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Abstract: Anti-Newtonian expansions are introduced for scalar quantum field theories and classical
gravity. They expand around a limiting theory that evolves only in time while the spatial points
are dynamically decoupled. Higher orders of the expansion re-introduce spatial interactions and
produce overlapping lightcones from the limiting isolated world line evolution. In scalar quantum
field theories, the limiting system consists of copies of a self-interacting quantum mechanical
system. In a spatially discretized setting, a nonlinear “graph transform” arises that produces an
in principle exact solution of the Functional Renormalization Group for the Legendre effective
action. The quantum mechanical input data can be prepared from its 1+0 dimensional counterpart.
In Einstein gravity, the anti-Newtonian limit has no dynamical spatial gradients, yet remains fully
diffeomorphism invariant and propagates the original number of degrees of freedom. A canonical
transformation (trivialization map) is constructed, in powers of a fractional inverse of Newton’s
constant, that maps the ADM action into its anti-Newtonian limit. We outline the prospects of
an associated trivializing flow in the quantum theory.
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1. Anti-Newtonian Expansions

Non-perturbative techniques come in many guises (as do non-elephants). Non-perturbative
series expansions often use an artificial control parameter (number of flavors) and are not applicable
to pure gravity or single flavor systems. Moreover, they remain at best asymptotic expansions.
The Functional Renormalization Group (FRG) uses a more physical covariant mode modulation
parameter and—significantly—is applicable to pure gravity [1,2]. Nevertheless, the FRG—as currently
used—also has certain weaknesses: (i) State space positivity is not addressed and no systematic
strategy of doing so is known. Most computations are based on Euclidean signature, including those
in a foliated setting. This is unproblematic in flat space quantum field theories but not so in curved
spacetimes, where a satisfactory notion of “Wick rotation” remains elusive [3]. In quantum gravity,
this is compounded with the conformal factor instability. (ii) The Legendre effective action Γ is a
highly nonlocal functional of the mean fields and no structural characterization of the terms that can
occur is known. Hence, the truncation ansätze employed in solving the FRG also lack a clear ordering
principle. No statements about asymptotic correctness or convergence of some sequence of truncations
are known. (iii) The FRG in itself is kinematical in nature; dynamical information is injected solely
through initial conditions. The standard choice is to identify the effective action with the bare action at
some UV scale, ΓΛUV = Sbare. In practice, no independent UV regularization is introduced. This blurs
the relation to an underlying functional integral and renders the computation of the unstable manifold
problematic. When the bare action is identified with the classical action, one arguably makes implicit
reference to perturbation theory.

The goal of this note is to show that the FRG can be used differently and combined with a novel
non-perturbative series expansion, dubbed anti-Newtonian expansion. Schematically, one expands
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around a limiting theory that evolves only in time while the spatial points are dynamically decoupled.
No Wick rotation is ever performed, time is left real and continuous. The control parameter of the
expansion is the spatial interaction range. As such, the expansion is applicable to single flavor systems
and to gravity. The natural setting is that of foliated pseudo-Riemannian manifolds. The expansion
parameter κ̌ is essentially the inverse scale of the spatial metric gab and may initially be introduced
through the rescaling gab 7→ κ̌−1gab. For small κ̌, spacelike distances are relatively enhanced and the
lightcones appear to be “squeezed” to almost lines. Each order in the expansion in powers of κ̌ extends
the spatial interaction range and eventually restores, or rather defines, the full lightcone structure.
In general relativity, the post-Newtonian expansion does roughly the opposite (see Figure 1).

Figure 1. Post-Newtonian versus anti-Newtonian lightcone structure.

The implementation of such an expansion will depend on the theory considered. In the following,
we describe two main cases: a scalar self-interacting quantum field theory on a Friedmann–Lemaître
background and classical Einstein gravity coupled to a self-interacting scalar. The latter can be thought
of providing generic self-consistent backgrounds for the former, i.e., ones where classical backreaction
effects are taken into account. We begin with a brief overview for both settings. More specific accounts
are given in later sections.

Reduction of QFT to QM. For a relativistic scalar Quantum Field.
Theory (QFT), the anti-Newtonian expansion entails a reduction of QFT to Quantum Mechanics

(QM). The QFT is modeled as a collection of self-interacting QM systems evolving in real continuous
time; one such system is associated to each spatial point. A QM system influences its spatial neighbors
and the expansion is essentially a spatial gradient expansion. As such, it is applicable to quantum
fields on any globally hyperbolic manifold. For now, we restrict attention to globally hyperbolic
manifolds which admit flat spatial sections Σ. These include some prominent relativistic spacetimes
such as flat Friedmann–Lemaître or Bianchi I cosmologies and the Schwarzschild solution. Flat spatial
sections allow for a straightforward discretization on a hypercubic lattice, also denoted by Σ = (asZ)d.
The basic action then decomposes into a spatially ultralocal term (a sum of self-interacting 1+0
dim. actions, one per spatial point) and a hopping term linking nearest neighbors on the lattice with
spacing as

S[φ] = ∑
x∈Σ

s[ad/2
s φ(·, x)] + κ̌V [φ] . (1)

Here, φ = φdim is dimensionful and ad/2
s φ has length dimension 1/2. We write κ̌ for the

hopping parameter to distinguish it from its counterpart in a fully dimensionless formation.
For a Friedmann–Lemaître background, the single site action s[ϕ] and the hopping term V [φ] are
defined as
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s[ϕ] :=
∫ t f

ti
dt
{

1
2n (∂t ϕ)2 − 1

2 na2d−2 2d
a2

s
ϕ2 − na2d[U(ϕ) + Λ]

}
(t) ,

V [φ] := ad−2
s
2

∫ t f
ti

dt n(t)a(t)2d−2 ∑x,y φ(t, x)`xyφ(t, y) .
(2)

The scale factor a(t) refers to the line element ds2 = −N(t)2dt2 + a(t)2dxaδabdxb and
n(t) = N(t)/a(t)d replaces the lapse N(t). The single site function s[ϕ], ϕ = ϕ(t), can be viewed
as the action of a quantum mechanical system. The functional integral based on Equation (1) comes
with an ab-initio ultraviolet regularization and is well-defined whenever the quantum mechanical one
is. Correlation functions or their generating functionals can be computed by expanding in powers of
the hopping term. Such expansions are also known as linked cluster expansions (LCE) and often have
a finite radius of convergence. The anti-Newtonian expansion in this setting amounts to a spatial variant
of a LCE. The evaluation of some correlation function is reduced to a combinatorial and a QM problem.
The combinatorial problem amounts to classifying all possible identifications of spatial sites such that
at single sites the spatially ultralocal part of the functional measure produces a quantum mechanical
correlation function. This combinatorial problem turns out to have a largely model-independent
solution in terms of graph theoretical data. The model-dependent part of the problem consists of
the evaluation of the QM correlation functions. We repeat that this strategy avoids issues with Wick
rotation or temporal discretization in the functional integral, which is problematic or cumbersome in
non-static backgrounds. The QM data will of course have to be provided by techniques other than the
path integral.

In fact, this is one of the uses of the FRG in this framework. Many of the subtleties related to
regularization or renormalization are simpler or absent in QM. The FRG operates directly on the level
of a (quantum mechanical) generating functional, while conventional numerical techniques cannot
easily keep track of dependencies on an external (source or mean) field.

The second use of the FRG lies in the approach to the spatial continuum limit. In similar
expansions, the locus of criticality normally coincides with the radius of convergence of the hopping
series, which provides a direct if computationally demanding way of determining it [4]. In a Wilsonian
framework, the locus of criticality can be characterized as the unstable manifold of an underlying
fixed point. As such, it should be computable via the FRG. Indeed, experience with the covariant
Euclidean case suggests that the (modified) local potential approximation suffices to determine the
locus of criticality. This provides a dramatic simplification, as only a system of ordinary differential
equations needs to be solved [5]. Two features appear to underlie this simplification: First, even in
the local potential approximation the FRG resums part of the hopping expansion. Second, the initial
data injected are the exact single site integrals, which carry the full coupling and h̄ dependence.
It is plausible that the spatial continuum limit can similarly be accessed by an FRG based technique.
In overview, the programmatic interplay between the FRG and the LCE is shown in Figure 2 for
a Friedmann–Lemaître background.

An important step in the program is the formulation of the LCE on the level of the effective action
Γ. The expansion turns out to be coded by abstract graphs to which analytical expressions are assigned
via “graph rules”. The graphs and the graph rules are largely model-independent and are summarized
in Section 2. Assuming that the finite radius of convergence extends beyond the (modified) local
potential approximation, the “graph transform” provides an exact solution of the original FRG.
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Figure 2. Schematic interplay between the anti-Newtonian expansion, graph rules, and the FRG on
Friedmann–Lemaître backgrounds.

LCEs have a well defined classical limit governed by tree graphs. This can be used to obtain
a graph solution of the classical nonlinear field equations. More interestingly, the classical field
equations can be “trivialized” and mapped into the 1+0 dimensional ones:

δS
δφ

(Φ[φ0]) =
δS0

δφ0
(φ0) . (3)

Here, S0 is the spatially ultralocal term in Equation (1), thus the right hand side is an ordinary
differential equation δs/δϕ, evaluated on ϕ = φ0(· , x). The map Φ[φ0] is defined for off-shell
configurations φ0. If so desired, one can specialize to solutions of δs/δϕ = 0 to obtain series solutions
of the original nonlinear field equation. The map Φ[φ0] thus reduces the solution of a nonlinear partial
differential equation to that of an ordinary differential equation. It admits an expansion in powers
of κ̌ such that the lth order Φl [φ0](t, x) is a sum of contributions associated with a finite set of tree
graphs with l lines. There is a special (“rooted”) vertex labeled by the point (t, x). To each tree graph,
a formula is associated according to rules related to the classical limit of those for the quantum LCE of
the free energy.

Thus far, the classical background spacetime has been externally prescribed. Upon coupling to
classical gravity, one will want the background to be a solution of the Einstein equations sourced by
the energy–momentum tensor derived from the matter action. In the case of a Friedmann–Lemaître
cosmology, the cosmological scale factor a(t) will then not be a prescribed function of t but will itself
be co-determined by the spatially homogeneous scalar ϕ(t). In other words, even to zeroth order of the
spatial gradient expansion a self-consistency condition arises: the a(t) entering the classical action S[φ]
should be such that, for the spatially homogeneous truncation φ(t, x) = ϕ(t), the pair a(t), ϕ(t) solves
the coupled ordinary differential equations entailed by the Einstein field equations. This can be built
in, essentially by parameterizing the potential U(φ) in terms of a superpotential u(φ), which in turn
arises as the logarithmic derivative of the scale factor a = a(ϕ) viewed as a function of ϕ.

Reduction of Einstein to Strong Coupling gravity. At subleading orders in the gradient
expansion, the coupling to classical gravity will make the spatial inhomogeneities in φ(t, x)
backreact on the metric. Consequently, the scalar QFT on a homogeneous background such as
ds2 = −N(t)2dt2 + a(t)2dxaδabdxb is no longer classically self-consistent. The classical limit of quantum
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gravity would instead produce a nontrivial spatial metric gab(t, x) sourced by the energy–momentum
tensor of φ(t, x). To retain classical self-consistency, a coordinated expansion of Einstein gravity is
needed, induced by a decomposition akin to Equation (1). Starting from the 1+d decomposition with
line element ds2 = −N2dt2 + gab(Nadt + dxa)(Nbdt + dxb), the appropriate counterpart turns out
to be

S[g, φ] = S0[g, φ] + κ̌V [g, φ] , (4)

where κ̌ enters through a scale transformation and plays the role of a fractional inverse of Newton’s
constant (see Section 3). Further,

S0[q, ϕ] = 1
2

∫ t f
ti

dt
∫

Σ dx
{

1
4n e0(qab)G(q)ab,cde0(qcd) +

1
n e0(ϕ)2 − 2nq[U(ϕ) + Λ]

}
,

V [g, φ] = 1
2

∫ t f
ti

dt
∫

Σdx ng
{

R(g)− gab∂aφ∂bφ
}

.
(5)

In addition to the propagating fields, the densitized lapse n = N/
√

g and the shift Na enter,
the latter only through e0 := ∂t−L~N , the derivation transversal to the leaves of the foliation. The action
S0[q, ϕ] defines strong coupling gravity, a terminology that is justified below. Its propagating fields are
denoted by separate symbols: qab for the spatial metric and ϕ for the scalar. The deWitt metric reads
2G(q)ab,cd = qadqbc + qacqbd − 2qabqcd. The second term V contains the dynamical spatial gradients,
with R(g) the Ricci scalar of the spatial metric. The scalar field from Equation (1) has been rendered
dimensionless by the rescaling φ =

√
κφdim and the coordinates are also viewed as dimensionless.

Identifying a(d−1)/2
s φdim with

√
κφdim the pure matter part of Equation (4) precisely reduces to the

continuum version of Equation (1).
The gravitational counterpart of the tree level trivialization in Equation (3) would similarly map

the full into the limiting equations of motion. When the qab, ϕ “seeds” are on-shell, series solutions of
the Einstein equations arise. A similar framework is known as the “relativistic gradient expansion” and
relates to themes such as “separate universe”, “asymptotic silence”, “asymptotic velocity domination”,
“resummation of secular terms”, etc.. In the gravitational counterpart of Equation (3), the field equations
of course include the constraints. Consequently, the relativistic gradient expansion only applies to
on-shell seeds. For off-shell seed configurations qab, ϕ, the constraints would no longer be preserved
from one time slice to the next. Consequently, the gravitational version of Equation (3) is feasible only
if the right hand side is set to zero.

Remarkably, in a Hamiltonian formulation, a stronger variant of Equation (3) can consistently be
imposed for off-shell seeds and maps the full into the limiting action

Sκ̌ [Υκ̌(q, p, ϕ, pϕ)] = S0[q, p, ϕ, pϕ] . (6)

Here, Sκ̌ [g,℘, φ, pφ] and S0[q, p, ϕ, pϕ] are the Hamiltonian versions of S and S0 in Equations (4)
and (5), respectively. The map Υκ̌ is a canonical transformation and can be constructed iteratively
as a series in κ̌ merely by solving ordinary differential equations. The successful implementation
of Equation (6) turns out to also imply the counterpart of Equation (3) for the Hamiltonian fields
equations, but now without troubles from constraint non-propagation.

2. Linked Cluster Expansions and FRG

Starting from the scalar action in Equation (1), a mode-modulation term quadratic in φ could
be added and the Wetterich equation for the effective average action be derived along the usual
lines [1,2,4]. Since the hopping term V is already quadratic in φ, one can directly take κ̌ as the control
parameter and derive a FRG in κ̌ for the (modified) Legendre effective action Γ. For Euclidean signature
on a hypercubic lattice, no complications arise. Since V in Equation (2) contains fields at the same time,
one will initially replace it by a temporally point split version V̌ with kernel ˇ̀(t, x; t′, x′). The resulting
“hopping” FRG reads
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∂κ̌Γ[φ] =
ih̄
2

ad−2
s ∑

x,y∈(asZ)d

∫
dν(t) dν(s) ˇ̀(t, x; s, y)[Γ(2)(φ)+κ̌ ˇ̀ ]−1(t, x; s, y) , (7)

where we write dν(t) = dtn(t)a(t)2d−2 for the reparameterization invariant temporal measure.
The main deviation from the standard uses is that initial conditions are imposed at the ultralocal scale

Γ[φ]
∣∣
κ̌=0

!
= Γ0[φ] = ∑

x∈(asZ)d

γ[ad/2
s φ( ·, x)] . (8)

Here, γ[ϕ] is the QM effective action for s[ϕ] in Equation (2), which at the moment we assume
to be known. Once a solution of Equation (7) was known, the replacement of ˇ̀ with some scale
dependent mode modulator Rk(t, x; t′, x) would produce a solution of the (spatially discretized)
Wetterich equation in 1+d form, Γk = Γ|κ̌ ˇ̀→Rk

.
As usual, one will not be able to solve Equation (7) in closed form. A power series ansatz

Γ[φ] =
∞

∑
l=0

κ̌l

l!
Γl [φ], (9)

converts Equation (7) into a closed recursion for the Γl , l ≥ 1, with initial data in Equation (8). Further,
each Γl can be shown to have a well-defined coincidence limit as the original hopping term is restored,
ˇ̀(t, x; t′, x′)→ `xx′δ(t−t′)n(t)−1a(t)−2d+2. This also restores the exact—not mode-modulated—QM
dynamics. By direct iteration, one finds Γ1[φ] = 0 and

Γ2[φ] = a−4
s
∫

dν(t1)dν(t2)
ih̄
2 ∑x1,x2

(`x1x2)
2 v2(t1, t2|x1)v2(t2, t1|x2) ,

Γ3[φ] = −a−6
s
∫

dν(t1)dν(t2)dν(t3)
{

(ih̄)2

2 ∑x1,x2
(`x1x2)

3 v3(t1, t2, t3|x1)v3(t1, t2, t3|x2)

+ ih̄ ∑x1,x2,x3
`x1x2`x2x3`x3x1 v2(t1, t2|x1)v2(t2, t3|x2)v2(t3, t1|x3)

}
.

(10)

Γ4[φ] = a−8
s

∫
dν(t1)dν(t2)dν(t3)dν(t4)

{

(ih̄)3

2 ∑
x1,x2

(`x1x2)
4v4(t1, t2, t3, t4|x1)v4(t1, t2, t3, t4|x2)

+6(ih̄)2 ∑
x1,x2,x3

(`x1x2)
2 `x1x3 `x2x3 v3(t1, t2, t3|x1)v3(t1, t2, t4|x2)v2(t3, t4|x3) (11a)

+3(ih̄)2 ∑
x1,x2,x3

(`x1x2)
2 (`x2x3)

2v2(t1, t2|x1)v2(t3, t4|x3) µv(t1, t2, t3, t4|x2)

+3ih̄ ∑
x1,x2,x3,x4

`x1x2 `x2x3 `x3x4 `x4x1 v2(t1, t2|x1)v2(t2, t3|x2)v2(t3, t4|x3))v2(t4, t1|x4)
}

,

µv(t1, t2, t3, t4|x2) = v4(t1, t2, t3, t4|v)

−
∫

a(s1)
2dν(s1)a(s2)

2dν(s2)v3(t1, t2, s1|v)γ2(s1, s2|v)ω3(s2, t3, t4|v) . (11b)
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In addition to the QM vertex functions γn, their connected counterparts vn enter. Explicitly,
introducing the QM free energy via ω[] :=

∫
dtϕ[](t)(t) − γ[ϕ], (δγ/δϕ)(ϕ[]) = , we define

for n ≥ 2

vn(tn, . . . , t1|x) := δnω[]
δ(tn)...δ(t1)

∣∣∣∣
(·) 7→ad/2

s
∂γ
∂ϕ (ad/2

s φ(·,x))
,

γn(tn, . . . , t1|x) := δnγ
δϕ(tn)...δϕ(t1)

∣∣∣∣
ϕ(·) 7→ad/2

s φ(·,x)
.

(12)

These transform as scalars under temporal reparameterizations for fixed x. For n = 1, we identify
v1(t|x) with ad/2

s φ(t, x) and γ1(t|x) with [ϕ](t, x).
The direct solution of the recursion quickly becomes impractical, both manually and by computer.

Instead, a graph theoretical approach was developed in [6] and leads to a closed formula for Γl [φ]

(without having to work out the lower orders first). A graph L = (V, E) comprises a set of vertices
V, a set of edges (or lines) E, and the information that pairs of vertices are connected by (possibly
several) edges. The graphs occurring are not Feynman diagrams: the lines are not directed, and even
for a polynomial interaction there is no bound on the number of lines incident to a vertex or on the
number of lines connecting a pair of vertices. All graphs occurring are one-line irreducible (1LI), that is,
they are connected and remain so if any one line is cut. In only that sense are they analogous to the
1PI graphs occurring in the perturbative evaluation of Γ. In the LCE, the lth order, Γl [φ], is expressed
as a finite sum of contributions from 1LI graphs with l = |E| lines. To each such graph, a formula
is assigned according to certain “graph rules”. In particular, each contribution is weighed with the
inverse of the symmetry factor of the graph. A line connecting vertices i, j always has −`ij/a2

s assigned.
The formula assigned to vertices depends on the whether or not the graph falls apart upon removal
of the vertex. If it does not, a single term (essentially some vn) is assigned to it. If the graph does
fall apart upon removal of the vertex, the vertex is called an articulation point. In that case, a sum
of convolution integrals in products of vn and γn’s is assigned to the vertex according to a separate
“dashed graph rule” involving only labeled tree graphs (with dashed lines for contradistinction).

The gist of the construction can be illustrated with Γ4. There are four 1LI graphs contributing,
only one of which contains an articulation point marked with v:

1
4!

Γ4 =
ih̄
8

+
(ih̄)2

8
v

+
(ih̄)3

48
+

(ih̄)3

4
(13)

The weight associated with v is a contribution of two labeled dashed tree graphs

µv = 1
2 +
{b, b}

1
2 {b} {b} (14)

The labels arise from set partitions of the blocks b attached to v, in this case two copies of b = .
The symmetry factors now arise from a combination of those of the unlabeled tree graph and the
labeling sets, and in Equation (14) just equal 2 for both graphs. The “dashed graph rule” applied to
Equation (14) then reproduces µv in Equation (11b). Inserted into Equation (13), the application of the
main graph rule reproduces Equation (11a). This structure generalizes: there is a “main graph rule”
that produces Γl up to the weight assignment µv for articulation points v; and there is a “dashed graph
rule” that provides µv from a sum of labeled tree graphs.

Theorem 1 ([6]). (Γ graph rule)
For any l ≥ 2, the solution Γl [φ] of the recursion implied by Equations (7)–(9) is given by the following

graph rules:

(a) At order l ≥ 2, draw all topologically distinct 1LI graphs with l edges, L = (V, E) ∈ Ll . Assign a dummy
label i to each vertex and dummy label e to each edge.
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(b) Multiply by l!(ih̄)c(L)/Sym(L), where Sym(L) is the symmetry factor of the graph and c(L) is its
cyclomatic number (number of loops).

(c) To each graph a weight µ(L) is assigned as follows: an edge connecting vertices i, j is attributed a factor
−`ij/a2

s . A vertex i of degree n is attributed a factor µv(en, . . . , e1|i), where e1, . . . , en are the edges
incident on i.

(d) Use the separate “dashed graph rule” invoking only labeled tree graphs to obtain µv. In particular,
µv = vv, if v is not an articulation point.

(e) Embed the graph into Σ|V|×R|E| by associating each vertex with a unique spatial lattice point, i 7→ xi ∈ Σ,
i = 1, . . . , |V|; the same lattice point may occur several times. Associate to each edge label a unique real
time variable, e 7→ te ∈ R, e = 1, . . . , l = |E|. Perform an unconstrained sum over all x1, x2, . . . , x|V|
and an unconstrained integration over all t1, . . . , tl , with temporal measures dν(t1), . . . , dν(tl).

The “dashed graph rule” producing µv in (d) is described in Section 3 of [6] for Euclidean
signature QFT on Z1+d. It carries over with minor modifications to the spatial LCE at hand. We omit
the formulation of the “dashed graph rule” itself and merely highlight the necessary modifications:
the ends of the dashed lines ending on open circles are given labels sj. A dashed line with end
labels s1, s2 connecting two open circles is attributed γ2(s1, s2|i), while a m ≥ 3 valent dashed vertex
is attributed a factor γm(sm, . . . , s1|i). The labeled open circles are attributed factors of the form
vn+m(tn, . . . , t1, sm, . . . , s1|i), where the t1, . . . , tn are associated with the full edges, and the s1, . . . , sm

are associated with the dashed edges. An unconstrained integral is to be performed over the time
arguments associated with the dashed edges with temporal measure a(t)2dν(t). Technically the
“dashed graph rule” also applies to non-articulation vertices. Then, {b1, . . . , bk} ∈ is the only labeled
tree graph contributing and the result is just vn, with n the total number of edges incident to the vertex
from the k blocks.

The simplest nontrivial instance of the “dashed graph” rule applies to Equation (14) and
reproduces the recursively computed vertex weight in Equation (11b). There exists an alternative
recursion that allows one to isolate the contribution to articulation vertices with a specified structure
of incident blocks. The “dashed graph rule” has been tested extensively along these lines.

In combination, the “main” and the “dashed” graph rule give rise to a closed graph formula for
Γl [φ] analogous to the one for Euclidean signature [6]. Since it requires more graph theoretical notions
and notations, we omit it here and instead highlight a number of structural properties:

• The graph rule is to some extent model-independent. The form of the scalar potential U(φ) does
not enter and the embedding of the abstract graphs into (the spatially discretized) spacetime
occurs only in Part (e).

• Traditional LCE mostly use connected graphs. The expansion of Γ[φ] in terms of
one-line-irreducible (1LI) graphs leads to a considerable computational gain as there are far
fewer 1LI graphs. For example, for l = 6, there are 100 connected but only 22 1LI graphs.

• The weights µv depend only on the structure of the abstract graph at v, through the pattern
of incident subgraphs. As the same patterns reoccur in many 1LI graphs the µv’s need to be
generated only once and can be stored in a look-up table.

• After embedding the graphs into spacetime, the result characterizes Γ’s nonlocality precisely and
to all orders.

• The relation to the underlying FRG Equations (7) and (8) provides options for a resummation,
especially for spatially and/or temporally homogeneous configurations.

The last point relates to the benign convergence properties of many LCEs. In particular,
for a lattice φ4

4 theory, the LCE is known to have finite radius of convergence for all susceptibilities [7].
The adaptation to a functional setting and the Friedmann–Lemaître spacetimes is not immediate.
However, the functional analytical raison d’être of the benign convergence properties clearly remains
valid: the perturbation (quadratic in the field) is Kato bounded by the unperturbed Hamiltonian (more
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than quadratic in the field). Irrespective of technical details, one may reasonably expect the LCE for Γ
to have improved convergence properties compared to perturbation theory.

Moreover, the assumption of a finite radius of convergence can be tested for self-consistency
using the FRG itself. This is because the hopping FRG allows one to access the unstable manifold
of a fixed point underlying continuum behavior. On the other hand, in known cases, the radius
of convergence of LCEs coincides with the locus of criticality [4]. Since bulk quantities such as the
spin susceptibility are sufficient to determine the radius of convergence, one may take the effective
action specialized to (spacetime) homogeneous fields itself as an alternative bulk quantity. In the FRG
context, this leads to a hopping variant of the well studied local potential approximation. The variant
introduces a scale dependent mode modulation term in the usual way but injects initial data at the
ultralocal scale [5,8]. Along these lines the local potential approximation resums the relevant parts
of the hopping expansion and allows one to determine the unstable manifold of an underlying fixed
point. Compared to the traditional direct way of determining the radius of convergence of the hopping
expansion (by pushing the expansion to high orders and extrapolating to infinite order), this provides
a dramatic simplification. Concretely, only a set of ordinary differential equations need to be solved via
a shooting technique. The strategy has been tested to compute the critical line in lattice φ4

4 theory [5]
and yields good agreement with the Lüscher-Weisz benchmark [9]. The adaptation to the present
spatially discretized φ4

1+3 on Friedmann–Lemaître backgrounds introduces several new features and
will be reported elsewhere.

3. Kinematical versus Dynamical Gravitational Gradients

As noted after Equation (5), we refer to the gravity theory with action S0[q, ϕ] as strong coupling
gravity. To justify the terminology, we start from the Lagrangian action for Einstein gravity minimally
coupled to a self-interacting scalar field φdim. Including Newton’s constant κ = cdGN , c3 = 8π, the
1+d form of the action can be expressed in terms of the functionals in Equation (5) as

1
κ

S0[g,
√

κφdim] +
1
κ
V [g,
√

κφdim] . (15)

The rescaled scalar field φ =
√

κφdim is dimensionless and the potential U(φ) in Equation (5)
has already been viewed as a function of it. Next, we subject Equation (15) to the following scale
transformation

κ → λdκ , gab(t, x)→ λ2gab(t, x)
N → N , Na → Na, φ→ φ, Λ→ Λ ,

(16)

for λ > 0. After the rescaling, we set κ = 1 and rename κ̌ = λ−2. This gives Equation (4).
The decomposition in Equation (4) separates kinematical spatial gradients carried by e0 from dynamical
gradients carried by R(g), ∂aφgab∂bφ, and can serve as the starting point for an anti-Newtonian
expansion: the S0 term can be viewed as the λ → ∞ limit of the rescaled original action.
By Equation (16), a large λ � 1 emulates a large Newton constant and also enhances spacelike
distances compared to timelike ones. Neighboring world lines are harder to communicate with and
the lightcone structure appears anti-Newtonian. It is instructive to absorb κ into a dimensionful
spatial metric gdim

ab = κ−2/dgab. Then, all fields N, ndim = nκ, Na, φ, gdim
ab are invariant under the scale

transformation and the action in Equation (15) reads

S0[gdim, φ] +
1

κ2/d V [g
dim, φ] . (17)

In this scale invariant field basis, the role of κ̌ is thus played by κ−2/d, and an expansion in powers
of κ̌ is literally a strong coupling expansion.

The limiting gravity theory described by S0 has originally been suggested in Hamiltonian form by
Isham [10] and was subsequently studied in [11–15]. In vacuum and without cosmological constant,



Universe 2019, 5, 85 10 of 17

it is equivalent to the “zero-signature” limit of Einstein gravity formulated by Henneaux [16]. In related
developments, first order forms of “Carroll gravity” theories have been introduced [17,18], so far of
uncertain relation to Henneaux’s version. In a mathematical relativity context, the field equations of S0

are known as the “velocity dominated” field equations. They describe the limiting behavior of a class
of “asymptotically velocity dominated” solutions of the Einstein field equations [19,20]. Conversely,
“Fuchsian techniques” [21–23] allow one to rigorously construct relativistic spacetimes from “seed”
solutions of the velocity dominated fields equations.

The relativistic gradient expansion similarly takes seed solutions of the velocity dominated system
as a starting point but aims initially at a formal series expansion in powers of some control parameter ε.
Since its early beginnings in the context of the BKL scenario [24–27], it has been recast as an alternative
to (resummed) cosmological perturbation theory, deemed valid on “superhorizon” scales [28–32].
Typically, the temporal gauge is fixed from the outset and a power series ansatz is made for the spatial
metric, gab = qab + εg(1)

ab + ε2g(2)
ab + O(ε3). Other gauges require the expansion also of lapse and/or

shift. Although introduced differently, the parameter ε turns out to play the same role as κ̌ in the field
equations of Equation (4). Upon expansion of the rescaled field equations, one obtains a recursive
system of linear partial differential equations for the g(n)ab , n ≥ 1. These include expanded versions of the
constraints. For generic seeds, no significant simplification occurs in the constraint analysis compared
to the nonlinear case. In practice, one argues that for cosmological purposes seed solutions of the
factorized form qab(t, x) = a(t)2q̄ab(x) suffice. For such seeds, the recursion relations reduce to systems
of linear ordinary differential equations, which to low orders often allow for an explicit integration.
There is a streamlined version of the expansion employing the Hamilton–Jacobi method [33,34]. It too
is in practice limited to seed solutions of the form qab(t, x) = a(t)2q̄ab(x).

The decomposition in Equation (4) is of course valid off-shell, and in order to make contact with
the LCE of the matter sector via Equation (3), one would want to keep the seed configurations qab(t, x)
generic and off-shell. This can clearly not be done along the lines of the relativistic gradient expansion,
because for off-shell seeds constraint propagation is violated. As mentioned in the Introduction, the
appropriate counterpart of Equation (3) for gravity turns out to be Equation (6) in a Hamiltonian
formulation. We therefore prepare here the Hamiltonian version of the decomposition in Equation (4).
By Legendre transforming Equation (4) or otherwise, one finds

Sκ̌ [g,℘, φ, pφ] =
∫ t2

t1
dt
∫

Σdx
{
℘ab∂tgab + pφ∂tφ− NaHa − nHκ̌

}
,

Hκ̌ = H0 − κ̌V , Ha = −2gac∇b℘
cb − pφ∂aφ ,

H0 = 2℘abgacgbd℘
cd − 2

d−1℘
2 + 1

2 (pφ)2 + g[U(φ) + Λ] ,
V = 1

2 gR(g)− 1
2 ggab∂aφ∂bφ .

(18)

Here, ℘ab, pφ are the momenta conjugate to gab, φ, the −1 density lapse n is used as Lagrange
multiplier, and Hκ̌ correspondingly is a +2 spatial density. As indicated, we write Sκ̌ for the
Hamiltonian action, where κ̌ only occurs in the Hamiltonian constraintHκ̌ . The limit S0 = limκ̌→0 Sκ̌

defines the Hamiltonian action of strong coupling gravity (and will be distinguishable from the
Lagrangian S0 by the context). It will be regarded as a functional of its own set of dynamical variables:

S0[qab, pab, ϕ, pϕ] =
∫ t f

ti
dt
∫

Σ dx
{

pab∂tqab + pϕ∂t ϕ− NaH0,a − nH0

}
,

Ha,0 = −2∇b pb
a + pϕ∂a ϕ ,

H0 = 2pab pab − 2
d−1 p2 + 1

2 (pϕ)2 + q[U(ϕ) + Λ] .

(19)

The evolution equations are best written in terms of pb
a := qac pcb and read

e0(pb
a) + nq[U(ϕ) + Λ]δb

a = 0 , e0(pϕ) + nqU′(ϕ) = 0 , (20)
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with U′(ϕ) = dU(ϕ)/dϕ. Along the flow lines of e0, these are ordinary differential equations.
Further, H0 = 0 is an algebraic condition and only H0,a = 0 remains a partial differential equation.
The constraints are preserved under the evolution in Equation (20)

e0(H0) = 0 , e0(Ha) = n−1∂a(n2H0) . (21)

In addition to these design features, strong coupling gravity has several remarkable
bonus properties:

• S0 is invariant under the full spatiotemporal diffeomorphism group, but with respect to
a non-tensorial realization [13]. It propagates the same number of physical dofs as Einstein gravity.

• The Poisson algebra generated by H0,H0,a is a Lie algebra (with structure constants instead of
functions). As usual, H0,a generates spatial diffemorphisms, but the Hamiltonian constraints
commute [10,12].

• The Poisson algebra admits local observables, even in vacuum or with a single scalar field [14].
• Coarse graining of the physical dofs commutes with time evolution and leaves geodesics

unaffected [15].

These properties highlight why the successful implementation of Equation (6) would result
in a dramatic simplification of precisely those aspects that make gravity so dissimilar from other
field theories.

4. Canonical Trivialization of Gravitational Gradients

The construction leading to Equation (6) is best placed in the context of a “trivializing map”,
a concept that we recapitulate here for the case of a scalar QFT. In brief, one aims at a field redefinition
φ = Y[φ0] that trivializes the functional measure but reproduces the exact correlation functions:

〈
φ(x1) . . . φ(xn)

〉
exact

!
=
〈
Y[φ0](x1) . . . Y[φ0](xn)

〉
free/simple . (22)

On the left hand side, the correlation functions are assumed to be realized in terms of a regularized
Lorentzian signature functional integral with action Sκ̌ [φ]. On the right hand side, the functional
integral is taken with respect to a target measure set by a free or otherwise simplified action S0[φ0].
We may assume the coupling constant κ̌ to be chosen such that Sκ̌ [φ]|κ̌=0 = S0[φ]. In terms of the
generating functional, the condition in Equation (22) amounts to∫

dµ(φ) exp
{ i

h̄
Sκ̌ [φ] + J · φ

} !
=
∫

dµ(φ0) exp
{ i

h̄
S0[φ0] + J ·Yκ̌,h̄[φ0]

}
, (23)

with “ · ’ indicating a spacetime integral/sum. A sufficient condition is

Sκ̌ [Yκ̌,h̄[φ0]] +
h̄
i

ln Det
δYκ̌,h̄[φ0]

δφ0

!
= S0[φ0] + const , (24)

where we indicate the parametric dependence of Y on κ̌ and h̄. For finite dimensional measures, such
maps must exist on general grounds. For relativistic QFTs, their investigation began only recently.
The key results are: (i) Trivializing maps exist when the target measure is free (S0 quadratic in the
fields) for all standard flat space QFTs, including gauge theories [35]. The maps are constructed
perturbatively to all orders in the coupling constant and the signature is inessential. (ii) For Euclidean
lattice Yang–Mills theories [36] and nonlinear sigma-models [37], exact trivializing maps exist on
functional analytic grounds that reduce the full to the strong coupling measure. The maps can again
be constructed iteratively (in powers of the inverse coupling) to all orders. (iii) An important tool is
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the “trivializing flow”. Instead of trying to construct solutions to Equation (24) directly, one aims at
finding a functional gradient flow that characterizes it

∂κ̌Yκ̌,h̄ =
δΩκ̌,h̄

δφ
(Yκ̌,h̄) with Ωκ̌,h̄ to be found. (25)

Differentiating Equation (24) with respect to κ̌ leads to a functional Schrödinger equation for Ωκ̌,h̄
that is often more amenable to a structural analysis.

In the classical limit, the condition in Equation (24) reduces to Sκ̌ [Yκ̌ [φ0]] = S0[φ0].
Some experimentation shows that, unlike Equation (3), this condition does not lend itself to
a transparent analysis in the Lagrangian formalism. This changes upon transition to a Hamiltonian
formulation. A first indication why this should be fruitful comes from replacing the gradient in
Equation (25) by a symplectic gradient. The classical Hamiltonian counterpart of Equation (25)
then reads

∂κ̌Υκ̌ = {Ωκ̌ , Υκ̌}0 with Ωκ̌ to be found, (26)

where { , }0 is the Poisson structure associated with S0[ϕ, pϕ], the Hamiltonian version of S0.
This has an additional significance: Υκ̌ is a one-parameter family of canonical transformations
generated by Ωκ̌ . Typically, S0[ϕ, pϕ] will be the difference of a kinetic term invariant under canonical
transformations and a local Hamiltonian H0(ϕ, pϕ). The same holds for the original action Sκ̌ [φ, pφ]

with Hamiltonian Hκ̌(φ, pφ). The trivialization condition for the Hamiltonian action thus reduces to
one for the Hamiltonians, Hκ̌(Υκ̌(ϕ, pϕ)) = H0(ϕ, pϕ). The task can now be concisely formulated: find
a generating functional Ωκ̌ such that the canonical transformation Υκ̌ generated by it maps the full into
the simple reference Hamiltonian. A formalism that accomplishes this in terms of a series expansion in
the flow parameter was in fact developed in the 1970s in the context of celestial mechanics. Known as
the “Lie–Deprit formalism” [38,39] it is a much streamlined successor of the traditional Poincaré–van
Zeipel canonical perturbation theory designed to remove secular divergences [40].

Remarkably, this formalism carries over to Einstein gravity and implements Equation (6) with
several significant bonus features. For notational simplicity, we limit the account here to pure gravity,
the extension to the matter coupled system in Equations (5) and (6) is straightforward. Before discussing
the results, the adequate notion of a canonical transformation needs to be clarified. Even though
Einstein gravity is a constrained Hamiltonian system with several peculiarities, we take

Υ∗κ̌{Fκ̌ , Gκ̌} =
{

Υ∗κ̌ Fκ̌ , Υ∗κ̌ Gκ̌

}
0 , (27)

as the defining relation. Here, Υ∗κ̌ is the pull-back of Υκ̌ , mapping smooth functionals F on Γ into
smooth functionals on Γ0 via (Υ∗κ̌ F)(q, p) = F(Υκ̌(q, p)). Further, Γ is the phase space of Einstein
gravity with coordinates

(gab,℘ab) and Poisson structure { , } while Γ0 is the phase space of strong coupling gravity with
coordinates (qab, pab) and Poisson structure { , }0. The shift Na and the densitized lapse n are viewed
as independent of the phase space variables and are therefore not transformed, Υ∗κ̌ Na = Na, Υ∗κ̌n = n.

The notion in Equation (27) of “canonicity’ is much stronger than what is minimally required
for a constrained Hamiltonian system. Among other differences, the minimal notion would demand
Equation (27) only weakly, i.e., modulo the constraints. Since in gravity the Hamiltonian constraint
governs the dynamics and we seek to transform it—rather than impose it—this weak notion of
canonicity is uninteresting in the present context. One can show that canonical transformations
in the strong sense in Equation (27) consistently transform the functionals defining the relativistic
field equations, including the constraints. Consequently, the vanishing sets of these functionals,
i.e., the field equations, are consistently transformed. As such, Equation (27) meets the primary
criterion for a canonical transformation of a constrained first class Hamiltonian system: solutions of the
evolution equations with constrained initial data are mapped into one another. One may anticipate that
the strong notion of canonicity in Equation (27) entails a subtle interplay with gauge transformations,
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as the shift Na and densitized lapse n are unaffected by Υ∗κ̌ , yet are gauge variant. This interplay is
part of the following result.

Theorem 2 ([41]). (Canonical trivialization of gravitational gradients)
A canonical transformation

Υκ̌ :
strong coupling gravity

(Γ0, { , }0) −→
Einstein gravity

(Γ, { , })
(qab, pab) 7→ Υκ̌(q, p) = (gab,℘ab)

can be constructed for fixed n, Na iteratively in powers of κ̌ s.t.:

(a) The Hamiltonian action of Einstein gravity is mapped into that of strong coupling gravity up to a boundary
term:

Sκ̌ [Υκ̌(q, p)] = S0[q, p] +Fκ̌

∣∣t f
ti

,

for some Fκ̌(q, p) evaluated at t = ti, t f . This holds without gauge fixing and is implied by the
transformation of the Hamiltonian constraint alone,Hκ̌(Υκ̌(q, p)) = H0(q, p).

(b) The construction of Υκ̌ proceeds from its generator Ωκ̌ = ∑ κ̌l

l! Ωl+1. The construction of the Ωl
via homological equations {H0, Ωl}0 = known, l ≥ 1, requires only the solution of ordinary
differential equations.

(c) Series solutions Φ of Einstein’s equations with transformed t = ti initial data arise as images of solutions
Φ0 of strong coupling field equations

Φ(t, ti|Υκ̌(q, p)) = Υκ̌(Φ0(t, ti|q, p)) , t ≥ ti .

(d) The infinitesimal gauge transformations of Einstein gravity δε intertwine with those δ0
ε of strong coupling

gravity via the pull-back Υ∗κ̌ of Υκ̌ :

Υ∗κ̌δε = δ0
ε Υ∗κ̌ , δ0

ε generate Lie algebra ,

on F’s that include the Lagrangian modulo a boundary term, the field equations, and their solutions.

We add several comments and explanations, abbreviating “strong coupling gravity” by “S-gravity”
and “Einstein gravity” by “E-gravity”.

(a) The construction provides a “free lunch” on the Diffeomorphism constraint. Recall that, in a direct
expansion of field equations in powers of κ̌, one still needs to solve linearized versions of the
Diffeomorphism and Hamiltonian constraints as coupled partial differential equations. Here, canonicity
implies the existence of a Fκ̌ such that

Υab
κ̌ δΥκ̌

ab = pabδqab + δFκ̌ , (28)

for any derivation δ, where (Υκ̌
ab, Υab

κ̌ ) are the (metric, momentum) components of Υκ̌ . Applied to the
spatial Lie derivative δ = L~N , with

∫
dx pabL~Nqab =

∫
dx NaHa,0, one obtains

Υ∗κ̌Ha = Ha,0 (identically in qab, pab) , (29)

for free. Moreover, Fκ̌ is constructable from Ωκ̌ . This accounts for the fact that the trivialization of the
Hamiltonian constraint alone implies that of the action, without the need for gauge fixing.

(b) A series expansion of Equation (26) andHκ̌(Υκ̌(q, p)) = H0(q, p), then leads to homological
equations of the form {H0, Ωl}0 = known, l ≥ 1. There are several known systematic techniques
to solve such equations. Since the Hamiltonian constraint of S-gravity does not contain spatial
gradients, these techniques reduce in the situation at hand to the solution of ordinary differential
equations. Moreover, gauge fixing can be avoided as well. In fact, there is a bemusing parallelism
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between the solution of these homological equations and the solution of the Bianchi I field equations
in general relativity.

(c) and (d) As mentioned in Section 3, S-gravity in its Lagrangian formulation is invariant under
a non-tensorial realization of the full Diffeomorphism group. On the subgroup of foliation preserving
diffeomorphisms, this realization coincides with the tensorial realization. Consequently, each order in
κ̌ is manifestly covariant under foliation preserving diffeomorphisms. The general interplay is best
understood in terms of the Hamiltonian gauge symmetries leaving the respective actions invariant

δεSκ̌ = 0 , δ0
ε S0 = 0 . (30)

The descriptors ε = (ε, εa) are a spatial −1 density ε and a d-vector εa, which parameterize
an infinitesimal diffeomorphisms via ξ0 = ε/n, ξa = εa − Naε/n. One of the complications of
Einstein gravity is that the Hamiltonian gauge variations δε do not form a closed algebra on all
gauge variant fields; they do so on gab,℘ab, n but not on Na. In contrast, their strong coupling
counterparts δ0

ε do generate a closed algebra on all fields qab, pab, n, Na. It is moreover a Lie algebra,
with structure constants instead of structure functions. Both types of gauge variations coincide again
on foliation preserving transformations, i.e., those which have their temporal descriptors constrained
by ∂a(ε/n) = 0. The generic gauge variations δε and δ0

ε are according to (d) intertwined by the pull
back operator Υ∗κ̌ .

Since the algebras of the gauge variations are not isomorphic, it is clear that the intertwining
relation cannot hold on all functionals of the gauge variant fields. The intertwining holds,
however, on arbitrary functionals of gab,℘ab, n, including the constraints and initial data. Moreover,
the intertwining relation can be extended to allow for specific dependencies on Na. Importantly,
the functional Φ defining the evolution equations (which is Na-dependent through e0) is among these
functionals. The constraints are manifestly too, so the intertwining relation applies to (non-iterated)
gauge transforms of the field equations

Υ∗κ̌δε = δ0
ε Υ∗κ̌ on Φ,H,Ha . (31)

This means the gauge orbits are consistently mapped into one another by Υ∗κ̌ . Iterated δε1 δε2

transformations should count as higher order in κ̌, unless at least one is foliation preserving. This is
because the image of a trajectory under a generic gauge transformation conceptually refers to a
redefined foliation, so a second generic gauge transformation acting on the image of the first should be
seen as referring to the new foliation. This viewpoint is also compatible with the fact that foliation
changing gauge transformations reshuffle the terms in the κ̌ expansion. The reshuffling is controlled
by Ward identities that arise by expansion of

δSκ̌

δgab
· δεgab +

δSκ̌

δ℘ab · δε℘
ab +

δSκ̌

δNa · δεNa +
δSκ̌

δn
· δεn = 0 , (32)

where “ · ” denotes a
∫

dtdx integration. The consistency of Equation (32) with Equation (31) to all
orders of the κ̌ expansion ensures that the series is invariant and in this sense is independent of the
choice of foliation.

It should be stressed that no background-fluctuation split enters. Validity of the intertwining
relation Υ∗κ̌δε = δ0

ε Υ∗κ̌ , on all dynamically relevant functionals alone ensures the consistent propagation
of full diffeomorphism gauge covariance through the κ̌ series, not just covariance under background
gauge transformations. In a sense, the off-shell seed configurations replace the background while the
higher orders are nonlinear but fixed functionals of the seed, where successively dynamical spatial
gradients are restored. The physical dofs of the seeds themselves set a differential geometric notion of
coarseness. The map Υκ̌(q, p) thereby provides a coordinate independent coarse graining procedure
relative to an off-shell configuration (qab, pab) that is itself δ0

ε-covariant. This seems to avoid several
sticky points in the ongoing averaging/backreaction controversy.
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Finally, we remark that the framework has two important improvement options built in: First,
instead of mappingHκ̌ intoH0 one can map into some Kκ̌ 6= H0 with {H0,Kκ̌}0 = 0. In the celestial
mechanics applications for which the Lie–Deprit formalism was originally developed, this modification
is known to systematically remove secular divergences in the expansion. The analogous issues in the
present context remain to be explored. Second, even after removal of secular divergencies, a canonical
perturbation series may have poor convergence properties. Kolmogorov’s algorithm provided in
the original context a restructuring of the expansion that lead to a rapidly convergent series. This is
known to carry over to the Lie–Deprit formalism, which provides hints for a possible adaptation to
Einstein gravity.

5. Quantum Gravity Outlook

In addition to the classical series and its many uses, an extension to the quantum theory is of
course desirable. Formally, the quantum gravitational counterpart of Equation (24) is

Sκ̌ [Υκ̌,h̄(q, p)] +
h̄
i

ln Det
δΥκ̌,h̄

δ(q, p)
= S0[q, p] + const . (33)

For a naively conceived “quantum canonical transformation”, the determinant term would vanish.
As is well known, such transformations do not exist. In regularized form, the determinant therefore is
nontrivial and will contribute. Differentiating Equation (33) with respect to κ̌ gives

∂κ̌Hκ̌ = {Gκ̌,0,Hκ̌}+ O(h̄) , Gκ̌,h̄ = (Υ∗κ̌)
−1Ωκ̌ + O(h̄) . (34)

This resembles the classical limit of a similarity renormalization group flow, as studied by Wegner,
Glazek, and Wilson. The quantum corrections are essential and remain to be understood. Nevertheless,
it appears to be a promising route to reduce also the quantum dynamics of gravity to that of its tractable
strong coupling limit.
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