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Abstract: We investigate the bounce realization in the framework of generalized modified gravities
arising from Finsler and Finsler-like geometries. In particular, a richer intrinsic geometrical structure is
reflected in the appearance of extra degrees of freedom in the Friedmann equations that can drive the
bounce. We examine various Finsler and Finsler-like constructions. In the cases of general very special
relativity, as well as of Finsler-like gravity on the tangent bundle, we show that a bounce cannot easily be
obtained. However, in the Finsler–Randers space, induced scalar anisotropy can fulfil bounce conditions,
and bouncing solutions are easily obtained. Finally, for the general class of theories that include a nonlinear
connection, a new scalar field is induced, leading to a scalar–tensor structure that can easily drive a bounce.
These features reveal the capabilities of Finsler and Finsler-like geometries.

Keywords: bounce cosmology; Finsler geometry; modified gravity

1. Introduction

Bounce cosmologies offer an alternative view of the early universe [1–6] (for a review, see Reference [7]).
Historically, this idea belongs to Tolman, who first suggested in the 1930s the possibility of a re-expansion of
a closed universe that has already collapsed to an extremely dense state [8]. Since then, various bouncing
models have been proposed in an effort for a systematic explanation of the origin of our universe.

The main advantage of bouncing cosmology is that it provides a way of solving the singularity problem
that appears in the standard cosmological paradigm. The singularity (Big Bang) is replaced with a smooth
transition from contraction to expansion (Big Bounce). In this sense, bounce cosmology offers the opportunity
to obtain a more continuous picture of the early universe. The efficiency of bouncing models in solving
basic cosmological problems in comparison with inflationary scenarios is visualized via the wedge diagram
introduced in Reference [9].

In general, the realization of a bounce requires violation of the null-energy condition. This can be
achieved with the introduction of extra degrees of freedom that are added ad hoc into the Lagrangian [4,10].
The violation of the null-energy condition needs to be handledwith care, in order to not spoil the usual thermal
history and the sequence of epochs after the bounce. Nevertheless, such violations can be easily acquired
from modified [7] or quantum gravity [11]. In particular, they can easily be acquired, for example, in the
Pre-Big Bang [12,13] and the Ekpyrotic [14,15] models, in gravity actions with higher-order corrections [1,16],
in f (R) gravity [17,18], in f (T) gravity [19], in braneworld scenarios [20,21], in nonrelativistic gravity [22–24],
in Galileon theory [25,26], in massive gravity [27], in Lagrange-modified gravity [28], and in loop quantum
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cosmology [29–31]. Moreover, a nonsingular bounce model that supports magnetogenesis at the inflationary
epoch is presented in Reference [32].

Amongmodified gravity theories, an interesting class is that of gravitationalmodels based on Finsler and
Finsler-like geometries. These are natural extensions of Riemannian geometry in which physical quantities
may directly depend on observer four-velocity, and this velocity dependence reflects the Lorentz-violating
character of the kinematics. Such a property is called dynamic anisotropy [33–44]. Additionally, Finsler
and Finsler-like geometries are strongly connected to effective geometry within anisotropic media [45,46],
and naturally enter the analog gravity program [47]. These features suggest that Finsler and Finsler-like
geometries may play an important role within quantum gravity physics. The dependence of the metric tensor
and other quantities on the position coordinates of the base manifold and the directional/velocity variables
of the tangent space suggest that the natural geometrical framework for the description of these models is
the tangent bundle of a smooth manifold. Finally, in the case where there is no velocity dependence, Finsler
geometry becomes Riemannian.

The intrinsic geometrical spacetime dynamical anisotropy of Finsler geometry (not to be confused
with the spatial anisotropy that may exist also in Riemannian geometry, as, for instance, in Bianchi cases) is
included in the geometry of spacetime as an intrinsic field (variable) that influences its geometrical and
physical concepts. Hence, it can give us the form of anisotropy as a hypothetical field, the anisotropion, which
produces this deviation from isotropy. This appears in Friedmann equations and Lorentz violations [48–51],
and thus anisotropy arises as a property of Finslerian spacetime [48,49,52,53].

In the present work, we are interested in investigating bounce realization in the framework of modified
gravity related to Finsler and Finsler-like geometries. In particular, we desired to see how the new features of
Finsler geometry can drive bouncing solutions, and to examine the evolution of intrinsic anisotropy during
the bounce. In some bouncing scenarios, anisotropy decreases in the contracting phase and remains quite
small during the bounce, in agreement with the current observational data [4]. On the other hand, there are
also scenarios where anisotropy reduction in the contracting phase is followed by its exponential growth
during the bounce, mainly due to the quantum fluctuations of the curvature [54]. Finally, we mention
that nonsingular bounces are also possible to be generated in models, which spontaneously violate
Lorentz symmetry [50,55,56]. In this framework, Lorentz symmetry violations lead to interactions with
anisotropies [57]. Hence, we can establish a connection between anisotropic fields and a nonsingular bounce.
In summary, we depict the above form of connections in the diagram of Figure 1.
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Figure 1. Connections of anisotropy, nonsingular bounce, and Lorentz violation.

The outline of this work is as follows: In Section 2, we first describe the basic conditions for a bounce
realization and we briefly review Finsler geometry and gravity. Then, we examine bounce realization in
general very special relativity and the Finsler–Randers models. In Section 3, we study the case of Finsler-like
gravity on a tangent bundle, while in Section 4 we analyze bouncing solutions from scalar–tensor theory on
the fiber bundle. Finally, in Section 5 we present a summary and our conclusions.

2. Bounce from Finsler Gravity

In this section, we study the bounce realization in the framework of Finsler gravity. We start by
describing the conditions for bounce realization, and provide the basics of Finsler geometry and gravity.
Then, we proceed to examine bounce realization in specific models, such as general very special relativity
and Finsler–Randers models.
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2.1. Bounce Conditions

Let us start by discussing the basic requirements for a bouncing solution. For the moment, we consider
the ordinary Friedmann–Robertson–Walker (FRW) geometry with metric

[gµν(x)] � diag
(
−1,

a2(t)
1− kr2 , a2(t)r2, a2(t)r2 sin2 θ

)
, (1)

with a(t) being the scale factor and k � −1, 0,+1 corresponding to open, flat, and closed spatial geometry,
respectively. As usual, in such a geometry the general field equations of any theory give rise to the Friedmann
and Raychaudhuri equations, which can be written in a compact form as:

H2
�

8πG
3

ρtot −
k
a2 (2)

ÛH � −4πG(ρtot + Ptot)+
k
a2 , (3)

where G is Newton’s constant, H � Ûa/a is the Hubble function, and with dots denoting derivatives with
respect to cosmic time t. In the above expressions, ρtot and Ptot are, respectively, the total energy density
and pressure of the universe, which include matter, radiation, dark energy, and any other gravitational or
geometrical contribution that a theory or scenario may have.

In order to obtain a bounce realization, we need a contracting universe, namely, with H < 0, succeeded
by an expanding universe, namely, with H > 0; hence, from continuity we deduce that, at the bounce point,
we must have H � 0. Furthermore, one can see that, at the bounce point and around it, we must have ÛH > 0.
Observing the form of the general Friedmann and Raychaudhuri Equations (2) and (3), and focusing on the
physically more interesting flat case, we deduced that the above requirements could be fulfilled if

ρtot � 0 (4)

exactly at the bounce point, and if additionally the null-energy condition is violated around the bounce
point, namely, if

ρtot + Ptot < 0 (5)

(in the case of a nonflat universe, the bounce can be driven by the curvature term without
null-energy-condition violation [7]). Therefore, in order to obtain a bounce, one needs to construct
theories in which the extra contributions to the total energy density and pressure are such that the
null-energy condition is violated around the bounce point and the requirement of Equation (5) holds;
moreover, total energy becomes zero exactly at the bounce point, and the condition of Equation (4) holds.
As we see in the following, scenarios based on Finsler gravity can fulfil these necessary conditions.

2.2. Finsler Gravity

We first briefly review the basics of Finsler gravity, since this lies in the center of the investigation of the
present work. Finsler gravity is a geometrical extension of general relativity, where the role of the metric is
played by real-valued fundamental function F(x, y), defined on tangent bundle TM over a smooth spacetime
manifold M. Variable y is an element of the tangent space of M at a point x (we suppressed indices for
convenience). The distance of two neighboring points on M is defined as ds � F(x, dx). We consider the
following properties to hold:

1. F is continuous on TM, and smooth on T̃M ≡ TM \ {0}, i.e., the tangent bundle minus the null section.

2. F is positively homogeneous of first degree on its second argument:

F(x, k y) � kF(x, y), k > 0. (6)
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3. Form

fµν(x, y) � 1
2

∂2F2

∂yµ∂yν
(7)

defines a nondegenerate matrix on TM minus null set {(x, y) ∈ TM |F(x, y) � 0}:

det
[

fµν
]
, 0. (8)

Using homogeneity condition Equation (6), it can be shown that:

F2(x, y) � | fµν(x, y)yµyν |; (9)

therefore, fµν(x, y) can play the role of the metric for the vector space spanned by y. When studying gravity,
metric fµν(x, y) is considered to be of Lorentzian signature (−,+,+,+).

2.3. General Very Special Relativity on Cosmology

A particularly interesting Finslerian cosmological model is elaborated in the framework of the so-called
general very special relativity on cosmology [57]. The metric function takes form

F(x, y) �
(
gµν(x)yµyν

) (1−b)/2 (nκ yκ
) b , (10)

where gµν(x) is the ordinary FRWmetric, Equation (1). Equation (10) is a direct cosmological generalization
of the general very special relativity description, where the line element is

ds �
(
ηµνdxµdxν

) (1−b)/2 (nκdxκ
) b , (11)

with [ηµν] � diag
(
− 1, 1, 1, 1

)
, which is invariant under transformations generated by deformation

DISIMb(2) of Lorentz subgroup ISIM(2) [58,59]. One-form nκ is called a “spurionic field”. We mention
that parameter b quantifies the deviation from Riemannian geometry, i.e., the Lorentz violation in the
gravitational sector. Parameterized post-Newtonian (PPN) analysis [60] and the use of solar-system data
provide the most stringent constraints on it; thus, Gravity Probe B puts an upper bound at 10−7 [61].

The Riemannian osculating approach is followed, namely, gµν(x) � fµν
(
x, y(x)

)
, where y(x) is the

tangent vector to the cosmological fluid’s (matter fluid) flow lines. As usual, the matter fluid is described by
the energy–momentum tensor of the perfect fluid:

Tµν � Pm gµν + (ρm + Pm)yµyν , (12)

where ρm is the energy density and Pm the pressure. The field equations for this construction are then:

Lµν −
1
2

Lgµν � −8πGTµν , (13)

where Lµν is the Ricci tensor for metric gµν(x) and L � gµνLµν .
Applying the above geometrical construction in a cosmological framework, we considered the spurionic

field to be parallel to the velocity of the comoving observer, namely,

nκ �
(
n(t), 0, 0, 0

)
. (14)

As a simple model, in Reference [57], we imposed the following approximations

n(t) ≈ At + B

A→ 0 (15)

B→ 0,
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since n(t), parameterized by A,B, needs to be suitably small in order to be consistent with the observational
small bound on b. For these choices, the Ricci tensor components for the metric function, Equation (10),
are calculated as [57]:

L00 � 3
Üa
a
+ 3

Ab
B
Ûa
a
+ O

(
A2)

L11 � − a Ûa + 2 Ûa2 + 2k
1− kr2 +

5A
B

b
a Ûa

1− kr2 + O(A2)

L22 � −r2(a Üa + 2 Ûa2
+ 2k) − 5A

B
br2a Üa + O(A2) (16)

L33 � −r2(a Üa + 2 Ûa2
+ 2k) sin2 θ − 5A

B
br2a Üa sin2 θ

+O(A2).

Therefore, using the above, we obtain the following generalization of the Friedmann equations:

H2
+

k
a2 +2

A
B

bH �
8πG

3

[
ρm−2

A
B

bPm

(
t+

B
A

ln B
)]

(17)

ÛH + H2
+

Ab
B

H � −4πG
3

[
(ρm + 3Pm)

+4 ln(At + B)b(ρm + Pm)
]
. (18)

Unfortunately, as one can see, the above Friedmann equations do not accept a bounce solution. One could
still try to construct a model with a different approximation than Equation (16) of Reference [57], but such a
detailed investigation of a new construction lies beyond the scope of the presentwork. Hence, in the following
subsection, we examine the case of another Finslerian construction, where bounce realization is possible.

2.4. Bounce in Finsler–Randers Space

Let us now consider a different Finslerian construction, namely, Finsler–Randers (FR) space [62,63].
In this space, a Lagrangian metric function is given by

F(x, y) � α(x, y)+ uµyµ, ‖uµ‖ � 1, (19)

where α(x, y) �
√

gκλ(x)yκ yλ , and gκλ(x) is the FRWmetric, Equation (1), with κ, λ, µ ∈ {0, 1, 2, 3}.
In this cosmological model, an important role is played by the variation of anisotropy Zt . In the case

of the FRW geometry, Equation (1), the modified Friedmann equations of the generalized form of FR-type
cosmology were studied in Reference [63], and are written as:

H2
�

8πG
3

ρm −HZt −
k
a2 , (20)

ÛH � −4πG
(
ρm + Pm

)
+

1
4

HZt +
k
a2 . (21)

In these expressions, we defined the variation of anisotropy Zt as Zt � Ûu0 as the derivative of the
time component of unit vector ûa [63]. This variation affects the form of geometry, as can be seen from
Equations (20) and (21), and, at the limit Zt → 0, we recovered the ordinary Friedmann equations of general
relativity. Finally, we considered the matter sector to correspond to a perfect fluid with energy density and
pressure ρm and Pm , respectively.
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Observing the form of two Friedmann Equations (20) and (21), we can define the effective energy
density and pressure of geometrical origin as

ρFR ≡ −
3

8πG
HZt (22)

PFR ≡
5

16πG
HZt . (23)

Therefore, total energy density and pressure, respectively, become ρtot � ρm + ρFR and
Ptot � Pm + PFR , and the Friedmann equations take the usual form of Equations (2) and (3). Hence, we can
now easily examine what the conditions are in order to fulfil the bounce requirements of Equations (4)
and (5).

First, from Equation (4) we deduce that a flat universe exactly at bounce point ρm must be zero (ρFR

also becomes zero exactly at the bounce point since H � 0). This is a usual assumption in many bouncing
models, and it is expected to be fulfilled in the early universe. Taking this into account, we moreover
see that the condition of Equation (5) implies that, around the bouncing point, ρFR + PFR < 0 and, thus,
that HZt > 0. Hence, we deduce that the above requirements can be fulfilled if we suitably choose variation
of anisotropy Zt .

In order to provide a specific example, we focused on a flat FRW geometry (k � 0), and we considered
a bouncing scale factor of the form

a(t) � ab(1 + Bt2)1/3, (24)

where ab is the scale factor value at the bounce, while B is a positive parameter that determines how fast the
bounce takes place. In this case, time varies between −∞ and +∞, with t � 0 being the bouncing point,
and where, away from the bounce, one obtains the usual expansion behavior. Moreover, we considered that
the matter sector is absent in the early universe. Inserting these into Equation (20), we immediately find that

Zt � −
2Bt

3(1 + Bt2) . (25)

Hence, it is this Zt , which comes from the Finslerian modification of the geometry, that generates
bouncing-scale factor of Equation (24). Moreover, we remark that variation of anisotropy Zt actually
determines physically important quantity B in Equation (24).

3. Finsler-Like Gravity on a Tangent Bundle

In this Section, we are interested in examining whether a bounce can be realized from Finsler-like
gravity on a tangent bundle. Generally, we use the term Finsler-like for any metric theory in which the
various structures may depend on a set of internal variables (y,φ, etc) apart from the position or external
ones, which we denote as xµ through this work. Finsler-like extensions of general relativity on the tangent
bundle are presented in the bibliography [64–68], and bouncing cosmological scenarios were studied on
them [49,69,70]. In the following, we focus our interest on a tangent bundle TM equipped with a Finslerian
Sasaki-type metric:

G � gµν(x, y)dxµ ⊗ dxν + vαβ(x, y) δyα ⊗ δyβ, (26)

where xµ are the coordinates on the base manifold, with κ, λ, µ, ν, . . . � 0, 1, 2, 3, and yα are the fiber
coordinates, with α, β, . . . , θ � 0, 1, 2, 3. On the total space TTM of TM, the adapted basis is {δµ, Û∂α}, and
its dual is given by {dxµ, δyα}. The following definitions hold:

δµ �
δ
δxµ

�
∂
∂xµ
−Nα

µ (x, y) ∂
∂yα

Û∂α �
∂
∂yα

δyα � dyα + Nα
ν dxν , (27)
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where Nα
µ (x, y) are the coefficients of a nonlinear connection on TM. This connection is defined by a splitting

of the total space TTM of TM into an h-subspace HTM spanned by {δµ}, and a v-subspace VTM spanned
by { Û∂α} [64]. The tangent space of TM is thus a Whitney sum of the h-subspace and v-subspace, namely,

TTM � HTM ⊕ VTM. (28)

One can now introduce d−connectionD as a covariant linear differentiation rule that preserves h-space
and v-space:

Dδκδν � Lµνκ(x, y)δµ D Û∂γδν � Cµ
νγ(x, y)δµ (29)

Dδκ
Û∂β � Lαβκ(x, y) Û∂α D Û∂γ Û∂β � Cα

βγ(x, y) Û∂α. (30)

A canonical d−connection is a linear connection that is compatible with metric of Equation (26), and it
preserves, under parallel translation, horizontal and vertical subspaces HTM and VTM [64]. It can be
uniquely defined if one demands that it only depends on gµν , vαβ and Nα

µ , and moreover that connection
coefficients Lµνκ and Cα

βγ are symmetric on the lower indices. In this case, its coefficients turn out to be [71]:

Lµνκ �
1
2

gµρ
(
δk gρν + δν gρκ − δρ gνκ

)
Lαβκ � Û∂βNα

κ +
1
2

vαγ
(
δκvβγ − vδγ Û∂βNδ

κ − vβδ Û∂γNδ
κ

)
Cµ
νγ �

1
2

gµρ Û∂γ gρν

Cα
βγ �

1
2

vαδ
(
Û∂γhδβ + Û∂βhδγ − Û∂δvβγ

)
. (31)

Now, the curvature of the nonlinear connection is defined as

Ωανκ �
δNα

ν

δxκ
− δNα

κ

δxν
, (32)

and the space at hand is equipped with various Ricci curvature tensors such as:

Rµν � δκLκµν − δνLκµκ + LρµνLκρκ − LρµκLκρν (33)

Sαβ � Û∂γCγ
αβ − Û∂βCγ

αγ + Cε
αβCγ

εγ − Cε
αγCγ

εβ. (34)

Hence, the generalized Ricci scalar curvature reads as

R � gµνRµν + vαβSαβ ≡ R + S. (35)

One can now write a Hilbert-like action, namely [64–67],

STM �
1

16πG
SH +SM

≡ 1
16πG

∫
d8U

√
detG LH +

∫
d8U

√
detG LM , (36)

with
d8U � dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dy0 ∧ dy1 ∧ dy2 ∧ dy3, (37)

where the gravitational part of action SH is constructed by gravitational Lagrangian

LH � R � (R + S), (38)
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and matter action SM by matter Lagrangian LM .
Extremization of total actionSTM with respect to metric components gµν and vαβ leads to the following

field equations [49]:

R(µν) −
1
2
(R + S)gµν � 8πGTµν (39)

Sαβ −
1
2
(R + S)vαβ � 8πGYαβ, (40)

where we defined Tµν � − 2√
detG

δ(LM
√

detG)
δgµν and Yαβ � − 2√

detG
δ(LM

√
detG)

δvαβ . Applying these field equations
in the FRW metric Equation (1), focusing on the flat case and, assuming usual matter perfect fluid
Equation (12), one obtains the following modified Friedmann equations [49]:

H2
�

8πG
3

ρm −
1
6

S (41)

ÛH + H2
� −4πG

3
(
ρm + 3Pm

)
− 1

6
S, (42)

where, due to the imposed symmetries, all quantities only depend on time.
From the form of the two Friedmann Equations (41) and (42), we can see that we obtained extra

contributions that reflect the Finsler-like structure of the tangent bundle. In particular, these induce effective
energy density and pressure of geometrical origin as

ρS ≡ −
1

16πG
S (43)

PS ≡
1

16πG
S. (44)

Hence, total energy density and pressure, respectively, become ρtot � ρm + ρS and Ptot � Pm + PS,
and the Friedmann equations acquire the usual form of Equations (2) and (3). Thus, we can examine
what the conditions are in order to fulfil the bounce requirements of Equations (4) and (5). Concerning
Equation (4), we deduced that, for a flat universe exactly at the bounce point, we must have S � 16πGρm ,
while Equation (5) requires ρm +Pm < 0 (since, according to Equations (43) and (44), PS + ρS � 0). Therefore,
we conclude that, in the case of a flat universe and for standard matter, a bounce cannot be obtained in the
scenario at hand.

Nevertheless, a bounce could still be possible with the addition of extra fields, e.g., Reference [49],
but one still has to be careful with the constraints imposed to S via Equation (40). For example, if we consider
the trivial case where Yαβ � 0, then the trace of Equation (40) gives

S � −2R. (45)

We assume that the extra field can be modeled to a perfect fluid as in Equation (12), with energy density
and pressure ρe f f and Pe f f , respectively; thus, Friedmann Equation (41) takes the form

H2
�

8πG
3
(ρm + ρe f f ) −

1
6

S. (46)

Substituting Equation (45) to Equation (46)1 gives 3H2 + 2 ÛH + 8πG(ρm + ρe f f )/3 � 0. This relation
implies that, in order for an extra field with trivial Yαβ to induce a bounce solution for our spatially flat
metric, it would need to have ρe f f < 0, which is undesirable from a physical point of view.

1 In our case, R reduces to the ordinary flat FRW Ricci scalar curvature of general relativity due to the fact that metric components
gµν(x) do not depend on y variables, as was shown in Reference [49].
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4. Bounce from Scalar–Tensor Theory on the Fiber Bundle

In this section, we investigate bounce generation in theories that include scalar–tensor sectors on the
fiber bundle. These constructions are very general, with a very rich structure and behavior, which reveals
the significant capabilities of Finsler-like geometry. We first present the basics of this construction, and then
we proceed to the investigation of two explicit scenarios.

4.1. Model

We consider a fibered space over a pseudo-Riemannian spacetime manifold M of the form
M × {φ(1)} × {φ(2)}, where φ(1),φ(2) stand for the fiber coordinates. Under coordinate transformations
on the base manifold, fiber coordinates behave like scalars. Moreover, the space is equipped with a
nonlinear connection with coefficients N (α)µ (xν ,φ(β)), where µ, ν take values from 0 to 3, and α, β take the

values 1 and 2 [52]. Its adapted bases for the tangent and cotangent spaces are {δµ � ∂µ −N (β)µ ∂φ(β) , ∂φ(α)},
where a summation is implied over the possible values of β, and {dxµ, δφ(α) � dφ(α) + N (α)µ dxµ} with a
summation implied over the possible values of µ. The metric structure of the space is defined as [52]:

G � gµν(x)dxµ ⊗ dxν + v(α)(β)(x) δφ(α) ⊗ δφ(β). (47)

The metric coefficients for the fiber coordinates are set as v(0)(0) � v(1)(1) � φ(xµ) and
v(0)(1) � v(1)(0) � 0. Note that function φ is clearly a scalar under coordinate transformations. A detailed
investigation of the above construction was performed in Reference [52], where a metrical d-connection was
introduced and its curvature and torsion tensor coefficients were calculated. Additionally, the Raychaudhuri
equations for the model were derived in Reference [53].

We can now write an action as [53]:

SG �
1

16πG

∫ √
| det G| LGdx(N), (48)

where LG is taken equal to the scalar curvature of the d-connection, and dx(N) � d4x ∧ dφ(1) ∧ dφ(2).
In the special case of a holonomic basis, i.e., [δµ, δν] � 0, the scalar curvature of the d-connection is

R � R − 2
φ
�φ +

1
4φ2 ∂

µφ∂µφ, (49)

where R is the scalar curvature of the Levi-Civita connection, and � is the d’Alembert operator with respect
to it. On the other hand, in the general case, one obtains the scalar curvature as

R̃ � R − 2
φ
�φ +

1
4φ2 ∂

µφ∂µφ +
1
φ
∂µφ ∂φ(α)N

(α)
µ . (50)

Additionally, we can add the matter sector, too, considering total action

S �
1

16πG

∫ √
| det G| LGdx(N) +

∫ √
| det G| LM dx(N). (51)

Since, for determinants det G and det g ,we have relation det G � φ2 det g, the above total action can
be rewritten as

S �
1

16πG

∫ √
| det g | φLGdx(N) +

∫ √
| det g | φLM dx(N). (52)

In the following two subsections, we separately study the bounce realization in the holonomic (LG � R)
and nonholonomic (LG � R̃) basis.



Universe 2019, 5, 74 10 of 17

4.2. Bounce in Holonomic Basis

Let us consider the total action Equation (52) in the case of the holonomic basis, also allowing for a
potential for the scalar field, namely [53],

S �
1

16πG

∫ √
| det g |

[
φR −V(φ)

]
dx(N)

+

∫ √
| det g | φLM dx(N), (53)

where R is the holonomic scalar curvature of Equation (49). We mention here that the above action belongs
to the Horndeski class; hence, the resulting equations of motion are guaranteed to have up to second-order
derivatives [72]. In particular, the field equations for the metric are extracted as

Eµν � 8πGTµν +
1
φ

(
∇µ∇νφ − gµν�φ

)
+

1
4φ2

[
1
2

gµν(∇φ)2 − ∇µφ∇νφ
]
− 1

2φ
gµνV , (54)

where Eµν � Rµν − 1
2 Rgµν is the Einstein tensor, Tµν � − 2√

|g |
δ(
√
|g |LM )
δgµν is the energy–momentum

tensor, and ∇µ is the Levi-Civita covariant derivative, while the scalar-field (extension of Klein–Gordon)
equation reads as

�φ � 2φ
(
R −V′

)
+

1
2φ
(∇φ)2 + 32πGLMφ, (55)

with V′ � dV/dφ. It is interesting to note that, in the scenario at hand, we obtained effective interaction
between the scalar field and the matter sector due to the transformation from a G-metric to a g-metric.

Applying the above equations to the FRW metric Equation (1), focusing on the flat case, and neglecting
thematter sector, since we are interested in early-time bounce realization, we obtained the followingmodified
Friedmann equations:

3H2
� −3H

Ûφ
φ
−
Ûφ2

8φ2 +
1

2φ
V (56)

ÛH + H2
� − 1

2φ
( Üφ + H Ûφ

)
+

Ûφ2

12φ2 +
V
6φ

(57)

Üφ + 3H Ûφ � −12φ
(
2H2

+ ÛH
)
+

Ûφ2

2φ
+ 2φV′, (58)

out of which two are independent.
We now proceed to show how it is possible to obtain a specific bounce in this construction.

As we observed from the above equations, we may choose specific scalar-field potential that can satisfy
the general bounce conditions of Equations (4) and (5) and, thus, induce bounce realization. We follow
the procedure of References [19,26–28,73], and we first start from the desired result, that is, we impose a
known form of scale factor a(t) possessing bouncing behavior. Thus, H(t) is known, too. Eliminating V
from Equations (56) and (57) gives simple differential equation

4φ(t) Üφ(t) − Ûφ(t)[ Ûφ(t)+ 4H(t)φ(t)]+ 8 ÛH(t)φ(t)2 � 0, (59)

which can be solved to provide φ(t). Then, this φ(t) can be inserted into Equation (56) and provide V(t) as

V(t) � 6H(t)[ Ûφ(t)+ φ(t)H(t)]+
Ûφ(t)2

4φ(t) . (60)
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Finally, knowing both φ(t) and V(t), eliminating time we can extract the explicit form of potential
V(φ). Hence, it is this potential that generates the initially given desired bouncing scale factor a(t).

Let us provide an explicit example of the bounce realization. We start by inserting desired bouncing
scale factor of Equation (24) and we apply the above steps. Since analytical solutions cannot be obtained,
we numerically solve Equation (59) and find φ(t), and then we use Equation (60) to find V(t). These two
functions are shown in Figure 2. Hence, from these φ(t) and V(t), we reconstruct potential V(φ), which is
depicted in Figure 3.

-0.3 -0.2 -0.1 0.0 0.1
0.00

0.02

0.04

0.06

-0.3 -0.2 -0.1 0.0 0.1
0.2

0.4

0.6

t

V

t

Figure 2. Solution for scalar field φ(t) (upper graph) and of potential V(t) (lower graph), for the holonomic
basis, under imposed bouncing scale factor Equation (24) with B � 1, in units where 8πG � 1.

0.00 0.02 0.04 0.06
0.2

0.4

0.6

V

Figure 3. Reconstructed scalar potentialV(φ)usingFigure 2, under imposedbouncing scale factorEquation (24)
with B � 1, in units where 8πG � 1.

Therefore, if this V(φ) is imposed as an input, one acquires the bounce realization and, in particular,
bouncing scale factor Equation (24).
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4.3. Bounce in Nonholonomic Basis

We now proceed to the investigation of the nonholonomic case, namely, we consider the total action
Equation (52) with LG � R̃, i.e.,

S �
1

16πG

∫ √
|g | φR̃dx(N) +

∫ √
|g | φLM dx(N), (61)

where R̃ is the nonholonomic scalar curvature of Equation (50). This action leads to the following equations
of motion for the metric and the scalar field:

Eµν � 8πGTµν +
1
φ

(
∇µ∇νφ − gµν�φ

)
+

1
4φ2

[
1
2

gµν(∇φ)2 − ∇µφ∇νφ
]

−
(
δλµ∂νφ −

1
2

gµν∂λφ
)

Nλ (62)

�φ � 2φR +
1

2φ
(∇φ)2 + 32πGLMφ − φDµNµ, (63)

where Nµ ≡ ∂φ(α)N
(α)
µ , and with DµNλ � δµNλ + ΓλκµNκ being the d-covariant differentiation on the fiber

bundle where Γλκµ are the Christoffel symbols. We note that the last term in Equation (63), which reflects the
internal structure of Finsler-like geometry, can be seen to act as an effective potential for scalar field φ. Since
every other quantity in Equations (62) and (63) only depends on xµ coordinates, this should also be the case
for Nλ for consistency (equivalently ∂φ(β)∂φ(α)N

(α)
µ � 0 on shell).

Applying the above equations of motion in FRW metric Equation (1), focusing on the flat case, and
neglecting the matter sector, since we are interested in early-time bounce realization, leads to the modified
Friedmann equations

3H2
� −3H

Ûφ
φ
−
Ûφ2

8φ2 −
1
2
ÛφN0 (64)

ÛH + H2
� − 1

2φ
( Üφ + H Ûφ

)
+

Ûφ2

12φ2 +
1
3
ÛφN0 (65)

Üφ + 3H Ûφ � −12φ
(
2H2

+ ÛH
)
+

Ûφ2

2φ
+ φ

( ÛN0
+ 3HN0) , (66)

out of which two are independent, where, as we mentioned, due to symmetries, all quantities only depend
on time. Thus, in the Friedmann equations, we acquire a modification reflecting the nonholonomicity of the
fiber bundle of the underlying Finsler-like geometry.

Let us now show how this constructionmay give rise to bounce realization. From the form of Friedmann
Equations (64) and (65), we deduce that we may choose a specific nonholonomic function N0(t) that can
satisfy the general bounce conditions of Equations (4) and (5) and, thus, induce the bounce. We first start
from the desired result, that is, we impose as input a scale factor form a(t) that possesses bouncing behavior.
Therefore, H(t) is known, too. Eliminating N0 from Equations (64) and (65) gives simple differential equation

Üφ(t)+ 5H(t) Ûφ(t)+ 2φ(t)[ ÛH(t)+ 3H(t)2] � 0, (67)
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which can be solved to provide φ(t). Then, this φ(t) can be substituted into Equation (64) and provide
N0(t) as

N0(t) � −6

[
H(t)
φ(t) +

Ûφ(t)
24φ(t)2 +

H(t)2
Ûφ(t)

]
. (68)

Hence, it is this N0(t), induced by the nonlinear connection of Finsler-like geometry, that generates the
initially given desired bouncing scale factor a(t).

We close this subsection by providing an explicit example of bounce realization. We use bouncing
scale factor Equation (24) as input, and we apply the above steps. We numerically solve Equation (67) and
find φ(t), and then use Equation (68) to find N0(t). In Figure 4, we depict the solution for N0(t). Hence,
if this N0 is imposed as input, one obtains the bounce realization and, in particular, bouncing scale factor
Equation (24).

-0.10 -0.05 0.00 0.05 0.10
-20

-10

0

10

N
0

t

Figure 4. Reconstructed time-dependent part N0(t) related to the nonlinear connection for the nonholonomic
basis under imposed bouncing scale factor Equation (24) with B � 1, in units where 8πG � 1.

5. Conclusions

In this work, we investigated bounce realization in the framework of Finsler and Finsler-like gravity.
Finsler and Finsler-like geometries are natural extensions of Riemannian geometry, where one allows that
physical quantities may directly depend on observer four-velocity. Hence, gravitational theory based on
Finsler and Finsler-like gravity provides gravitational modification, since it induces extra terms in the
field equations. When applied to a cosmological framework, the richer intrinsic structure of Finsler and
Finsler-like geometries is reflected in extra terms in the resulting modified Friedmann equations. Thus, these
terms can lead to bounce realizations.

In our analysis, we considered various Finsler and Finsler-like constructions, and we examined
whether bouncing solutions could be obtained. As a first model, we considered the so-called general
very special relativity, which presents a slight Lorentz violation quantified by a single parameter, and the
“spurionic” one form. As we showed, under linear approximation, this scenario cannot lead to a bounce.
However, considering the Finsler–Randers space, in which the intrinsic Finslerian structure is reflected in
the appearance of a new function in the Friedmann equations (the variation of anisotropy), we saw that
bounce conditions could easily be fulfilled and, thus, the bounce could be realized.

As a next construction, we examined Finsler-like gravity on the tangent bundle. Performing analysis
and considering the two involved curvature tensors, we extracted the Friedmann equations that contain a
modification resulting from the tangent-bundle-related S-curvature. Nevertheless, for simple models and
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standard matter, these extra terms cannot drive a bouncing solution since they cannot lead to violation of
the null-energy condition.

As a last construction, we considered theories that include scalar–tensor sectors on the fiber bundle.
These theories present a very rich structure revealing the capabilities of Finsler-like geometry. In particular,
the nonlinear connection induces a new degree of freedom that behaves as a scalar under coordinate
transformations. In a cosmological framework, this scalar field appears in the Friedmann equations,
and therefore its dynamics may trigger a bounce. In the case of a holonomic basis, we showed that the
bounce could easily be obtained, and we provided a way of the reconstruction of the potential that gives rise
to a desired bouncing scale factor. Similarly, in the case of a nonholonomic basis, we saw that the bounce
could easily be realized, and we presented the reconstruction procedure of the time coefficient related to the
nonlinear connection that induces the desired bounce.

In summary, we saw that Finsler and Finsler-like geometries are natural frameworks for the realization
of bounce cosmology. Apart from background evolution, one should additionally investigate various
scenarios at the perturbation levels, since the process of perturbations through the bounce phase is strongly
related to the subsequent development of the large-scale structure, and hence to observations. Such detailed
perturbation analysis lies beyond the scope of the present work and it is left for future investigation.
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