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Abstract: We study a general relativistic gravitomagnetic 3-body effect induced by the spin angular
momentum SX of a rotating mass MX orbited at distance rX by a local gravitationally bound
restricted two-body system S of size r � rX consisting of a test particle revolving around a massive
body M. At the lowest post-Newtonian order, we analytically work out the doubly averaged
rates of change of the Keplerian orbital elements of the test particle by finding non-vanishing
long-term effects for the inclination I, the node Ω and the pericenter ω. Such theoretical results
are confirmed by a numerical integration of the equations of motion for a fictitious 3-body
system. We numerically calculate the magnitudes of the post-Newtonian gravitomagnetic 3-body
precessions for some astronomical scenarios in our solar system. For putative man-made orbiters
of the natural moons Enceladus and Europa in the external fields of Saturn and Jupiter, the
relativistic precessions due to the angular momenta of the gaseous giant planets can be as large
as '10 − 50 milliarcseconds per year

(
mas year−1). A preliminary numerical simulation shows

that, for certain orbital configurations of a hypothetical Europa orbiter, its range-rate signal ∆ρ̇
can become larger than the current Doppler accuracy of the existing spacecraft Juno at Jupiter, i.e.,
σρ̇ = 0.015 mm s−1, after 1 d. The effects induced by the Sun’s angular momentum on artificial
probes of Mercury and the Earth are at the level of ' 1− 0.1 microarcseconds per year

(
µas year−1).

Keywords: general relativity and gravitation; experimental studies of gravity; experimental tests of
gravitational theories; satellite orbits

1. Introduction

Let us consider a local gravitationally bound restricted two-body system S composed by a
test particle completing a full orbital revolution around a planet of mass M at distance r in a time
interval Pb, and a distant 3rd body X with mass MX � M and proper spin SX around which S
revolves at distance rX � r with orbital period PX

b . In general, M may be endowed with its own
Newtonian and post-Newtonian (pN) mass and spin multipole moments [1,2] affecting the satellite’s
motion with known [3,4] and less known [5–7] Newtonian and pN orbital effects like the classical
oblateness-driven orbital precessions, the gravitoelectric Einstein pericentre shift, the gravitomagnetic
Lense-Thirring effect, etc. Let us consider a kinematically rotating and dynamically non-rotating
coordinate systemK [8–10] attached to M in geodesic motion through the external spacetime deformed
by the mass-energy currents of X, assumed stationary in a kinematically and dynamically non-rotating
coordinate system KX whose axes point towards the distant quasars [8–10]. The planetocentric motion
of the test particle referred to K is further affected by two peculiar pN 3-body effects: the time-honored
De Sitter precession due to solely the mass MX [11–13], and a gravitomagnetic shift due to SX which,
to our knowledge, has never been explicitly and clearly calculated in the literature, if it had ever
been. Our purpose is to analytically work out the latter effect at the lowest pN order without any
a-priori simplifying assumptions concerning both the orbital configurations of the planetocentric
satellite’s motion and the trajectory of the planet-satellite system S in the external field of X, and for an
arbitrary orientation of SX in space. For the previous, approximate calculation restricted to the orbital
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angular momentum of the Moon orbiting the Earth in the field of the rotating Sun, see Gill et al. [14]
(Section 3.3.3).

The plan of the paper is as follows. In Section 2, we analytically work out the long-term rates of
change of the Keplerian orbital elements of the test particle. Section 3 is devoted to the application of
the obtained results to some astronomical scenarios in our solar system. We summarize our results
and offer our conclusions in Section 4. For the benefit of the reader, Appendix A contains a list of the
definitions of the symbols used in the paper, while their numerical values and tables are collected in
Appendix B.

2. The Doubly Averaged Satellite’s Orbital Precessions

In the weak-field and slow-motion approximation of general relativity, the gravitomagnetic 3-body
potential induced by the angular momentum SX of the external spinning object X on the planetary
satellite is

UGM =
G

c2r3
X

SX · [−L + 3 (L · r̂X) r̂X] . (1)

In Equation (1), G, c are the Newtonian constant of gravitation and the speed of light in vacuum,
respectively, while L being the angular momentum per unit mass of the test particle’s orbital motion
around M. Equation (1) comes from Equation (2.19) of Barker & O’Connell [15] (p. 155) for the
interaction potential energy VS1,S2 of two spins S(1), S(2) of masses m1, m2 separated by a distance r
and moving with relative speed v in the limit m2 ≡ MX � m1 ≡ M, and by assuming that the spin
S(1) is the orbital angular momentum of the planetocentric satellite’s motion while S(2) is the spin
angular momentum SX of the distant 3rd body X. Thus, r in Equation (2.19) of Barker & O’Connell [15]
(p. 155) has to be identified with rX, and r × P is nothing but the orbital angular momentum rX×MvX
of the motion of S around MX. It is interesting to note that, with the same identifications, VS1 and VS2
of Equations (2.17) and (2.18) in Barker & O’Connell [15] (p. 155) yield the gravitoelectric De Sitter
orbital precession for the planetocentric motion of the satellite and the gravitomagnetic Lense-Thirring
effect for the X-centric orbit of M, respectively.

The velocity-dependent perturbing potential Upert to be inserted into the Lagrange planetary
equations [10,16] for the rates of change of the nonosculating [10,17] Keplerian orbital elements of the
test particle, obtained by doubly averaging Equation (1) with respect to Pb, PX

b for arbitrary orbital
configurations of both the external body X and the test particle and for a generic orientation of SX in
space, is

Upert = UGM = − GSXnba2
√

1− e2

2c2a3
X
(
1− e2

X
)3/2U , (2)

with

U = cos I
{

2Ŝz − 3 sin IX
[
Ŝz sin IX + cos IX

(
Ŝy cos ΩX − Ŝx sin ΩX

)]}
+

+
sin I

2
{

2Ŝy cos Ω− 2Ŝx sin Ω + 3 cos (Ω−ΩX)
[
Ŝz sin 2IX+

+ 2 sin2 IX
(
−Ŝy cos ΩX + Ŝx sin ΩX

)]}
. (3)

In Equations (2) and (3), a, e, I, aX, eX, IX are the semimajor axes, the eccentricities and the
inclinations of the orbits of the test particle and of S , respectively, while nb is the Keplerian orbital
motion of the satellite’s planetary motion about M. Equations (2) and (3) were obtained in two
steps. First, UGM of Equation (1) was evaluated onto the unperturbed ellipse of the planetocentric
satellite motion through the standard Keplerian formulas of the restricted two-body problem (see, e.g.,
Equations (3.40a) to (3.41c) of Poisson & Will [4]). Then, it was averaged over one orbital period Pb to
the first order in the disturbing potential by using just the Keplerian part of Equation (3.66) of Poisson
& Will [4] for d f /dt, where f is the true anomaly. Then, the resulting averaged potential UGM was,
in turn, calculated onto the unperturbed Keplerian trajectory of S about X and averaged over PX

b to
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the first order in the perturbation under consideration, thus finally obtaining the double average of
Equations (2) and (3).

Inserting Equations (2) and (3) into the right-hand-sides of the Lagrange planetary equations
allows to calculate the doubly averaged rates of change of the Keplerian orbital elements. They turn
out to be

ȧ = 0, (4)

ė = 0, (5)

İ = − GSX

2a3
Xc2

(
1− e2

X
)3/2 I , (6)

Ω̇ = − GSX

2a3
Xc2

(
1− e2

X
)3/2O, (7)

ω̇ = − GSX csc I

8a3
Xc2

(
1− e2

X
)3/2P . (8)

with

I = sin Ω
{
−Ŝy + 3 sin IX cos ΩX

[
−Ŝz cos IX + sin IX

(
Ŝy cos ΩX − Ŝx sin ΩX

)]}
+

+ cos Ω
{
−Ŝx + 3 sin IX sin ΩX

[
Ŝz cos IX + sin IX

(
−Ŝy cos ΩX + Ŝx sin ΩX

)]}
, (9)

O = 2Ŝz + Ŝx cot I sin Ω− 3 cos IX sin IX
(
Ŝy cos ΩX − Ŝx sin ΩX + Ŝz cot I sin Ω sin ΩX

)
−

− 3 sin2 IX
[
Ŝz + cot I sin Ω sin ΩX

(
−Ŝy cos ΩX + Ŝx sin ΩX

)]
+

+ cos Ω cot I
{
−Ŝy + 3 sin IX cos ΩX

[
−Ŝz cos IX + sin IX

(
Ŝy cos ΩX − Ŝx sin ΩX

)]}
, (10)

P = Ŝy [cos Ω− 3 cos (Ω− 2ΩX)]− Ŝx [sin Ω + 3 sin (Ω− 2ΩX)] +

+ 6 cos (Ω−ΩX)
[
Ŝz sin 2IX + cos 2IX

(
Ŝy cos ΩX − Ŝx sin ΩX

)]
. (11)

We remark that Equations (4) and (11) are exact in both e and eX in the sense that the
low-eccentricity approximation was not adopted in the calculation.

A more computationally cumbersome approach to obtain the same long-term rates of change
of Equations (4) and (11) consists, first of all, in deriving a perturbing acceleration from Equation (1).
By writing the Lagrangian per unit mass of a gravitationally bound restricted two-body system affected
by a generic perturbing potential as

L = L0 + Lpert =
v2

2
+

µ

r
+ Lpert, (12)

the conjugate momentum per unit mass is, by definition,

p .
=

∂L
∂v

= v +
∂Lpert

∂v
. (13)
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Thus,

ṗ = v̇ +
d
dt

(
∂Lpert

∂v

)
. (14)

The Hamiltonian per unit mass is

H = H0 +Hpert =
v2

2
− µ

r
+Hpert. (15)

From the Hamilton equations of motion, it is

ṗ = −∂H
∂r

= − µ

r3 r−
∂Hpert

∂r
. (16)

Since Lpert = −Hpert, by comparing Equations (14) and (16), it turns out that the perturbing
acceleration is just

Apert =
d
dt

(
∂Hpert

∂v

)
−

∂Hpert

∂r
. (17)

In our specific case, sinceHpert = UGM, we have

AGM =
d
dt

(
∂UGM

∂v

)
− ∂UGM

∂r
=

2G
c2r3

X
v × [SX − 3 (SX · r̂X) r̂X] . (18)

Then, Equation (18) must be decomposed into its radial (ρ), transverse (τ) and out-of-plane (ν)
components, which are

AGM
ρ =

GSX

c2r5
X

[(
−Ŝxr2

X + 3Ŝxx2
X + 3ŜyxXyX + 3ŜzxXzX

)
cos Ω+

+
(
−Ŝyr2

X + 3ŜxxXyX + 3ŜyyX
2 + 3ŜzyXzX

)
sin Ω

]
, (19)

AGM
τ = −GSX csc I

c2r5
X

{
sin I

[
−3
(
ŜxxX + ŜyyX

)
zX + Ŝz

(
r2

X − 3zX
2
)]

+

+ cos I
[
Ŝy

(
r2

X − 3yX
2
)
− 3

(
ŜxxX + ŜzzX

)
yX

]
cos Ω+

+ cos I
[
Ŝx

(
−r2

X + 3x2
X

)
+ 3ŜyxXyX + 3ŜzxXzX

]
sin Ω

}
, (20)

AGM
ν =

GSX csc I
c2r5

X

{[
Ŝy

(
r2

X − 3yX
2
)
− 3yX

(
ŜxxX + ŜzzX

)]
cos Ω+

+
[
Ŝx

(
−r2

X + 3x2
X

)
+ 3ŜyxXyX + 3ŜzxXzX

]
sin Ω

}
. (21)

They have to be inserted into the right-hand-sides of the standard Gauss equations for the
variation of the orbital elements [4,10,16] which, finally, are doubly averaged with respect to Pb, PX

b in
the same way as previously described for the disturbing potential of Equation (1).

Even putting aside the post-Keplerian effects of classical and pN nature depending on the
specific characteristics of the field of M itself, the motion of the test particle is perturbed also by the
Newtonian 3-body acceleration due to the gravitational pull of X. By coupling with Equation (18),
it would give rise to mixed orbital perturbations which can be worked out, in principle,
as in Iorio [18], Will [19]. A rigorous calculation of such effects is outside the scope of the present
paper. An approximate evaluation of their order of magnitude can be made as follows. For the sake
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of simplicity, let the motion of S occur in a plane perpendicular to SX, assumed as reference {x, y}
plane so that IX = 0, ŜX · r̂X = 0, Ŝx = Ŝy = 0, Ŝz = 1, along a circular orbit with r/rX � 1. Thus, the
Newtonian 3-body acceleration felt by the test particle, obtainable from the tidal-type potential by Hogg,
Quinlan & Tremaine [20], can be approximately posed equal to AX '

(
GMX/r2

X
)

r̂X by neglecting the
other two terms proportional to (r/rX) r̂, (r/rX) (r̂ · r̂X) r̂X. Then, following Iorio [18], it can be shown
that the resulting mixed precessions are proportional to ξX (vX/c)2 (MX/M) (RX/rX)

2 (r/rX)
2 ΨX,

where vX '
√

GMX/rX is the orbital velocity of S about X, and ξX < 1, RX, ΨX are the normalized
moment of inertia, the equatorial radius and the angular speed of X, respectively. This implies that the
mixed effects are smaller than Equations (4)–(8) by a scaling factor of the order of (MX/M) (r/rX)

2.
In the case of, say, Jupiter and Europa, by assuming r approximately equal to the moon’s radius R, it
amounts to '0.2.

We successfully checked our analytical results of Equations (4)–(11) as follows. We considered a
fictitious system S orbiting a Jupiter-like body X along the same orbit of, say, Callisto, whose mass was
assumed for the particle’s primary M, and numerically integrated its equations of motion over a time
span much longer than Pb, PX

b with and without the pN gravitomagnetic acceleration of Equation (18)
affecting the test particle; both the integrations, which assumed a purely Keplerian motion of S about
the fictitious body X, shared the same initial conditions for the test particle and its primary. For X,
the same physical properties of Jupiter were assumed, including the size and the orientation of its
angular momentum S. As a result, numerically produced times series of the orbital elements of
the putative probe were produced by subtracting the purely classical ones from those obtained by
including also Equation (18) in the equations of motion; they are displayed in Figure 1. It turned out
that the resulting numerically calculated pN gravitomagnetic 3-body orbital shifts agree with those
computed by means of the analytical formulas of Equations (4)–(11).

3. Some Potentially Interesting Astronomical Scenarios

In the case of a hypothetical orbiter of the Kronian natural satellite Enceladus in the external
field of Saturn, Equations (6), (7), (9) and (10), referred to the mean Earth’s equator at the reference
epoch J2000.0 as reference {x, y} plane, yield for a circular orbit (e = 0), assumed just for the sake
of simplicity,

İ = Aeq sin
(
Ω + ϕeq

)
, (22)

Ω̇ = −49.9 mas year−1 + cot I Aeq cos
(
Ω + ϕeq

)
, (23)

with

Aeq = −5.7 mas year−1, (24)

ϕeq = 49.4 deg. (25)

Instead, if the mean ecliptic at the reference epoch J2000.0 is adopted as reference {x, y} plane,
we have

İ = Aecl sin (Ω + ϕecl) , (26)

Ω̇ = −34.0 mas year−1 + cot I Aecl cos (Ω + ϕecl) , (27)

with

Aecl = 23.9 mas year−1, (28)

ϕecl = 10.4 deg. (29)
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Figure 1. Numerical time series of the pN 3-body shifts of I, Ω, ω of a fictitious test particle moving
around a Callisto-like primary M which orbits a Jupiter-type 3rd body X. They were obtained by
integrating the equations of motion of the orbiter about M and of M about X in Cartesian rectangular
coordinates referred to the Earth’s mean equator at the epoch J2000.0 with and without Equation (18)
acting on the test particle. Both runs shared the same set of arbitrary initial conditions for the probe
Pb = 10.07 d, e0 = 0.3, I0 = 80 deg, Ω0 = 230 deg, ω0 = 40 deg, f0 = 50 deg and the primary;
the initial state vector of the Callisto-Jupiter relative motion was adopted from the database JPL
HORIZONS. For each Keplerian orbital element, its time series calculated from the purely Newtonian
run was subtracted from that obtained from the pN integration in order to obtain the signatures
displayed here. The resulting rates, in mas year−1, agree with those computed in Equations (6)–(8).
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By looking at a putative orbiter of the Jovian natural satellite Europa in the external field of Jupiter,
we have

İ = Aeq sin
(
Ω + ϕeq

)
, (30)

Ω̇ = −9.9 mas year−1 + cot I Aeq cos
(
Ω + ϕeq

)
, (31)

with

Aeq = 4.8 mas year−1, (32)

ϕeq = 2.9 deg, (33)

and

İ = Aecl sin (Ω + ϕecl) , (34)

Ω̇ = −11.0 mas year−1 + cot I Aecl cos (Ω + ϕecl) , (35)

with

Aecl = 0.3 mas year−1, (36)

ϕecl = 31.0 deg. (37)

We considered just Enceladus and Europa because they are of great planetological interest in view
of the possible habitability of their oceans beneath their icy crusts [21]. As a consequence, they are the
natural targets of several concept studies and proposals for dedicated missions to them, including also
orbiters [22–26]. Since, at present, sending a spacecraft to Europa seems more likely than to Enceladus,
as it can be learnt at https://europa.nasa.gov/about-clipper/overview/ and http://sci.esa.int/juice/
on the Internet, we investigated in a little more detail this potentially appealing Jovian scenario,
even if it is not said that the actually approved missions will finally involve the use of an orbiter.
In such kind of endeavours, the observable quantity is typically the Earth-probe range-rate ρ̇, whose
accuracy for, e.g., the ongoing mission Juno [27] around Jupiter is σρ̇ ' 0.015 mm s−1 [28]. Figure 2
shows the numerically simulated Earth-spacecraft range-rate signature due to the pN gravitomagnetic
3-body acceleration of Equation (18) for a generic orbital configuration of the hypothesized orbiter.
To produce it, we numerically integrated the equations of motion in Cartesian rectangular coordinates
of the Earth, Jupiter, its Galilean moons and a fictitious test particle orbiting Europa over 1 d.
In both runs, sharing the same initial conditions retrieved from the database JPL HORIZONS
(https://ssd.jpl.nasa.gov/?horizons) at the arbitrary epoch of midnight on 1 January 2030, we modeled
the mutual attractions among all the bodies involved to the Newtonian level, with the exception of
Equation (18) which was added to the other classical gravitational pulls felt by the probe in one of the
runs. Then, we numerically calculated two range-rate time series, with and without Equation (18) ceteris
paribus, and subtracted the purely Newtonian one from that including also the pN gravitomagnetic
acceleration. It can be noted that, for the orbital configuration chosen, the range-rate relativistic
signature ∆ρ̇ reaches the 0.05 mm s−1 level after just 1 d. Thus, the scenario considered seems worthy
of further, dedicated analyses investigating the actual measurability of Equation (18) in a realistic error
budget analysis and mission proposal. It should take into account several concurring perturbations of
gravitational and non-gravitational nature, and also several technological and engineering issues.

https://europa.nasa.gov/about-clipper/overview/
http://sci.esa.int/juice/
https://ssd.jpl.nasa.gov/?horizons
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Figure 2. Numerically produced Earth-probe range-rate shift ∆ρ̇ (t) due to the pN gravitomagnetic
3-body acceleration of Equation (18). We numerically integrated the solar system barycentric equations
of motion in Cartesian rectangular coordinates of the Earth, Jupiter, its Galilean moons and a fictitious
test particle orbiting Europa over 1 d. In both runs, sharing the same initial conditions for all the existing
natural bodies retrieved from the database JPL HORIZONS (https://ssd.jpl.nasa.gov/?horizons) at
the arbitrary epoch of midnight of 1 January 2030, we modeled the mutual attractions among all
the planets and the satellites involved to the Newtonian level, with the exception of Equation (18)
which was added to the other classical gravitational pulls felt by the orbiter in one of the runs. Then,
we numerically calculated two range-rate time series, and subtracted the purely Newtonian one from
that including also Equation (18). The orbital configuration adopted for the spacecraft, referred to
Europa, was a0 = 3.55 R, e0 = 0.69, I0 = 100 deg, Ω0 = 90 deg, ω0 = 40 deg, f0 = 50 deg, where R
is the radius of Jovian moon.

In the case of an artificial satellite orbiting a planet in the field of the Sun, the effects are much
smaller. For an Earth’s spacecraft in a circular orbit, we have

İ = Aeq sin
(
Ω + ϕeq

)
, (38)

Ω̇ = −0.2 µas year−1 + cot I Aeq cos
(
Ω + ϕeq

)
, (39)

with

Aeq = 0.1 µas year−1, (40)

ϕeq = 9.13 deg, (41)

and

İ = Aecl sin (Ω + ϕecl) , (42)

Ω̇ = −0.3 µas year−1 + cot I Aecl cos (Ω + ϕecl) , (43)

https://ssd.jpl.nasa.gov/?horizons
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with

Aecl = 0.02 µas year−1, (44)

ϕecl = 104.2 deg. (45)

For a probe orbiting Mercury with e = 0, one gets

İ = Aeq sin
(
Ω + ϕeq

)
, (46)

Ω̇ = −4.3 µas year−1 + cot I Aeq cos
(
Ω + ϕeq

)
, (47)

with

Aeq = −2.5 µas year−1, (48)

ϕeq = 171.3 deg, (49)

and

İ = Aecl sin (Ω + ϕecl) , (50)

Ω̇ = −5 µas year−1 + cot I Aecl cos (Ω + ϕecl) , (51)

with

Aecl = −0.6 µas year−1, (52)

ϕecl = 144.6 deg. (53)

4. Summary and Overview

In the weak-field and slow-motion approximation of general relativity, we analytically worked
out the pN gravitomagnetic long-term rates of change of the relevant Keplerian orbital elements of a
test particle orbiting a primary M at distance r from it which, in turn, moves in the external spacetime
deformed by the mass-energy currents of the spin angular momentum SX of a distant (rX � r) 3rd body
X with mass MX � M. We did not assume any preferred orientation for the spin axis ŜX of the external
body; moreover, we did not make simplifying assumptions pertaining the orbital configurations of
both the M’s satellite and of M itself in its motion around MX. Thus, our calculation has a general
validity, being applicable to arbitrary astronomical systems of potential interest. It turns out that,
by doubly averaging the perturbing potential employed in the calculation with respect to the orbital
periods Pb, PX

b of both M and MX, the semimajor axis a and the eccentricity e do not experience
long-term variations, contrary to the inclination I of the orbital plane, the longitude of the ascending
node Ω and the argument of pericenter ω. While the gravitomagnetic rates İ and ω̇ are harmonic
signatures characterized by the frequency of the possible variation of the node Ω, induced by other
dominant perturbations like, e.g., the Newtonian quadrupole mass moment of the satellite’s primary
M, the gravitomagnetic node rate Ω̇ exhibits also a secular trend in addition to a harmonic component
with the frequency of the node itself. A numerical integration of the equations of motion of a fictitious
3-body system made of a distant spinning body with the same physical properties of Jupiter, a primary
with the same orbital and physical characteristics of Callisto and a test particle orbiting it confirms our
analytical results.

The Sun’s angular momentum exerts very small effects on spacecraft orbiting Mercury
(' 1 µas year−1) and the Earth (∼ 0.1 µas year−1). Instead, the angular momenta of the gaseous
giant planets like Jupiter and Saturn may induce much larger perturbations of the orbital motions
of hypothetical anthropogenic orbiters of some of their major natural moons like, e.g., Europa
(.10 mas year−1) and Enceladus (.50 mas year−1). Such natural satellites have preeminent interest
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in planetology, making them ideal targets for future, dedicated spacecraft-based missions which may
be opportunistically exploited to attempt to measure such relativistic effects as well. In the case of
Europa, for whose exploration there are already approved missions by NASA and ESA, a preliminary
numerical simulation of the signature induced by the pN gravitomagnetic 3-body effect of interest on
the range-rate of a putative orbiter shows that, for certain orbital configurations, its magnitude can
become larger than the present-day accuracy σρ̇ = 0.015 mm s−1 of the current Juno mission around
Jupiter after 1 d.

Acknowledgments: I thank M. Efroimsky for his useful remarks which contributed to improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Notations and Definitions

Here, some basic notations and definitions pertaining the restricted two-body system S moving
in the external field of the distant 3rd body X considered in the text are presented. For the numerical
values of some of them, see Tables A1 and A2.

G : Newtonian constant of gravitation
c : speed of light in vacuum
ε : mean obliquity
MX : mass of the distant 3rd body X (a star like the Sun or a planet like, e.g., Jupiter or Saturn)
µX

.
= GMX : gravitational parameter of the 3rd body X

RX : equatorial radius of the 3rd body X
SX : magnitude of the angular momentum of the 3rd body X
ξX : normalized moment of inertia of the 3rd body X
ΨX : angular speed of the 3rd body X
ŜX =

{
Ŝx, Ŝy, Ŝz

}
: spin axis of the 3rd body X in some coordinate system

αX : right ascension (RA) of the 3rd body’s spin axis
δX : declination (DEC) of the 3rd body’s spin axis
Ŝeq

x = cos δX cos αX : component of the 3rd body’s spin axis w.r.t. the reference x axis of an equatorial
coordinate system

Ŝeq
y = cos δX sin αX : component of the 3rd body’s spin axis w.r.t. the reference y axis of an equatorial

coordinate system
Ŝeq

z = sin δX : component of the 3rd body’s spin axis w.r.t. the reference z axis of an equatorial
coordinate system

rX : position vector towards the 3rd body X
rX : distance of S to the 3rd body X
r̂X

.
= rX/rX : versor of the position vector towards the 3rd body X

aX : semimajor axis of the orbit about the 3rd body X
nX

b
.
=
√

µX/a3
X : mean motion of the orbit about the 3rd body X

PX
b

.
= 2π/nX

b : orbital period of the orbit about the 3rd body X
eX : eccentricity of the orbit about the 3rd body X
IX : inclination of the orbital plane of orbit about the 3rd body X to the reference {x, y} plane of some

coordinate system
ΩX : longitude of the ascending node of the orbit about the 3rd body X referred to the reference
{x, y} plane of some coordinate system

M : mass of the primary (planet or planetary natural satellite) orbited by the test particle and moving
in the external field of the 3rd body X



Universe 2019, 5, 87 11 of 13

µ
.
= GM : gravitational parameter of the primary orbited by the test particle and moving in the

external field of the 3rd body X
R : radius of the primary (planet or planetary natural satellite) orbited by the test particle and moving

in the external field of the 3rd body X
S : angular momentum of the primary
r : position vector of the test particle with respect to its primary
r : magnitude of the position vector of the test particle
v : velocity vector of the test particle
L .
= r × v : orbital angular momentum per unit mass of the test particle

a : semimajor axis of the test particle’s orbit
nb

.
=
√

µ/a3 : Keplerian mean motion of the test particle’s orbit
Pb

.
= 2π/nb : orbital period of the test particle’s orbit

e : eccentricity of the test particle’s orbit
f : true anomaly of the test particle’s orbit
I : inclination of the orbital plane of the test particle’s orbit to the reference {x, y} plane of some

coordinate system
Ω : longitude of the ascending node of the test particle’s orbit referred to the reference {x, y} plane

of some coordinate system

Appendix B. Tables

Table A1. Relevant physical and orbital parameters for Saturn, Jupiter, Enceladus and Europa. Most of
the reported values come from Petit, Luzum & et al. [29], Seidelmann et al. [30], Soffel et al. [31] and
references therein. The source for the orbital elements referred to either the mean ecliptic (ecl) at the
reference epoch J2000.0 or the mean Earth’s equator (eq) at the same epoch is the freely consultable
database JPL HORIZONS on the Internet at https://ssd.jpl.nasa.gov/?horizons from which they were
retrieved by choosing the time of writing this paper as input epoch.

Parameter Units Numerical Value

G kg−1 kgm3 s−2 6.67259× 10−11

c m s−1 2.99792458× 108

SY kg m2 s−1 1.4× 1038

αY deg 40.59
δY deg 83.54

aEnc km 237, 948
eEnc − 0.0047
Ieq
Enc deg 6.475336858877378

Iecl
Enc deg 28.06170970578348

Ωeq
Enc deg 130.5900992493321

Ωecl
Enc deg 169.5108697290241

PEnc
b d 1.370218

SX kg m2 s−1 6.9× 1038

αX deg 268.05
δX deg 64.49

aEur km 671, 034
eEur − 0.0094
Ieq
Eur deg 25.88280598312641

Iecl
Eur deg 1.790876103183550

Ωeq
Eur deg 357.4169659423443

Ωecl
Eur deg 332.6268549691798

PEur
b d 3.551810

https://ssd.jpl.nasa.gov/?horizons
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Table A2. Relevant physical and orbital parameters used in the text for the Sun, Mercury and the Earth.
Most of the reported values come from Petit, Luzum & et al. [29], Seidelmann et al. [30], Soffel et al. [31]
and references therein. The source for the orbital elements referred to either the mean ecliptic (ecl) at
the reference epoch J2000.0 or the mean Earth’s equator (eq) at the same epoch is the freely consultable
database JPL HORIZONS on the Internet at https://ssd.jpl.nasa.gov/?horizons from which they were
retrieved by choosing the time of writing this paper as input epoch.

Parameter Units Numerical Value

G kg−1 m3 s−2 6.67259× 10−11

c m s−1 2.99792458× 108

S� kg m2 s−1 1.90× 1041

α� deg 286.13
δ� deg 63.87

a' au 0.3870982252717257
e' − 0.2056302512089075

Ieq
' deg 28.55225598038233

Iecl
' deg 7.005014199657344

Ωeq
' deg 10.98794759075666

Ωecl
' deg 48.33053756455964

P'
b yr 0.2408467

a⊕ au 0.9992521882390240
e⊕ − 0.01731885059206812
Ieq
⊕ deg 23.43903457134406

Iecl
⊕ deg 2.669113820737183× 10−4

Ωeq
⊕ deg 1.852352676284691× 10−4

Ωecl
⊕ deg 163.9752443600624

P⊕b yr 1.0000174
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