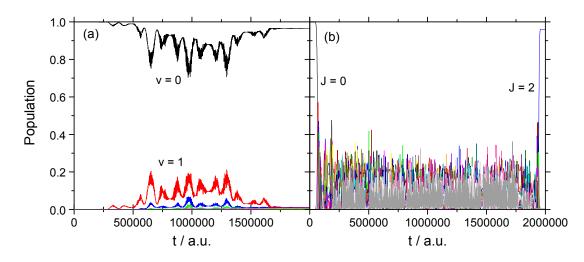

Quantum Optimal Control of Rovibrational Excitations of a Diatomic Alkali Halide: One-Photon vs. Two-Photon Processes


Yuzuru Kurosaki ^{1,*} and Keiichi Yokoyama ²

- ¹ Tokai Quantum Beam Science Center, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki 319-1195, Japan
- ² Materials Science Research Center, Japan Atomic Energy Agency, Kouto, Sayo, Hyogo 679-5148, Japan; yokoyama.keiichi@jaea.go.jp
- * Correspondence: kurosaki.yuzuru@qst.go.jp

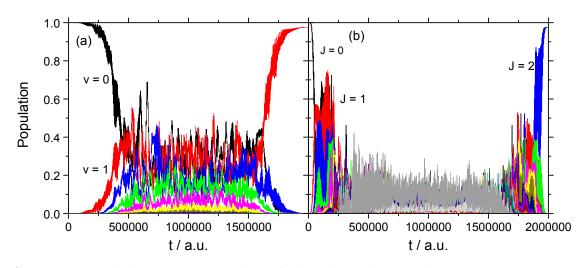

Received: 29 March 2019; Accepted: 3 May 2019; Published: date

Figure 1. Components of polarizability of LiCl parallel (α_1) and perpendicular (α_{\perp}) to the molecular axis, calculated at the RMP2/aug-cc-pVTZ level of theory.

Figure 2. Temporal changes in state populations for the rotational excitation, $(v = 0, J = 0) \rightarrow (v = 0, J = 2)$, caused by the optimal field shown in Figure 5, in the strong-field regime: (**a**) vibrational states; (**b**) rotational states.

Figure S3. Temporal changes in state populations for the vibrational-rotational excitation, (v = 0, J = 0) \rightarrow (v = 1, J = 2), caused by the optimal field shown in Figure 10, in the strong-field regime: (**a**) vibrational states; (**b**) rotational states.