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Abstract: Many models have been proposed to explain the intergalactic redshift using different 
observational data and different criteria for the goodness-of-fit of a model to the data. The purpose 
of this paper is to examine several suggested models using the same supernovae Ia data and gamma-
ray burst (GRB) data with the same goodness-of-fit criterion and weigh them against the standard 
Lambda cold dark matter model (ΛCDM). We have used the redshift – distance modulus (𝑧 − 𝜇) 
data for 580 supernovae Ia with 0.015 ≤ 𝑧 ≤ 1.414 to determine the parameters for each model and 
then use these model parameter to see how each model fits the sole SNe Ia data at 𝑧 = 1.914 and the 
GRB data up to 𝑧 = 8.1. For the goodness-of-fit criterion, we have used the chi-square probability 
determined from the weighted least square sum through non-linear regression fit to the data relative 
to the values predicted by each model. We find that the standard ΛCDM model gives the highest 
chi-square probability in all cases albeit with a rather small margin over the next best model - the 
recently introduced nonadiabatic Einstein de Sitter model. We have made (𝑧 − 𝜇) projections up to 𝑧 = 1096 for the best four models. The best two models differ in 𝜇 only by 0.328 at 𝑧 = 1096, a tiny 
fraction of the measurement errors that are in the high redshift datasets. 
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radiation; distance scale; cosmology theory; cosmological constant; Hubble constant; general 
relativity; TMT 
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1. Introduction 

The universe has been modeled in different ways by physicists, especially since the observation 
of redshift by Hubble in the early part of the last century. Not satisfied with Doppler effect as the 
cause of the extragalactic redshift and consequently with the expansion of the universe, alternative 
models of the universe explaining the redshift were developed, the tired light being the most 
prominent among those suggested by the Hubble contemporaries [1]. Since the microwave 
background radiation discovery by Penzias and Wilson in 1964 [2] is most easily explained by the 
big-bang expansion model of the universe, most cosmologists consider any other model of the 
universe to be not worth pursuing with any seriousness. And perhaps rightly so, since on close 
scrutiny none of the examined models explain the observables as well as the standard big-bang 
model. One common problem that has plagued alternative models is that they have not been 
measured with the same yardstick and compared. 

The redshift of the extragalactic objects supernovae Ia (SNe Ia) is considered the gold standard 
of cosmic observations that are used for modeling the universe. Louis Marmet [3] has compiled a 
summary of various mechanisms used for explaining the spectral redshift of astronomical objects. 
This work is quite comprehensive and does show theoretical predictions of various models but it has 
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not attempted to compare them against the observed data. Recently, Vishwakarma and Narlikar [4] 
have studied some variations of the Lambda cold dark matter (ΛCDM) model and Milne model with 
the same methodology and several data sets and established that it is the variation in methodology 
and presumptions about a model that are used by most to determine the confidence level of various 
model parameters, rather than the validity of a model against a standard yardstick. 

Our attempt in this paper is to consider several cosmological models and perform for each of 
these the 𝜒ଶ test using exactly the same data and same methodology. The models considered in this 
work are described briefly in the next section. We will also attempt to see how each model is able to 
fit a significantly higher redshift data of supernova Ia at 𝑧 = 1.914, which is not in the database used 
for fitting the model and the GRB analyzed 𝑧 − 𝜇  data provided by several researchers. We will 
extend our calculations for selected models to very high redshift region, say to 𝑧 ≈ 1000 to check a) 
how much the models diverge when extrapolated to such outrageous values, b) to provide a base to 
the teams working for very high redshift measurements, such as by observing the redshifted 21-cm 
(1420 MHz) line of hydrogen atom using radio telescopes [5,6]. A low level of divergence among 
models based on substantially different theoretical considerations will provide confidence in the basic 
physics of the expansion of the universe. Consequently, astronomers can use the extrapolated curves 
or tables to estimate the distance of the redshifted 21-cm line source. Bowman et al. have recently 
reported observation of an absorption profile of this line centered at  
78 MHz in the sky averaged spectrum [7]. This translates into 𝑧 ≈ 17 spanning over 15 < 𝑧 < 20. 

The intent here is not to be comprehensive since there are several excellent reviews on the 
subject, for example, by López-Corredoira [8] and Orlov and Raikov [9]. In addition, we do not intend 
to discuss the dark matter and dark energy issues and other problems of the ΛCDM model since they 
have been extensively discussed and reviewed in the literature, e.g., [10–13]. 

In section 2 we briefly review the theory and describe the various models tested. Section 3 
describes the test methodology and section 3 the test results. The findings are discussed in section 5 
followed by our projections in section 6. Finally, conclusions are presented in section 7. 

2. A Brief Description of the Tested Models 

Rather than being comprehensive, we have considered only selected but diverse models so as to 
keep this work manageable and demonstrate its usefulness in weighing models against each other 
without bias. The methodology used for this comparative study is fairly straightforward and can be 
easily applied to any model not considered here1. 

The proper distance 𝑑 of the light emitting source is determined from the measurement of its 
bolometric flux 𝑓 and comparing it with a known luminosity 𝐿. The luminosity distance 𝑑௅ is defined 
as 𝑑௅ = ඥ𝐿/4𝜋𝑓 (1) 

In a flat universe the measured flux could be related to the to the luminosity 𝐿 with an inverse square 
relation 𝑓 = 𝐿/(4𝜋𝑑ଶ). However, this relation needs to be modified to take into account the flux losses 
due to the expansion of the universe, the redshift and all other phenomena which can result in the 
loss of flux. Generally accepted flux loss phenomena are as follows [14]: 

(a) Increase in the wavelength causes the flux loss proportional to 1/(1 + 𝑧), and 
In an expanding universe, an Increase in detection time between two consecutive photons 

emitted from a source leads to a reduction of flux, also proportional to 1/(1 + 𝑧). 
Therefore, in an expanding universe the necessary flux correction required is proportional to 1/(1 + 𝑧)ଶ , whereas in a non-expanding universe the correction required is proportional only to 1/(1 + 𝑧). Any other flux loss may similarly be written as proportional to 1/(1 + 𝑧)௕ , where the 

constant 𝑏 is ideally determined analytically by the model or by fitting the data to the model. The 
measured bolometric flux 𝑓஻ and the luminosity distance 𝑑௅ may thus be written as: 

                                                            
1 Readers with their own models may contact the author to include their models in his study and communicate back the results and possibly 
include the same in his future research. 
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𝑓஻ = 𝐿/[4𝜋𝑑ଶ(1 + 𝑧)ଶ(1 + 𝑧)௕], or (2) 𝑑௅ = 𝑑(1 + 𝑧)(1 + 𝑧)௕/ଶ,   (3) 

for expanding universe and for non-expanding universe as: 𝑓஻ = 𝐿/[4𝜋𝑑ଶ(1 + 𝑧)(1 + 𝑧)௕], or (4) 𝑑௅ = 𝑑(1 + 𝑧)ଵ/ଶ(1 + 𝑧)௕/ଶ, (5) 

Since the observed quantity is distance modulus 𝜇 rather than the luminosity distance 𝑑௅, we will use 
the relation 𝜇 = 5 log(𝑑௅) + 25. (6) 

All distances are in Mpc unless otherwise specified. We will set the constant 𝑏 = 0 if the model under 
consideration already has two or more parameters to be determined by fitting the data. 

2.1. 𝛬CDM Standard Model 

This model is the most accepted model for explaining cosmological phenomena and thus may 
be considered the reference models for all the other models considered in this work. Ignoring the 
contribution of radiation density at the current epoch and all the times at the highest redshift 
considered in this paper, we may write the distance modulus 𝜇 for redshift 𝑧 in a flat universe as 
follows [14]: 𝜇 = 5log [𝑅଴ න 𝑑𝑢/ටΩ௠,଴(1 + 𝑢)ଷ + 1 − Ω௠,଴]௭

଴ + 5 log(1 + 𝑧) + 25. ) 
 

(7) 

Here 𝑅଴ ≡ 𝑐/𝐻଴  with 𝑐  the speed of light and 𝐻଴  the Hubble constant; Ω଴,௠  is the current matter 
density relative to critical density and 1 − Ω௠,଴ ≡ Ωஃ,଴ is the current dark energy density relative to 
critical density. The constant parameter 𝑏 is set to zero since the parameter Ωெ,଴ and through it the 
dark energy, may be deemed to cause the other flux loss represented by 𝑏. 

2.2. Einstein de Sitter (EdeS) Model 

Einstein de Sitter model represents ΛCDM model with Ω௠,଴ = 1. With this simplification, the 
integral in Equation (7) may be determined analytically. The simplified equation has only one 
parameter to be determined for fitting the data. We will therefore restore parameter 𝑏 to estimate the 
unknown luminosity flux loss and write the distance modulus as: 𝜇 = 5 log ൤2𝑅଴ ൬1 − (1 + 𝑧)ିଵଶ൰൨ + 5 log(1 + 𝑧) + 25 + 2.5𝑏 log(1 + 𝑧). 7) 

 

(8) 

2.3. Empty Universe (Milne) Model 

Empty expanding universe was considered by Milne in the 1930s. Such a universe can be 
considered as a mathematical curiosity only since for it to exist the universe density, including all the 
elements of the universe (radiation, matter, dark energy, etc.), must be very small compared to the 
critical density of the universe. The proper distance of a galaxy in such a universe may be written as 
[14] 𝑑 = 𝑅଴ln (1 + 𝑧) and the distance modulus as: 𝜇 = 5 log[𝑅଴ln (1 + 𝑧)] + 5 log(1 + 𝑧) + 25 + 2.5𝑏 log(1 + 𝑧).  

 

(9) 
Here parameter 𝑏 is introduced as in other models to estimate the luminosity flux loss not accounted 
for by the model. 

2.3. Tired Light Model 
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This model ignores the expansion of the universe and thus the luminosity flux loss is represented 
by Equation (4) and the luminosity distance by Equation (5). Since proper distance is given by 𝑑 =𝑅଴ln (1 + 𝑧) [15], we may write the distance modulus as: 𝜇 = 5 log[𝑅଴ln (1 + 𝑧)] + 2.5 log(1 + 𝑧) + 25 + 2.5𝑏 log(1 + 𝑧). (10) 
It should be noted that empty expanding universe of Milne has the same proper distance solution as 
for tired light. However, the luminosity flux loss equations for the two are different; that is, the second 
term on the right hand side of Equations (9) and (10). 

2.4. Hybrid Tired Light+Einstein de Sitter (EDSM) Model 

In this model, it is assumed that the observed redshift results jointly from the expansion of the 
universe and the tired light phenomenon. Since the proper distance of the light emitting source is the 
same whether it is determined by expansion of the universe or by the tired light, this fact can be used 
to determine the ratio in which the two causes share the redshift. The distance modulus is written as 
follows [16]: 𝜇 = 5 log ൤2𝑅଴(𝑧/𝑧௑) ൬1 − (1 + 𝑧௑)ିଵଶ൰൨ + 2.5 log[(1 + 𝑧)(1 + 𝑧௑)] + 25 + 2.5𝑏 log(1 + 𝑧).  

 

(11) 

Here 𝑧௑  is the component of 𝑧  due to the expansion of the universe and the balance 𝑧ெ  is the 
component due to the tired light phenomenon, the two being related through 1 + 𝑧 = (1 + 𝑧௑)(1 +𝑧ெ). The component 𝑧௑ in terms of 𝑧 is obtained by equating the two proper distances and solving 
the resulting equation: 𝑅ெln (1 + 𝑧ெ) = 2𝑅௑(1 − ଵඥଵା௭೉), or  ோబ௭௭ಾ ln ቂ ଵା௭ଵା௭೉ቃ = ଶோబ௭௭೉ (1 − ଵඥଵା௭೉). 

 
(12) 

Here 𝑅଴𝑧 = 𝑅ெ𝑧ெ = 𝑅௑𝑧௑ due to the fact that all expressions determining the proper distance must 
reduce to the Hubble’s law 𝑑 = 𝑅଴𝑧 in the limit of very small 𝑧. Here we have assumed that the 
expansion of the universe is defined by the Einstein de Sitter model. 

2.5. Crawford’s Curvature Cosmology (Crawford) Model 

This model is based on a theory comprising two hypotheses [17]. The first hypothesis is that the 
redshift is due to an interaction of photons with curved spacetime where they lose energy to other 
very low energy photons in a uniform high temperature plasma at a constant density. The second 
hypothesis is that there is a pressure (curvature pressure) that acts to stabilize expansion and provides 
a static stable universe. This hypothesis leads to modified Friedmann equations which have a simple 
solution for a uniform cosmic gas. It is essentially a modified tired light model with distance modulus 
defined as follows: 𝜇 = 5 log ቈ𝑅଴√3 sin ቆ𝑙𝑛(1 + 𝑧)√3 ቇ ቉ + 2.5 log(1 + 𝑧) + 25 + 2.5𝑏 log(1 + 𝑧).  

 

(13) 

Here we have slightly modified Crawford’s expression to be consistent with other expressions we are 
using for distance modulus and thus added the term with parameter 𝑏. If Crawford’s expression 
(without this term) is a good fit to the data then 𝑏 should turn out to be close to zero when we fit 
observed data to this model. 
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2.6. Marosi’s Power Law (Marosi) Model 

Marosi [18] has shown that the observational data for 280 supernovae fits admirably well with 
the power law expression: 𝜇 = 𝑎𝑧௕. (14) 

However, this one is not really a model as it does not have any physics or phenomenology 
behind it. Nevertheless, it may be used to compare with other models rather than fitting each model 
with the data. 

2.7. Vishwakarma’s Scale Invariant (Vishwa) Model 

This model is derived from the scale invariant theory that unifies the Machian theory of 
gravitation and electrodynamics [19]. The luminosity distance and distance modulus are written as: 𝑑௅ = 𝑐𝐻଴ି ଵ(1 +  𝑧) 𝑠𝑖𝑛ℎ[𝑙𝑛(1 +  𝑧)]  =  𝑐𝐻଴ି ଵ 𝑧(2 +  𝑧)/2, and (15) 𝜇 = 5 log ቂ𝑅଴ ௭(ଶ ା ௭)ଶ ቃ + 25 + 2.5𝑏 log(1 + 𝑧). (16) 

Here we have added the last term with parameter 𝑏 that is not derivable from Equation (15). If 
Vishwakarma’s expression (without this term) is a good fit to the data then 𝑏 should turn out to be 
close to zero. 

2.8. Plasma Cosmology Model (Plasma) 

This is a modified tired light approach mediated by plasma cosmology [20–22]. The expression 
for distance modulus is essentially the same as for the tired light model, Equation (10), with 
parameter 𝛽 determining the plasma cosmology contribution. 𝜇 = 5 log[𝑅଴ln (1 + 𝑧)] + 2.5 log(1 + 𝑧) + 2.5𝛽 log(1 + 𝑧) + 25. 8) 

 

(17) 
Thus, we should expect the results to be the same as for the tired light case with flux loss factor 𝑏 there to be equal to 𝛽 here. 
In the plasma model, 𝛽 may be seen as representing Compton scattering as a possible source of 

absorption but could also be considered as a regulating parameter of an unknown scattering 
mechanism. Zaninetti [20] limits the value of 𝛽  to be 1 when only tired light is considered and  
3 when Compton scattering is included. He has determined 𝛽 = 2.37 for his modified tired light 
(MTL) model [21]. He has provided comparison of the MTL model with some other models. It should 
be mentioned that Zaninetti’s plasma cosmology has been developed in a Eucledean 3D space and 
does not require expansion of the universe. 

2.9. Einstein de Sitter (EdeS-NA) Model in Nonadibatic Universe 

This model is developed by relaxing the constraint of adiabatic universe used in all the models 
we have considered above [23]. As per the first law of thermodynamic [14,24]: 𝑑𝑄 = 𝑑𝐸 + 𝑑𝑊 (18) 
where 𝑑𝑄 is the thermal energy transfer into the system, 𝑑𝐸 is the change in the internal energy of 
the system and 𝑑𝑊 = 𝑃𝑑𝑉 is the work done on the system having pressure 𝑃 to increase its volume 
by 𝑑𝑉. 𝑑𝑄 is normally set to zero on the grounds that the universe is perfectly homogeneous and that 
there can therefore be no bulk flow of thermal energy. However, if the energy loss of a particle, such 
as that of a photon through tired light phenomenon, is equally shared by all the particles of the 
universe (or by the ‘fabric’ of the universe) then 𝑑𝑄 can be nonzero while conserving the homogeneity 
of the universe. A reverse argument is also true if it is determined that there is a gain in energy rather 
than a loss. 

Thus, by abandoning the assumption that 𝑑𝑄 = 0 of the adiabatic universe, Equation (18) may 
be written as: 𝐸ሶ + 𝑃𝑉ሶ = 𝑄ሶ  (19) 
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By assuming that the energy loss 𝑄ሶ  is proportional to the internal energy 𝐸 of the sphere 𝑄ሶ = −𝛽𝐸, (20) 
with 𝛽 as the proportionality constant (not the same as in plasma cosmology—Equation (17)), the 
proper distance of the redshifted source has been shown to be [23]: 

𝑑௉(𝑧) = − ቀଷ௖ఉ ቁ ඲ 𝑑𝑢 ቈ1 − (ଵା௨)యమ஺ ቉ିଵ௭
଴ . (21) 

with 𝐴 ≡ ൫1 − 𝑒ିఉ௧బ/ଶ൯, eഁ೟బమ = 1 + ቀ ଵுబቁ ቀఉଷቁ and the deceleration parameter 𝑞଴ = −1 + (ଷଶ)𝑒ഁ೟బమ  in a flat, 

matter only universe. Here 𝑡଴ is the age of the universe. We may then write 𝜇 in terms of 𝐴 ≡ −1/𝐷 
as follows: 𝑑௉(𝑧) = ோబଵା஽ න 𝑑𝑢 ቂ1 + 𝐷(1 + 𝑢)యమቃିଵ௭

଴ . (22) 

We may also write this expression where 𝐷 is expressed in terms of 𝑞଴ since 𝐷 = ଶ(ଵା௤బ)ଵିଶ௤బ : 
𝑑௉(𝑧) = ோబ(ଵିଶ௤బ)ଷ න 𝑑𝑢 ቂ1 + ቀଶ(ଵା௤బ)ଵିଶ௤బ ቁ (1 + 𝑢)యమቃିଵ௭

଴ . (23) 

The distance modulus 𝜇 may be written as: 𝜇 = 5 log ቈோబ(ଵିଶ௤బ)ଷ න 𝑑𝑢 ቂ1 + ቀଶ(ଵା௤బ)ଵିଶ௤బ ቁ (1 + 𝑢)యమቃିଵ௭
଴ ቉ + 5 log(1 + 𝑧) + 25 +2.5𝑏 log(1 + 𝑧). 

(24) 

The last term has been added to see how much flux correction is required if 𝑞଴ is fixed to a value 
determined analytically or by alternative approaches. 

2.10. Hybrid Tired Light+Einstein de Sitter (EDSM-NA) Model in Nonadiabatic Universe 

We can include tired light contribution to the redshift following the approach in Paragraph 2.4. 
above and in reference [23] and recalculate the distance modulus 𝜇. Using subscript M for tired light 
and X for expansion effect and equating the proper distance expressions for the two and since 1 +𝑧 = (1 + 𝑧ெ)(1 + 𝑧௑) and 𝑅଴𝑧 = 𝑅ெ𝑧ெ = 𝑅௑𝑧ெ, we may write 

𝑅ெln (1 + 𝑧ெ) = ൬ 𝑅௑1 + 𝐷൰ ඲ 𝑑𝑢 ൤1 + 𝐷(1 + 𝑢)ଷଶ൨ିଵ௭೉
଴ , or (25) 

൬𝑅଴𝑧𝑧ெ ൰ ln (1 + 𝑧ெ) = ൬ 𝑅଴𝑧(1 + 𝐷)𝑧௑൰ ඲ 𝑑𝑢 ൤1 + 𝐷(1 + 𝑢)ଷଶ൨ିଵ௭೉
଴ , or (26) 

ቀோబ௭(ଵା௭೉)௭ି௭೉ ቁ ln ((1 + 𝑧)/(1 + 𝑧௑)) = ቀ ோబ௭(ଵା஽)௭೉ቁ න 𝑑𝑢 ቂ1 + 𝐷(1 + 𝑢)యమቃିଵ௭೉଴ . (27) 

It is not possible to express analytically 𝑧௑ (or 𝑧ெ) in terms of 𝑧 and write 𝜇 directly in terms of 𝑧 . Nevertheless, Equation (27) can be numerically solved for 𝑧௑  for any value of 𝑧  and distance 
modulus calculated to include tired light effect as well as expansion effect using the expression 𝜇 = 5log [ோబ(ଵିଶ௤బ)ଷ ( ௭௭೉) ׬ 𝑑𝑢 ቀ1 + ቀଶ(ଵା௤బ)ଵିଶ௤బ ቁ (1 + 𝑢)యమቁିଵ] + 2.5log (1 + 𝑧௑)(1 + 𝑧)௭೉଴ +25 + 2.5𝑏 log(1 + 𝑧). 

(28) 

In order to be consistent with other models, we have added the last term on the right hand side 
of Equation (28) to see how much of the luminosity loss factor is unaccounted for when 𝑞଴ has been 
fixed to a value determined by alternative methods. For example, 𝑞଴ = −0.4  is determined 
analytically in the adiabatic hybrid model [16]. When this value of 𝑞଴ is substituted in Equation (28), 
it becomes 𝜇 = 5log [ோబ଴.଺ ( ௭௭೉) ׬ 𝑑𝑢 ቀ1 + ଶଷ (1 + 𝑢)యమቁିଵ] + 2.5log (1 + 𝑧௑)(1 + 𝑧)௭೉଴ + 25 + 2.5𝑏 log(1 + 𝑧). (29) 
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As we will see below, when fitted to the SNe Ia data with 𝑞଴ = −0.4, it yields 𝑏 = 0.1371 ±0.06786 meaning that a small luminosity flux remains unaccounted for by Equation (29). It will result 
in the luminosity distance correction factor equal to (1 + 𝑧).଴଺ଽ±଴.଴ଷସ. Therefore, for 𝑏 = 0, 𝑞଴ has to be −0.5767 ± 0.0743, about the same as for the ΛCDM model. 

3. Test Methodology 

We have used Matlab curve fitting tool to fit the data to each of the above model by minimizing 𝜒ଶ, the weighted summed square of residual of 𝜇, through nonlinear regression [25]: 𝜒ଶ = ∑ 𝑤௜ൣ𝜇(𝑧௜; 𝑅଴, 𝑝ଵ, 𝑝ଶ … ) − 𝜇௢௕௦,௜൧ଶே௜ୀଵ . (30) 
Here 𝑁 is the number of data points, 𝑤௜ is the weight of the 𝑖th data point 𝜇௢௕௦,௜ determined from 

the measurement error 𝜎ఓೀ್ೞ,೔ in the observed distance modulus 𝜇௢௕௦,௜ using the relation 𝑤௜ = 1/𝜎ఓೀ್ೞ,೔ଶ  
and 𝜇(𝑧௜; 𝑅଴, 𝑝ଵ, 𝑝ଶ … ) is the model calculated distance modulus dependent on parameters 𝑅଴ and all 
other model dependent parameter 𝑝ଵ, 𝑝ଶ 𝑎𝑛𝑑 so forth. For example, in the case of ΛCDM model 
considered here 𝑝ଵ ≡ Ω௠,଴ and there is no other unknown parameter. 

We can quantify the goodness-of-fit of a model by calculating the 𝜒ଶ probability for a model 
whose 𝜒ଶ has been determined by fitting the observed data with known measurement error as above. 
This probability 𝑃 is given for a 𝜒ଶ distribution with 𝑛 degrees of freedom (DOF), the latter being the 
number of data points less the number of fitted parameters, by: 𝑃(𝜒ଶ, 𝑛) = ቆ ଵ୻ቀ೙మቁቇ ׬ 𝑒ି௨𝑢೙మିଵ𝑑𝑢ஶഖమమ  . (31) 

Here Γ  is the well know gamma function that is generalization of the factorial function to 
complex and non-integer numbers. If the data fits the model reasonably well then 𝜒ଶ determined 
using Equation (30) should be about the same as the degrees of freedom since the fit variance for each 
data point should not be significantly more than the measurement error for each data point, possibly 
less. Lower the value of 𝜒ଶ better is the fit but the real test of the goodness-of-fit is the 𝜒ଶ probability 𝑃; higher the value of 𝑃 for a model, better is the model’s fit to the data. There are several on line 
calculators available to determine 𝑃 from the input of 𝜒ଶ and DOF [26]. 

Apart from the above statistical criterion, we also have to consider what each parameter 
represents. Is the parameter part of the model itself or is it used to estimate the unaccounted loss (or 
gain) of the luminosity flux? If it is the former, it can have any acceptable value, such as Ω௠,଴ for ΛCDM model. If it is the latter, then it should have as small a value as possible for the model to be 
considered a good fit to the data. For the latter case, we represent it with the parameter 𝑏 such as in 
many of the models above. 

One problem we faced in comparing the various models, already parameterized with SNe Ia 
data, for the goodness-of-fit with 𝑧 − 𝜇 GRB data provided by various researchers, was that the 𝜒ଶ is 
strongly depended on the error bars on 𝜇. If the error bars are too tight then none of the model would 
give an acceptable value of the 𝜒ଶ probability 𝑃 and if the error bars are too lax then all the models 
would yield very high value of 𝑃 close to 100%. Since 𝜇 and its error bars for GRB are dependent on 
the assumption made in determining them from observed afterglow luminosity, we had to develop 
a normalization method to make the comparison meaningful. The method we developed is as 
follows: 

(a) We assumed that the error bars represented by the variance 𝜎 have errors in the same proportion 
for all data points in a dataset and thus the error in estimating 𝜒ଶ using Equation (30) is affected in 
the same proportion for all models. 

(b) We further assumed that the standard ΛCDM model gives 𝑃 = 50% and calculated the 
corresponding 𝜒ଶ for the degree of freedom for the GRB dataset being analysed. 

(c) We then compared the above 𝜒ଶ value with that actually found using the already parameterized ΛCDM model with the GRB dataset. The ratio of the two values 𝐹 was then used as a multiplier to 
normalize values of 𝜒ଶ of all the models for the dataset. 

(d) The normalized values of 𝜒ଶ were then used to determine the 𝜒ଶ probability 𝑃 for each model. 
Those models giving higher 𝑃 value than 50% can then be considered better than the ΛCDM 
model for the data set used and vice versa. 
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4. Test Results 

The database used for parameterizing the models in this study is for 580 supernovae Ia (SNe Ia) 
data points with redshifts ranging from 0.015 to 1.414 as compiled in the Union2 𝑧 − 𝜇 database [27] 
updated to 2017. 

The model fit results are presented in Table 1. Results are placed in three classes for easy 
comparison. In class A are the models with two adjustable model parameters to fit the data: the first 
one is 𝑅଴(≡ 𝑐/𝐻଴), which is the adjustable parameter for all the models; and the second one for 
example Ω௠,଴ for the ΛCDM model. 
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Table 1. SNe Ia 580 dataset points fit for different models. 𝑅଴ is in Mpc and 𝐻଴ (≡ 𝑐/𝑅଴), is in km/s/Mpc. 𝑅଴ is the first parameter and 𝑝ଵ, explicitly shown in the last 
but one column, is the second parameter determined by fitting the data. There is no second parameter for the models in the last 3 rows. DOF is the degrees of 
freedom, 𝑃 is the 𝜒ଶ probability and 𝑞଴ is the deceleration parameter either derived from the fitted parameters (first 3 model rows) or determined analytically. Δ𝑃 
is the increase or decrease in the 𝜒ଶ probability when the supernova with 𝑧 = 1.914 is added to the dataset without any change in the model parameters determined 
by the SNe Ia 580 dataset. 

Model Class R0±95%CL H0±95%CL p1±95%CL χ2 DOF P(%) q0 Eqn. p1 ΔP(%) 
ΛCDM A 4283±40 70.00±0.65 0.2776±0.0377 562.2 578 67.3 −0.5836 7 Ωm,0 0.2 

EdeS-NA.q0 A 4304±41 69.65±0.66 −0.4776±0.0616 563.7 578 65.7 −0.48 24 q0 −0.2 

EDSM-NA.q0 A 4317±43 69.45±0.68 −0.5767±0.0743 566.6 578 62.5 −0.58 28 q0 −0.8 
Plasma A 4324±42 69.33±0.67 1.369±0.068 568.0 578 60.9 0 17 β −0.9 

                        
EdeS-NA.b B 4302±42 69.69±0.67 0.08415±0.06761 563.6 578 65.8 −0.4 24 b −0.3 

Crawford.b B 4311±42 69.54±0.67 1.44±0.069 565.0 578 64.3 0 13 b −0.6 

EDSM-NA.b B 4321±42 69.38±0.67 0.1371±0.06786 567.3 578 61.7 −0.4 29 b −0.9 
Milne.b B 4324±42 69.33±0.66 0.3691±0.0679 568.0 578 60.9 0 9 b −0.9 
Tired.b B 4324±42 69.33±0.66 1.369±0.068 568.0 578 60.9 0 10 b −0.9 
EdeS.b B 4327±42 69.29±0.66 0.8558±0.0679 568.6 578 60.2 0.5 8 b −1.2 

EDSM.b B 4333±42 69.19±0.67 0.525±0.0680 570.3 578 58.2 −0.4 11 b −1.4 
Vishwa.b B 4364±43 68.70±0.67 0.1589±0.0687 582.6 578 43.9 0 16 b −s2.7 

                        
EdeS-NA C 4342±28 69.05±0.44 None 569.5 579 60.3 −0.4 24 NA 0.2 

EDSM-NA C 4386±29 68.35±0.45 None 582.70 579 44.9 −0.4 29 NA −0.1 
Vishwa C 4439±29 67.54±0.44 None 603.4 579 23.4 0 16 NA -1 
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Class B comprises the models that have some fixed model parameter based on the physics of the 
model or otherwise, such as 𝑞଴ determined analytically. In this class we determine the parameter 𝑏 
discussed above (as well as 𝑅଴) by fitting the data to estimate the unaccounted luminosity flux loss in 
the form (1 + 𝑧)௕. If 𝑏 is large then the model is incomplete in fitting the observed data even if the 𝑃 
value is high. 

Class C has some of the models in class B but with no adjustable parameter other than 𝑅଴ to fit 
the SNe Ia 580 dataset. 

In each class the models are arranged in a descending order of 𝜒ଶ probability 𝑃. We have not 
included in class C those models of class B which yield 𝑃 less than 5%. If parameter 𝑏 has a value 0.3 
or higher then setting 𝑏 = 0 for class C yields 𝜒ଶ value too high to give 𝑃 ≥ 5%. For example, the 
Milne model has 𝑏 = 0.3691 in class B. When we set 𝑏 = 0, the data fitted 𝜒ଶ  and 𝑃 values using 
Equation (9) for the model turn out to be 680.1 and 0.23% respectively. 

The table does not include Marosi’s power law model [18], which he has reported to yield 𝜇 =𝑎𝑧௕ = 44.109769𝑧଴.଴ହଽ଼଼ଷ for the 280 supernovae 𝑧 − 𝜇 data he used after removing four outliers with 
a standard deviation greater than 3𝜎. For the 580 supernovae data we are using, the fit power law 
parameters are very close to Marosi’s: 𝑎 = 44.11 ± 0.02 and 𝑏 = 0.06126 ± 0.00031with 𝜒ଶ = 562.9 
and 𝑃 = 66.6%. The exclusion is because the power law 𝜇 = 𝑎𝑧௕ does not represent any cosmological 
physics as Marosi himself has pointed out in his papers. 

The parameterized models obtained by fitting the observed SNe Ia data can now be tested by 
determining the 𝜒ଶ values and corresponding probability for each parameterized model when higher 𝑧 supernovae data [28], not used in parameterizing the model, is included. Currently, there is only 
one observed supernova Ia at higher 𝑧 value (SN UDS10Wil at 𝑧 = 1.914 and 𝜇 = 45.54 ± 0.39) [28]. 
When we recalculate the 𝜒ଶ values for each parametrized model and determine corresponding new 
probabilities, we notice a decrease in the probability for all but two models. The probability change 
is shown in the last column of Table 1 as Δ𝑃. For example, the new probability for the ΛCDM model is 
67.5% and the old one is 67.3%, hence Δ𝑃 = 0.2%. 

The parameterized models can also be tested using the 𝑧 − 𝜇 numbers determined by many 
researchers from the observation made on gamma-ray bursts (GRBs). The distance modulus 
determination for GRBs is not as reliable as for Ia supernovae, nevertheless we should still get some 
idea about the comparative goodness-of-fit for different models by calculating 𝜒ଶ and corresponding 
probability for each model with GRB datasets reported by several researchers  
[29–32]. The results are presented in Table 2. The order of models in the rows is the same as in Table 
1. The 𝜒ଶ values have been normalized as discussed near the end of Section 3 above and probabilities 
determined for the normalized 𝜒ଶ values. The LLC12 dataset in Table 2 gives the 𝜒ଶ and 𝑃 trends that 
are opposite to the other 3 datasets. This dataset is small comprising only 12 GRBs and data points 
are in rather a small range of 𝑧. It may therefore be considered an outlier. 

5. Discussion 

Merit of any model is not only in how well it fits the existing observation but in predicting the 
future observations. Without being comprehensive, we have considered here several cosmological 
models to explore how well they fit the supernovae Ia observations, which are considered as gold 
standard for the cosmological model and presented them in Table 1. All models are able to fit the 
data very well with two adjustable parameter. First parameter indeed is the Hubble constant 𝐻଴(≡𝑐/𝑅଴) and the second parameter is the model dependent parameter, such as Ω௠,଴ in the ΛCDM model 
or the luminosity flux correction parameter, such as 𝑏 in the tired light model. The 𝜒ଶ probability 𝑃 
for all these models ranges from a low of 43.9% to a high of 67.3% with most models yielding 𝑃 values 
greater than 60%. Statistically, therefore none of the model can be rejected, although the highest 𝑃 value model is none other than the ΛCDM model. Worth noticing is the EdeS-NA model in Class C 
in the table that yields over 60% 𝜒ଶ probability with a single fit parameter fit (𝐻଴ = 69.05 ± 0.44). 
This model is also the only model in Table 1, other than the ΛCDM model, that yields an increase in 
the 𝜒ଶ probability when the sole high redshift supernova at 𝑧 = 1.914 is added to calculate 𝜒ଶ while 
constraining the model parameter to those already determined using the SNe Ia 580 points dataset. 
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This model therefore may be worth taking seriously when analysing GRB data as well as for 
predicting future higher redshift supernovae observation with the forthcoming thirty meter telescope 
(TMT) [33]. 

The analysis summarized in Table 2 is derived from the gamma-ray burst observation based 𝑧 −𝜇 data and the models whose parameters are already fixed as per 𝑅଴ and 𝑝ଵ values in Table 1. Models 
considered are the same as in Table 1 and are in the same order. The LLC12 dataset gives the 𝜒ଶ and 𝑃 trends that are opposite to the other 3 datasets. The LLC12 dataset is rather small comprising only 
12 GRBs and the data points are in a small range of 𝑧 (1.48 𝑡𝑜 3.8). This dataset may therefore be 
considered an outlier. We will therefore focus our discussion on the numbers corresponding to the 
other three datasets in the table. The normalization process described at the end of Section 3 is the 
reason why all 𝑃 value in the table for ΛCDM model are 50%. 

Table 2. 𝜒ଶ test of the parameterized models with four datasets. Models considered are the same as 
in Table 1 and are in the same order. The LLC12 dataset gives the 𝜒ଶ and 𝑃 trends that are opposite 
to the other 3 datasets. The dataset is small comprising only 12 gamma ray bursts (GRBs) and data 
points are in rather a small range of 𝑧. It may therefore be considered an outlier. 

Model Dataset LW79 CCD69 LZ42 LLC12 
Dataset reference [29]  [30] [31] [32] 

Redshift range 1.44≤ z ≤8.1 0.17≤ z ≤6.6 1.44≤ z ≤6.6 1.48≤ z ≤3.8 
GRB data points 79 69 42 12 

Normalization factor 2.2424882 0.4976331 1.1108528 0.2639186 
Normalized parameters χ2 P in % χ2 P in % χ2 P in % χ2 P in % 

ΛCDM 76.3343 50.00 66.3345 50.00 39.3353 50.00 9.3418 50.00 
EdeS-NA.q0 81.78 33.32 73.40 27.64 42.40 36.79 8.798 55.13 

EDSM-NA.q0 92.44 11.07 85.20 6.61 51.67 10.22 8.406 58.92 
Plasma 95.69 7.32 88.63 3.69 54.73 6.03 8.350 59.46 

                  
EdeS-NA.b 82.10 32.43 73.75 26.70 42.66 35.74 8.780 55.31 
Crawford.b 85.95 22.71 78.18 16.51 45.77 24.50 8.600 57.04 

EDSM-NA.b 94.54 8.51 87.38 4.79 53.65 7.30 8.370 59.27 
Milne.b 95.69 7.32 88.63 3.69 54.74 6.02 8.350 59.46 
Tired.b 95.69 7.32 88.63 3.69 54.74 6.02 8.350 59.46 
EdeS.b 97.79 5.51 90.82 2.86 56.78 4.12 8.330 59.66 

EDSM.b 102.82 2.63 95.99 1.16 61.72 1.52 8.279 60.16 
Vishwa.b 135.78 0.00 128.89 0.00 95.93 0.00 8.432 58.670 

                  
EdeS-NA 77.77 48.60 67.68 48.81 39.95 51.71 9.094 61.32 

EDSM-NA 83.33 31.89 73.75 29.57 44.06 34.34 8.646 65.45 
Vishwa 112.28 0.66 103.31 0.37 71.57 0.21 8.131 70.15 
Marosi 79.63 39.62 69.77 38.48 41.32 41.27 8.900 54.16 

We notice that all but one of the models with extension b, that had very high value of 𝜒ଶ 
probability in Table 1 by adjusting the luminosity flux correction factor 𝑏, have less than 25% value, 
that is, half of the value of 50% for ΛCDM model. This means the luminosity flux correction is redshift 
dependent and cannot be considered a model constant or parameter. The only b model with higher 
than 25% value is EdeS-NA.b model. But this model in Table 2 has a higher 𝑃 value without the 𝑏 
parameter, that is, EdeS-NA model has an even higher 𝑃 value. So, we see no need to consider EdeS-
NA.b model any further. Additionally, EdeS-NA model yields 𝑃 value close to the ΛCDM value and 
is the same model which stands out in Table 1 when considering 𝑧 = 1.914 SNe Ia data. In fact, for 
the dataset LZ42, the EdeS-NA model yields a slightly higher value of 𝑃 at 51.71% than the ΛCDM 
model at normalized 50%. It may be recalled that EdeS-NA model is the Einstein de Sitter model in a 
nonadiabatic universe [23] with deceleration parameter determined analytically (𝑞଴ = −0.4). The 
third model in Table 2, that is not an EdeS-NA derived model and that yields average 𝑃 value higher 
than 30% is the single parameter EDSM-NA model with 𝐻଴ = 68.35 ± 0.45  and analytically 
determined deceleration parameter 𝑞଴ = −0.4. 
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For completeness sake we have included the Marosi’s power law model with parameters fixed 
from fitting the SNe Ia 580 dataset. This physics independent model consistently yields fairly high 𝑃 
values. 

6. Projections 

In this section we present the 𝑧 − 𝜇 projections numerically in Table 3 and graphically in Figure 1 
using ΛCDM, EdeS-NA, EDSM-NA and Marosi models. In the figure, the lines indicate the four 
models constrained using the corresponding parameters in Table 1. SNe Ia data points (580 + 1) as 
well as the LW79 data points (79) have been shown with error bars in the figure. The redshift in the 
figure is up to 𝑧 = 15  and in the table up to 𝑧 = 1096 . As the radiation density effects become 
significant for very high redshifts, extrapolating the models to such high values of the redshift may 
be considered academic. Nevertheless, the same is true for all the models and thus the comparison 
may still be meaningful. In addition, the radio telescope measurements of the redshift of the 21-
cm(1420 MHz) hydrogen atom line at 𝑧 ≥ 15 have started to be reported [7]. Radio astronomers can 
estimate the distances with some confidence using the graphs and tables produced here. Bowman et 
al. have recently reported observation of an absorption profile of this line centered at 78 MHz in the 
sky averaged spectrum [7]. This translates into 𝑧 ≈ 17 spanning over 15 < 𝑧 < 20. One could see 
from Table 3 that it corresponds to 𝜇 ≈ 51.5. 

It should be mentioned that here we have considered only the redshift of the 21-cm absorption 
line. We do not consider in this paper the anomaly in the measured intensity of this line as it is a topic 
in itself and has been extensively discussed in literature since the publication of paper by Bowman et 
al. in Nature in 2018 [7], mostly on the ground that it might suggest new physics in cosmology. For 
example, Fraser et al. [34] propose soft photon emission by light dark matter as a natural solution to 
this anomaly; McGaugh [35] predicts that a universe devoid of cold dark matter will exhibit twice as 
much absorption as in the ΛCDM; Kovetz et al. [36] investigate the hypothesis that Coulomb-type 
interaction between dark matter and baryons to explain the anomaly; Xiao et al. [37] allow conformal 
and disformal coupling between dark matter and dark energy in a cosmological model to investigate 
the anomaly; Houston et al. [38] explain the anomaly using axions and axion like particles in the 
standard model, as they have the ability to mediate the required cooling process; Venumadhav et al. 
[39] show that HI spins and Lyman-α photons act as mediators between the radio background and 
the random thermal motions of the HI atoms, and hence cause extra heating of the intergalactic 
medium during cosmic dawn, causing higher than normal absorption; Lawson and Zhitnitsky [40] 
argue that dark matter in the form of macroscopically large nuggets of standard model quarks and 
antiquarks can explain the anomaly; Pospelov et al. [41] have suggested the enhancement of the 
Rayleigh-Jeans tail of the cosmic microwave background and show that the resonant oscillation of 
dark photons into regular photons in the redshift interval 20 < 𝑧 < 1700  can be invoked as an 
explanation of the anomalous absorption; and D’Amico et al. [42] provide bounds on the dark-matter 
annihilations from the analysis of the 21-cm data. 
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Table 3. Calculated values of distance moduli versus redshift for the four selected models parameterized using the SNe Ia 580 dataset. 

z µ-ΛCDM µ-EdeS-NA µ-EDSM-NA µ-Marosi z µ-ΛCDM µ-EdeS-NA µ-EDSM-NA µ-Marosi 
0.100 38.319 38.331 38.339 38.307 10.965 50.370 50.568 51.179 51.080 
0.110 38.533 38.544 38.550 38.524 12.023 50.596 50.802 51.459 51.369 
0.120 38.749 38.757 38.763 38.742 13.183 50.821 51.035 51.738 51.659 
0.132 38.965 38.972 38.976 38.961 14.454 51.046 51.266 52.017 51.952 
0.145 39.183 39.189 39.191 39.181 15.849 51.269 51.496 52.296 52.246 
0.158 39.403 39.406 39.407 39.403 17.378 51.492 51.724 52.575 52.541 
0.174 39.624 39.625 39.625 39.626 19.055 51.714 51.952 52.853 52.838 
0.191 39.846 39.845 39.843 39.850 20.893 51.935 52.178 53.131 53.137 
0.209 40.070 40.067 40.063 40.076 22.909 52.155 52.404 53.409 53.438 
0.229 40.296 40.290 40.285 40.302 25.119 52.374 52.628 53.687 53.740 
0.251 40.523 40.515 40.508 40.530 27.542 52.593 52.851 53.964 54.044 
0.275 40.752 40.742 40.733 40.760 30.200 52.811 53.074 54.241 54.350 
0.302 40.983 40.970 40.960 40.990 33.113 53.028 53.295 54.517 54.658 
0.331 41.216 41.200 41.188 41.222 36.308 53.245 53.516 54.794 54.967 
0.363 41.450 41.432 41.419 41.456 39.811 53.461 53.735 55.070 55.278 
0.398 41.686 41.666 41.651 41.690 43.652 53.677 53.954 55.345 55.591 
0.437 41.924 41.902 41.886 41.926 47.863 53.891 54.172 55.620 55.905 
0.479 42.164 42.140 42.122 42.163 52.481 54.105 54.389 55.895 56.222 
0.525 42.405 42.379 42.361 42.402 57.544 54.319 54.606 56.170 56.540 
0.575 42.648 42.621 42.602 42.642 63.096 54.532 54.821 56.444 56.860 
0.631 42.893 42.864 42.845 42.883 69.183 54.745 55.036 56.717 57.181 
0.692 43.138 43.109 43.090 43.126 75.858 54.957 55.251 56.991 57.505 
0.759 43.385 43.356 43.338 43.370 83.176 55.168 55.465 57.264 57.830 
0.832 43.633 43.604 43.587 43.615 91.201 55.379 55.678 57.536 58.158 
0.912 43.881 43.853 43.839 43.862 100.000 55.590 55.890 57.809 58.487 
1.000 44.130 44.104 44.093 44.110 109.648 55.800 56.103 58.081 58.818 
1.096 44.379 44.356 44.350 44.360 120.226 56.010 56.314 58.352 59.150 
1.202 44.628 44.610 44.608 44.611 131.826 56.219 56.525 58.624 59.485 
1.318 44.878 44.863 44.868 44.863 144.544 56.428 56.736 58.894 59.822 
1.445 45.127 45.118 45.130 45.117 158.489 56.636 56.946 59.165 60.160 
1.585 45.375 45.373 45.394 45.372 173.780 56.844 57.155 59.435 60.501 
1.738 45.623 45.628 45.660 45.629 190.546 57.052 57.365 59.705 60.843 
1.905 45.871 45.883 45.927 45.887 208.930 57.260 57.573 59.975 61.187 
2.089 46.117 46.138 46.196 46.147 229.087 57.467 57.782 60.244 61.533 
2.291 46.363 46.393 46.467 46.408 251.189 57.674 57.990 60.513 61.882 
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2.512 46.607 46.647 46.738 46.670 275.423 57.880 58.198 60.782 62.232 
2.754 46.851 46.901 47.011 46.934 301.995 58.087 58.405 61.050 62.584 
3.020 47.093 47.154 47.285 47.200 331.131 58.293 58.612 61.318 62.938 
3.311 47.334 47.406 47.560 47.467 363.078 58.498 58.819 61.586 63.294 
3.631 47.574 47.657 47.835 47.736 398.107 58.704 59.025 61.854 63.652 
3.981 47.813 47.907 48.112 48.006 436.516 58.909 59.231 62.121 64.012 
4.365 48.051 48.156 48.389 48.277 478.630 59.114 59.437 62.388 64.374 
4.786 48.288 48.403 48.667 48.551 524.807 59.319 59.643 62.655 64.739 
5.248 48.523 48.649 48.945 48.825 575.440 59.524 59.848 62.921 65.105 
5.754 48.758 48.894 49.224 49.101 630.957 59.728 60.053 63.187 65.473 
6.310 48.991 49.137 49.503 49.379 691.831 59.932 60.258 63.453 65.844 
6.918 49.224 49.379 49.782 49.659 758.578 60.136 60.463 63.719 66.216 
7.586 49.455 49.620 50.061 49.940 831.764 60.340 60.667 63.984 66.591 
8.318 49.685 49.859 50.341 50.222 912.011 60.544 60.871 64.249 66.968 
9.120 49.914 50.097 50.620 50.506 1000.000 60.747 61.076 64.514 67.347 
10.000 50.142 50.333 50.900 50.792 1096.478 60.951 61.279 64.779 67.728 
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Figure 1. Four selected models fitted to the SNe Ia 580 dataset with projections and gamma-ray burst 
data. 

We notice that the calculated distance modulus differences among the selected models for any 
particular redshift are way less than the 𝜇 error bars in the data. The difference in 𝜇 values between 
the ΛCDM model and the EdeS-NA model even at the highest redshift of 1096 in Table 3 is only 0.328. 
Until the error bars can be reduced significantly, it would be difficult to say which model or models 
should be rejected. One may wonder if the thirty meter telescope (TMT), due for commissioning in 
the year 2027, will be able to observe supernovae with high redshifts comparable to the highest GRB 
redshift with high enough precision to positively decide which model is better [33]! 

7. Conclusion 

The analysis of various models has shown that while most models can be made to fit the 
observed data rather satisfactorily with fairly high value of 𝜒ଶ probability, they tend to fizzle out 
when they are tested for their predictive power. We have used the redshift – distance modulus (𝑧 −𝜇) data for 580 supernovae Ia with 0.015 ≤ 𝑧 ≤ 1.414 to determine the parameters for each model 
and then use the parameterized models to see how well each model fits the sole SNe Ia data at 𝑧 =1.914 and the GRB data up to 𝑧 = 8.1. This essentially shows the predictive capability of a model 
parameterized with 𝑧 ≤ 1.414  for data obtained at 𝑧 > 1.414 . We find that the standard ΛCDM 
model gives the highest 𝜒ଶ probability in all cases but one, albeit with a rather small margin over the 
next best model - the EdeS-NA model. We have made (𝑧 − 𝜇) projections up to 𝑧 = 1096 for the best 
four models just to show that how little the best two models, based on entirely different assumptions, 
differ even at such high redshift value which are indeed unmeasurable. The best two models differ 
in 𝜇 only by 0.328 at 𝑧 = 1096, a tiny fraction of the measurement errors that are in the high redshift 
datasets. The third best model, the EDSM-NA model, has somewhat higher 𝜇, with a difference of 
3.828 at 𝑧 = 1096, well within the expected measurement errors for such a high redshift objects. It 
appears unlikely that the measurement errors could be reduced to level where we could say for sure 
which model predicts the observations better. Other attributes of the model may then decide which 
model should be preferred. 

The ΛCDM model is based on the ad hoc cosmological constant Λ introduced by Einstein in his 
field equations to prevent the universe from collapsing. There is no physics behind it, and it leads to 
energy entering the universe from nowhere to keep the energy density corresponding to Λ constant 
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in time. In other words, the presence of Λ makes the universe implicitly nonadiabatic 2. The EdeS-NA 
and EDSM-NA models are based on explicitly nonadiabatic assumption about the universe, that is, 
the energy leaves or enters a volume of the universe proportional to the energy contained in that 
volume [23]. This leads to time dependence of the nonadiabatic component of the energy density in 
an expanding or contracting universe when its energy density is changing. Another attribute of the 
EdeS-NA and EDSM-NA models is that they are parameterized by just one parameter, the Hubble 
constant. The second model parameter is not a fit parameter as it is determined analytically in the 
model. We therefore conclude that the EdeS-NA and EDSM-NA models are viable alternative to the ΛCDM model, even at very high redshift such as those encountered in radio astronomy. 
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