσ

) {
σµ̂ν̂, γα̂

}
+ 4mkρkα

[
σµ̂ν̂,

(
γα̂Γρ − γ0̂Γ+

ρ γ0̂γα̂
)]

+

4m2kρ
[
σµ̂ν̂,

(
Γρ − γ0̂Γ+

ρ γ0̂
)]

+ 8m2kρ∂ρh0
α̂

[
γ0̂,
[
σ0̂α̂, σµ̂ν̂

]]
−

8im2kσ∂ρΓσ
αρηα[µγν̂] + 8im2kσΓσ

ρτητρ
(

4mσµ̂ν̂ − 2ik[µγν̂]
)
+

8im2kαΓρ
αρσµ̂ν̂ + 8im2kρΓµ

αρσα̂ν̂ − 8im2kρΓν
αρσα̂µ̂

}
u0 ,

where terms containing Γ0,0 = 0 and ∂α∂βhµ
ν̂ = 0 have been eliminated. It therefore follows that the

external field invalidates the simple conservation law ∂ρSρµν = 0 and that there is in this case continual
interchange between spin and orbital angular momentum. The result is entirely similar to that found
for external electromagnetic fields [74]. Thus, in principle, one can use non-inertial fields to generate
spin currents. In the rest frame of the particle and when Ω = (0, 0, Ω), one finds

∂ρSρµν = ∂iSi12 =
1
2

(
Γρ

0ρ + Γ1
10 + Γ2

20

)
ū0σ1̂2̂u0 =

E + m
2E

Ωa2x
1 + a · x , (78)

and ∂iSi13 = ∂iSi23 = 0. In Equation (78) u0 corresponds to u1. The direct coupling of the non-inertial
field to the particle’s spin current violates the law ∂ρSρµν = 0. Conservation is restored if the parameters
Ω, or a2, or both vanish.

Qubits appear in the actual spin motion. In general, transfer of angular momentum between
external and non-inertial fields occurs when the operator T̂ has some non-diagonal matrix elements.
If in fact at time t = 0 a beam of electrons is entirely of the u2 variety, at time t the fraction of u1 is
|〈u1|T̂|u2〉|2. The last expression becomes, along the electron world line,

P2→1 =
∣∣〈u1|T̂|u2〉

∣∣2 =

∣∣∣∣∫ λ

λ0

〈u1|ẋµ∂µT̂|u2〉dλ

∣∣∣∣2 , (79)

where, as usual, ẋµ = kµ/m and λ is the affine parameter along the world line. From [6]

∂νT̂ =
1

2m

{
hµ

ˆα,νγα̂kµ + γµ̂ΦG,µν − 2im (ΦG,ν + Γν − eAν)
}

, (80)

one can see that

〈u1|
kν

m
∂νT̂|u2〉 = −i

k0

m
〈u1|Γ0|u2〉 = −i

k0

m
〈u1|

{
−1

2
aiσ

0̂î − 1
2

Ωiσ
i I
}
|u2〉. (81)

A useful way to visualise the spin motion under the action of rotation and acceleration follows from
the Mashhoon term HM = −Ω · s, where s = œ

2 , and from 1
2 aiσ

0̂î = i
2 aiα

î. The two interaction terms
lead to the first order equation of motion [75]

ds
dt

= s× (Ω + v× a) . (82)

Note that Aµ, introduced by writing ΦT = ΦS + ΦG + ΦEM, where ΦEM = e
∫ x

P dzλ Aλ(z), does not
contribute to Equation (81) because 〈u1|u2〉 = 0. Note also that the terms ie(hµ

α̂ γα̂kµ + γµ̂ΦG,µ)Aν
kν

m
drop out, in the particle rest frame, on account of 〈u1|γµ̂|u2〉 = 0. No mixed effects of first order



Universe 2019, 5, 123 15 of 19

in rotation or acceleration and first order in the electromagnetic field are therefore present in this
calculation. This applies to all terms containing the magnetic field B, like the Zeeman term, and electric
fields, like the spin-orbit interaction, that are present in the lowest order Dirac Hamiltonian that can be
derived from Equation (1) [44]. To O(γµν), contributions to Equation (81) from the electromagnetic
field are present in the actual determination of the electron’s path, as stated above.

From Equation (81) one obtains

2m
iE
〈u1|

kν

m
∂νT̂|u2〉 = −i

k3

E
a1 −

k3

E
a2 + i

k1 − ik2

E
a3 (83)

+ Ω3 k3

E
−k1 + ik2

E + m

+ Ω1 E + m
2E

(
1 +

(k3)2

(E + m)2 −
(k1 − ik2)2

(E + m)2

)
− iΩ2 E + m

2E

(
1 +

(k3)2

(E + m)2 +
(k1 − ik2)2

(E + m)2

)
≡ A12 ,

where k0 ≡ E. The parameter kµ corresponds to the electron four-momentum when Ω = 0 and a = 0.
Some general conclusions can be drawn from Equation (83).

1. If k3 = 0, the particles move in the (x, y)-plane. If, in addition, Ω1 = Ω2 = 0, then A12 6= 0 only if
a3 6= 0.

2. If, however, a is also due to rotation, the conditions Ω1 = Ω2 = 0 imply a3 = 0 and therefore
A12 = 0. This is the relevant case of motion in the (x, y)-plane with rotation along an axis
perpendicular to it. One cannot, therefore, have a rotation-induced spin current in this instance.

3. Even for k = 0 one can have A12 6= 0 if one of Ω1 and Ω2 does not vanish. This is
a direct consequence of the spin rotation interaction or Mashhoon term contained in
Equation (1) [19,20,44].

A few examples are discussed below.
Consider an electron wave packet moving along the x-axis of a frame rotating about the

same axis. Then a = 0 and the remaining parameters are k = (k, 0, 0) and Ω = (Ω, 0, 0).
While the electron propagates along x, u1 and u2 propagate in opposite directions along x because
of Equations (81) and (82). For a beam the spin current generated by rotation is therefore Is = I↓ − I↑,

with obvious meaning of the symbols. One finds P2→1 = | iΩ(E+m)
4m

∫ t
0 dt

(
1− k2

(E+m)2

)
|2 = (Ωt

2 )2

which holds for t ≤ 2/Ω on account of the requirement P2→1 ≤ 1.
Consider next a wave packet moving in the plane z = 0 itself moving along z with velocity k3/E,

while rotating about the z-axis with Ω = (0, 0, Ω). The other parameters are k = (k cos Ωt, k sin Ωt, k3)

and a = (−Ω2x,−Ω2y, 0). From Equation (83) one finds A12 = ( k3

E )(−ia1 − a2 + Ω−k1+ik2

E+m ) and

P2→1 =
[

k3

E

(
ΩR + k

E+m

)
sin 2Ωt

]2
, where R is the radius of the circle described by the wave packet

in the plane z = 0. The motion of the center of mass of the wave packet is helical and so is the motion
of the spin components which propagate, however, in opposite directions giving rise to a spin current.

In the case of motion occurring in the plane z = 0 (k3 = 0) and Ω = (Ω, 0, 0), one also gets
a = (−Ω2x, 0, 0) and

A12 = Ω
E + m

2E

{
1− (k1 − ik2)2

(E + m)2

}
, (84)
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where k1 = k cos ωt, k2 = k sin ωt, and ω = eB
mγ is the cyclotron frequency of the electrons along the

circular path determined by the constant magnetic field B. Substituting Equations (84) in (79) one finds

P2→1 =

∣∣∣∣iΩ E + m
2E

∫ t

0

{
1− k2(cos 2ωt− i sin 2ωt)

(E + m)2

}
dt
∣∣∣∣2 (85)

=

(
Ωt

E + m
4E

)2
{

sin4 ωt
ω2t2 +

(
1− k2

(E + m)2
sin 2ωt

2ωt

)2}
,

which holds for all t for which P2→1 ≤ 1. While both spin up and down electrons move on a circle of
radius R about the z-axis, they propagate in opposite directions because of the spin-rotation coupling,
thus generating a spin current.

Summarizing, rotation and acceleration can be used to generate and control spin currents.
This follows from the covariant Dirac equation and its exact solutions to O(γµν). To this order,
external electromagnetic fields can be taken into account through the particle motion. The transition
amplitude for the conversion spin-up to spin-down is proportional to A12 and is expressed as a
function of Ω, a, and of the electron four-momentum kµ before the onset of rotation and acceleration.
The same expression suggests criteria for the generation of spin currents and the transfer of momentum
and angular momentum to them. No energy can, of course, be transferred from the non-inertial fields
to the spin currents as long as γµν remains stationary.

The particular forms of Equation (83) discussed above provide additional examples of
gravitational qubits.

7. Summary

Gravitational qubits are the simplest quantum systems that can be employed to study gravity.
They exist in the laboratory and astrophysical conditions. Attention has been focussed on spin-1/2
fermions because of their simple eigenstate structure. Spin-flip transitions occur in nature frequently.
We have considered here some of those that are characterized by sustained oscillations.

To the laboratory belong particles rotating in accelerators. Their quantum beats refer to spin
oscillations mediated by the Mashhoon spin-rotation interaction. They have been observed and play
an important role in important measurement of the anomalous magnetic moment of the muon.

Section 3 is entirely devoted to the calculation of the deflection of fermions in a gravitational
background described by the Lense–Thirring metric. The interest is limited here to the action of
rotation on the particle spin. The procedure can be also applied to bosons. Basically, the part of the
deflection that does not depend on rotation is that predicted by general relativity. Rotation of the
source yields in general additional corrections which are due to the particle spin and are therefore
quantum mechanical. These, for instance, are present in the deflection Equations (40) and (42), but with
a noticeable difference: in the case of Equation (42) the contribution of the source angular momentum
does not vanish in the limit x → ∞.

The neutrino helicity oscillations in vacuo described in Section 4 are small, but intriguing because
νL evolve into νR which are sterile. This energy dissipation mode could be relevant to compact
astrophysical objects. The introduction in Section 5 of a medium in which neutrinos propagate
increases the νL → νR transition probability if the medium potential is attuned to the difference of
the mass squared of the neutrino mass eigenstates. The fact that pulsars of period shorter than a
millisecond are rare, lends support to the dissipation mechanism implied by the νL → νR conversion
by rotation-spin coupling.

Spin currents and spin motion are introduced in Section 6. It is shown that gravitational fields
violate the usual formulation of the spin conservation law. Some particular qubits are discussed
together with the associated spin currents. We also consider the case of fermions accelerated to the
maximal acceleration limits contemplated by Caianiello [15–17]. The calculations [76] confirm that
continual interchange between spin and angular momentum can occur in this instance, but only if the
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acceleration is time-dependent. This requires a transfer of energy from a very compact star, or a black
hole and the particle. Even in the case, uniform acceleration produces no observable effects on the
particle spin, in agreement with [77].

Near-neighbor momenta oscillations of a gas of particles in a gravitational field are discussed
in [78].
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