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Abstract: Extensions of Einstein’s General Relativity (GR) can formally be given a GR structure in
which additional geometric degrees of freedom are mapped on an effective energy-momentum tensor.
The corresponding effective cosmic medium can then be modeled as an imperfect fluid within GR.
The imperfect fluid structure allows us to include, on a phenomenological basis, anisotropic stresses
and energy fluxes which are considered as potential signatures for deviations from the cosmological
standard Λ-cold-dark-matter (ΛCDM) model. As an example, we consider the dynamics of a
scalar-tensor extension of the standard model, the eΦΛCDM model. We constrain the magnitudes
of anisotropic pressure and energy flux with the help of redshift-space distortion (RSD) data for the
matter growth function f σ8.

Keywords: fluid cosmology; cosmological perturbation theory; scalar-tensor theory; cosmic
structure formation

1. Introduction

The last two decades have seen a tremendous activity within the community of cosmologists and
astrophysicists to find a satisfactory explanation for the results of the observations of supernovae of
type Ia (SNIa), reported in [1–3], which suggested an accelerated expansion of the scale factor of the
Robertson–Walker (RW) metric. The apparently simplest way to account for this behavior is to assume
the existence of a cosmological constant Λ with a suitable value (see, e.g., [4,5]). From a purely general
relativistic (GR) point of view, Λ might be seen as another gravitational constant along with Newton’s
gravitational constant. On the other hand, an effective cosmological constant has been associated with
the quantum vacuum (see, e.g., [6]). Taking this into account, the actually measured gravitational
constant might be a combination of a purely geometric and a quantum contribution. This context gave
rise to a number of discussions concerning the cosmic coincidence problem [7–11].

Since accelerated expansion in inflationary models of the early universe is conveniently described
in terms of scalar fields, a corresponding description has also been applied to the current phase of the
cosmic evolution. This is equivalent to making the cosmological “constant" a dynamic quantity. Along
this line, a number of different approaches have been developed which either assume the existence of
some form of exotic matter within GR or modify Einstein’s theory of gravity. In the meantime, a huge
amount of data of various types have been accumulated [12–15].

Facing the multitude of models at hand, one might wish to keep an eye on unifying
phenomenological aspects of different types of description. It is this intention which motivates
the present paper. Our starting point is the observation that any extension of Einstein’s GR can
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formally be recast into an Einsteinian structure with a suitably defined effective energy-momentum
tensor [16,17]. In the presence of an adequate timelike vector field, this energy-momentum tensor
is then characterized by an energy density, a scalar isotropic pressure, an anisotropic pressure and
an energy flux. It has the structure of the energy-momentum tensor of an imperfect fluid [18–21].
Imperfect-fluid dynamics can provide an effective description for cosmological models beyond the
standard model. Anisotropic stresses and/or energy fluxes are typical ingredients of a non-standard
dynamics of, e.g., scalar-tensor theories. A robust phenomenological theory may represent a unifying
framework for approaches that differ in their detailed underlying microscopic dynamics. Since the
anisotropic pressure determines the gravitational slip, a suitable parametrization may be used to
quantify potential deviations from the standard model and, combined with observational data, to put
limits on such deviations. A similar comment holds for heat–flux caused deviations.

The resulting gravitational dynamics depends on the (effective) fluid quantities directly, but
it does not explicitly depend on the detailed underlying microscopic dynamics which is either
unknown or beyond a straightforward and transparent analytical treatment [22]. For a scalar field,
e.g., there is a dependence on this field only through the mentioned fluid type quantities, in the
simplest case energy density and isotropic pressure, but there is no further direct dependence on
the scalar-field details themselves. On this basis, we aim to give a phenomenological fluid-type
description of the cosmological dynamics in which different models are determined by a set of
phenomenological parameters such as an equation-of-state parameter and an adiabatic sound speed
parameter. Additionally, and this is what we consider to be the new aspect of our study, it is necessary
to introduce analogous parameters for the anisotropic pressure and the energy flux. We split the total
effective energy-momentum tensor into two components, one of them being a pressureless perfect
fluid, the second one an imperfect fluid. The pressureless fluid is supposed to account for some form
of (dark) matter, the imperfect component is intended to provide an effective description of dark
energy. While rather general, such a purely phenomenological description necessarily leaves open the
microscopic origin of these quantities.

One of the tools to discriminate between different models of the cosmological dark sector is
the growth rate of matter perturbations [23–27]. Competing models with similar behavior in the
homogeneous and isotropic background will generally have different predictions for the dynamics of
matter inhomogeneities. As an example, we consider the simplest possible scalar-tensor extension of
the ΛCDM model. In this minimalist approach, we remain in the vicinity of the standard model at the
present epoch [28]. The present paper advances a preliminary study in [29] where the matter growth
rate was obtained in a simplified manner on the basis of a rough approximation which both avoided
a solution of the full dynamics and neglected the heat flux. Here, we consider the full perturbation
dynamics with the heat flux included.

In Section 2, we introduce the energy-momentum tensors of the cosmic medium as a whole and
those of the individual components. The general conservation laws are presented in Section 3. Section 4
is devoted to the perturbation dynamics. The relevant metric and fluid quantities are introduced and a
modified Poisson equation is obtained. A coupled system of two second-order equations for the entire
cosmological dynamics is established from which the dynamics of matter perturbations is derived. All
this is applied in Section 5 to the special case of the eΦΛCDM model. In Section 6, we constrain the
parameters that describe deviations from the standard model by contrasting the predictions of this
model with recent redshift-space distortion (RSD) data. Section 7 provides our conclusions concerning
the status of the present approach.
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2. Energy-Momentum Tensors

We assume the cosmic medium to consist of pressureless perfect-fluid type matter (subindex (m))
and a second component, modeled as a general imperfect fluid (subindex (x)). The cosmic substratum
as a whole is then an imperfect fluid as well. It is described by an energy-momentum tensor

Tµν = T(m)µν + T(x)µν. (1)

Greek tensorial indices run over 0, 1, 2, 3. The first part, T(m)µν, describes pressureless matter
through

T(m)µν = ρmu(m)µu(m)ν, (2)

where uµ

(m)
with uµ

(m)
u(m)µ = −1 is the matter four-velocity which may be associated with an observer.

The matter energy density is
ρm = T(m)µνuµ

(m)
uν
(m). (3)

(For scalar quantities, we use the subindex m instead of (m)). The second part, T(x)µν, is given by the
general split with respect to a timelike unit vector uµ

(x),

T(x)µν = ρxu(x)µu(x)ν + pxh(x)µν + Π(x)µν + q(x)µu(x)ν + q(x)νu(x)µ, (4)

where uµ

(x)u(x)µ = −1 and

ρx = T(x)µνuµ

(x)u
ν
(x), px =

1
3

hµν

(x)T(x)µν, q(x)µ = −hν
(x)µT(x)νσuσ

(x), (5)

Π(x)µν = hσ
(x)〈µhτ

(x)ν〉T(x)στ ≡
1
2

(
hσ
(x)µhτ

(x)νT(x)στ + hσ
(x)νhτ

(x)µT(x)στ

)
− 1

3
h(x)µνhστ

(x)T(x)στ (6)

with
hµν

(x) = gµν + uµ

(x)u
ν
(x), hµν

(x)u(x)ν = q(x)µuµ

(x) = Π(x)µνuµ

(x) = Πµ

(x)µ = 0. (7)

(For scalar quantities, we use the subindex x instead of (x)). Here, ρx is the energy density of component
x and px is its isotropic pressure. The heat–flux vector is denoted by q(x)µ and the anisotropic pressure
by Π(x)µν. In general, the timelike unit vector uµ

(x) does not coincide with uµ

(m)
. In a scalar-field

representation, e.g., it may be related to the timelike gradient of a scalar field. We shall choose both
four-velocities to coincide in a homogeneous and isotropic background, but they will differ, in general,
on the perturbative level.

For the total energy-momentum tensor, we assume a decomposition with respect to still another
timelike unit vector uµ,

Tµν = ρuµuν + phµν + Πµν + qµuν + qνuµ, (8)

where
ρ = Tµνuµuν, p =

1
3

hµνTµν, qµ = −hν
µTνσuσ, (9)

Πµν = hσ
〈µhτ

ν〉Tστ ≡
1
2

(
hσ

µhτ
ν Tστ + hσ

ν hτ
µTστ

)
− 1

3
hµνhστTστ , (10)

with
uµuµ = −1, hµν = gµν + uµuν, hµνuν = qµuµ = Πµνuµ = Πµ

µ = 0. (11)

In this decomposition, ρ is the total energy density, p is the total isotropic pressure, qµ is the total
heat flux and Πµν is the total anisotropic pressure. The relation between uµ, uµ

(m)
and uµ

(x) will be
clarified below.



Universe 2019, 5, 68 4 of 23

3. General Conservation Equations

We shall assume separate energy-momentum conservation of both components. The separate
matter conservation equations are

− u(m)νTνκ
(m);κ = ρm,αuα

(m) + Θmρm = 0 (12)

and
hα
(m)νTνκ

(m);κ = ρmu̇α
(m) = 0. (13)

Here, Θm ≡ uα
(m);α and u̇α

(m)
≡ uα

(m);βuβ

(m)
is the matter four-acceleration. In the homogeneous and

isotropic background, Equation (12) reduces to

dρm

dt
+ 3Hρm = 0, (14)

where H is the Hubble rate H ≡ ȧ
a and a is the scale factor of the RW metric. In this background,

Equation (13) is identically satisfied.
The conservation equations for the x component are

− u(x)νTνκ
(x);κ = ρx,αuα

(x) + Θx (ρx + px) +∇µqµ

(x) = 0, (15)

where ∇µqµ

(x) ≡ hα
µqµ

(x);α and

hα
(x)νTνκ

(x);κ = (ρx + px) u̇a
(x) + px,νhαν

(x) +∇
κΠ(x)µκ + hν

µ(x) q̇(x)ν +
4
3

Θhµκ(x)q
κ
(x) = 0 (16)

with Θx ≡ uα
(x);α and a four-acceleration u̇α

(x) ≡ uα
(x);βuβ

(x). We have neglected here terms that will
not contribute in a linear perturbation theory about a homogeneous and isotropic background with
vanishing Π(x)µκ and qµ

(x). The pressurefree matter motion is geodesic (u̇α
(m)

= 0), while the motion of
the x component is generally not. For the background dynamics, one has

dρx

dt
+ 3H (1 + wx) ρx = 0 (17)

with an equation-of-state (EoS) parameter wx that has to be specified for a given model.
The general total energy-conservation equation becomes (neglecting contributions of u̇µqµ with

u̇α ≡ uα;βuβ and σµνΠµν with σµν ≡ 1
2
(
uµ;ν + uν;µ − 2

3 hµνuα
α

)
which will be of higher than first order

in a linear perturbation theory)
ρ̇ + Θ (ρ + p) +∇µqµ = 0, (18)

where ρ̇ ≡ ρ,µuµ and Θ ≡ uα
;α. For the momentum conservation, we have (again taking into account

only those terms that contribute in a linear perturbation theory)

(ρ + p) u̇µ +∇µ p +∇κΠµκ + hν
µ q̇ν +

4
3

Θhµκqκ = 0. (19)

In the homogeneous and isotropic background, qµ = u̇µ = Πµκ = σµκ = ωµκ ≡ 1
2
(
uµ;κ − uκ;µ

)
=

0. In our linear perturbation theory, we will neglect products of these first-order quantities.
In the homogeneous and isotropic background, we identify all four-velocities, i.e. ua

(m)
= ua

(x) =

ua. Then,
dρ

dt
+ 3H (1 + w) ρ = 0 (20)

with
w ≡ p

ρ
=

px

ρ
= wxΩx, Ωx =

ρx

ρ
= 1−Ωm, Ωm =

ρm

ρ
. (21)
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4. Perturbation Dynamics

4.1. Metric and Fluid Quantities

We restrict ourselves to scalar perturbations, described by the line element (in the longitudinal gauge)

ds2 = − (1 + 2φ)dt2 + a2 (1− 2ψ) δabdxadxb. (22)

The fluid-dynamical system of perturbation equations will be established by adequately
generalizing the corresponding steps in [30–33]. First-order fluid quantities will be denoted by a
hat symbol. The perturbed time components (tensorial index 0) of the four-velocities are

û0 = û0 = û0
(m) = û0

(x) =
1
2

ĝ00 = −φ . (23)

We define the (three-) scalar quantities v, vm and vx by (latin indices denote spatial components)

a2ûm = ûm ≡ v,m, (24)

as well as by
a2ûa

(m) = û(m)a ≡ vm,a and a2ûa
(x) = û(x)a ≡ vx,a, (25)

respectively. The perturbed expansion scalar becomes

Θ = uµ
;µ ⇒ Θ̂ =

1
a2 ∆v− 3ψ̇− 3Hφ, (26)

where ∆ denotes the three-dimensional Laplacian. The corresponding first-order expressions for
Θm = uµ

(m);µ and Θx = uµ

(x);µ are

Θ̂m =
1
a2 ∆vm − 3ψ̇− 3Hφ and Θ̂x =

1
a2 ∆vx − 3ψ̇− 3Hφ, (27)

respectively.
With T̂0

0 = ρ̂ as well as T̂0
(x)0 = ρ̂x and T̂0

(m)0 = ρ̂m, it follows that, at first order,

ρ̂ = ρ̂x + ρ̂m. (28)

With

T̂0
a = (ρ + p) ûa + qa, T̂0

(m)a = ρmû(m)a, T̂0
(x)a = (ρx + px) û(x)a + q(x)a, (29)

the first-order relation

(ρ + p) ûa + qa = ρmû(m)a + (ρx + px) û(x)a + q(x)a (30)

is valid. According to our restriction to scalar perturbations, the vectors q(x)a and qa are represented by
gradients of scalars, i.e.,

q(x)a = qx,a and qa = q,a, (31)

respectively. This leads to

v =
ρm

ρ + p
vm +

ρx + px

ρ + p
vx +

qx − q
ρ + p

, (32)

i.e., in the presence of heat fluxes the relation between the different velocities is modified compared
with the perfect-fluid case.
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From the perturbed spatial components

T̂b
a = p̂δb

a + Πb
a, T̂b

(m)a = 0, T̂b
(x)a = p̂xδb

a + Πb
(x)a, (33)

we have
p̂δb

a + Πb
a = p̂xδb

a + Πb
(x)a. (34)

Since Πa
a = Πa

(x)a = 0, this reduces to

p̂ = p̂x, Πb
a = Πb

(x)a. (35)

4.2. Modified Poisson Equation

Taking into account heat–flux effects in the perturbation dynamics modifies the usual Poisson-type
equation that relates the comoving density perturbations and the gravitational potential ψ. Coupling
the 0-0 and the 0-a field equations leads to

∆ψ = 4πGa2 (ρ̂c − 3Hq) =
3
2

H2a2
(

ρ̂c

ρ
− 3

Hq
ρ

)
, (36)

where we introduced the comoving density perturbation

ρ̂c ≡ ρ̂− 3H (ρ + p) v. (37)

Then, the (generalized) Poisson equation becomes (in the k space)

− 2
3

k2

H2a2 ψ = ε, (38)

where

ε ≡ δ− 3H
[(

1 +
p
ρ

)
v +

q
ρ

]
. (39)

The heat–flux contribution has to be included in the generalized definition of comoving
energy–density perturbations. The quantity ε represents a generalized comoving energy–density
perturbation which takes into account also the existence of a heat flux contribution q in addition to the
velocity potential v. Equation (38) with (39) generalizes the well-known corresponding relation for
perfect fluids. Either the potential ψ or the (generalized) comoving energy–density perturbation ε may
be used as independent variable of the perturbation theory.

4.3. Combination of Conservation and Raychaudhuri Equations

The basic set of first-order perturbation equations can be obtained by adequately generalizing
previous fluid cosmological calculations (cf. [30–33]). The essential ingredient is a combination of the
total first-order conservation equations with the first-order Raychaudhuri equation. The result is

ε′′ +

(
3
2
− 15

2
p
ρ
+ 3

p′

ρ′

)
ε′

a
−
[

3
2
+ 12

p
ρ
− 9

2
p2

ρ2 − 9
p′

ρ′

]
ε

a2 −
1

a2H2
∆
a2

(
p̂c

ρ
− p′

ρ′
l
)

−3
2

(
1 +

p
ρ

) [
l′

a
+

3
2a2

(
1− p

ρ

)
l
]

−2
a

∆Π′

a2ρ
−
[

3
(

1− p
ρ
+ 2

p′

ρ′

)
∆

a2H2 +
2
3

∆2

a4H4

]
H2

a2
Π
ρ

= 0, (40)

where l ≡ Θq
ρ encodes the heat–flux contribution and the prime denotes a derivative with respect to

the scale factor a. So far, neither the pressure perturbations p̂c nor the quantities l and Π are specified.
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In a strict sense, they are to be determined from an underlying microscopic theory along with the EoS.
If such theory is not available, progress can be made through a phenomenological approach.

4.4. Relative Perturbations

With the help of the quantities

Dc ≡ ρ̂c

ρ + p
=

δc

1 + p/ρ
, ρ̂c

m ≡ ρ̂m + ρ̇mv, δc
m ≡

ρ̂c
m

ρm
, (41)

we define the relative density perturbations (“entropy perturbations")

Sm ≡ Dc − δc
m, (42)

as the difference between total and pure matter perturbations. The perturbations of the pressure are
the sum of an adiabatic part ṗ

ρ̇ ρ̂c and a nonadiabatic contribution p̂nad,

p̂c =
ṗ
ρ̇

ρ̂c + p̂nad. (43)

For our configuration, the nonadiabatic part explicitly becomes

p̂nad = p̂c
x −

ṗx

ρ̇x
ρ̂c

x +
ρm (ρx + px)

(ρ + p)
ṗx

ρ̇x

[
ρ̂c

x
ρx + px

− ρ̂c
m

ρm

]
, (44)

where
ρ̂c

x ≡ ρ̂x + ρ̇xv and p̂c
x ≡ p̂x + ṗxv. (45)

The combination p̂c
x −

ṗx
ρ̇x

ρ̂c
x in Equation (44) accounts for the intrinsic nonadiabatic perturbations

of the x component while the last term appears due to the two-component nature of the cosmic
medium. As a consequence, the fluid as a whole is nonadiabatic even if each of its components is
adiabatic on its own. With ρ̂c

x = ρ̂c − ρ̂c
m in the last term on the right-hand side of Equation (44), we

may write
ρ̂c

x
ρx + px

− ρ̂c
m

ρm
=

ρ + p
ρx + px

(Dc − δc
m) =

ρ + p
ρx + px

Sm. (46)

Then, the nonadiabatic pressure perturbations are

p̂nad = p̂c
x −

ṗx

ρ̇x
ρ̂c

x + ρm
ṗx

ρ̇x
Sm. (47)

This implies that, through the pressure perturbations, the dynamics of the total energy–density
perturbation ε (or δc) is coupled to the dynamics of Sm (cf. Equation (40)). To obtain the dynamics of
Sm, we combine the conservation equations for the total medium with those for the matter component.
On this basis, the following second-order equation for Sm can be derived (again generalizing steps
described in [30–33]),

S′′m +
3
2

(
1− p

ρ

)
S′m
a
− ∆

a2H2
p̂c

a2 (ρ + p)
+

3
a

p̂′nad
ρ + p

+ 9
(

7
6
+

p′

ρ′
− 1

2
p
ρ

)
p̂nad

a2 (ρ + p)

−2
3

1
a2H2

∆2Π
a4 (ρ + p)

+
3

a2H2
p′

ρ′
H∆q

a2 (ρ + p)
= 0. (48)

As in Equation (40), neither the pressure perturbations p̂c nor the quantities l (or q) and Π are
specified. The idea now is to determine the pressure perturbations as well as l and Π in terms of our
basic variables ε and Sm in order to establish a closed system for ε and Sm from which subsequently
the matter perturbations can be obtained.
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4.5. Perturbations of (an-)Isotropic Pressures and Energy Flux

The pressure perturbations should be considered in the rest frame of the x component. Since the
combination p̂x − ṗx

ρ̇x
ρ̂x is gauge invariant, the first part on the right-hand side of Equation (47) may be

written
p̂c

x −
ṗx

ρ̇x
ρ̂c

x = p̂x −
ṗx

ρ̇x
ρ̂x = p̂cx

x −
ṗx

ρ̇x
ρ̂cx

x , (49)

with
p̂cx

x ≡ p̂x + ṗxvx, ρ̂cx
x ≡ ρ̂x + ρ̇xvx, (50)

where vx is the velocity potential of component x, introduced in Formula (25).
The generalized gauge-invariant comoving energy–density perturbation of the x component is

ρ̂ε
x ≡ ρ̂x − 3H [(ρx + px) vx + qx] . (51)

This definition for ρ̂ε
x parallels the definition of the comoving energy–density perturbation ε for

the medium as a whole (cf. Equation (39)).
The speed of sound is defined as the coefficient that relates pressure perturbations and

energy–density perturbations within the rest frame (which in the perfect-fluid case is vx = 0). In the
presence of a heat flux with scalar potential qx, a more appropriate definition is

p̂ε
x = c2

ε ρ̂ε
x (52)

with the accordingly defined pressure perturbation

p̂ε
x ≡ p̂x − 3H

ṗx

ρ̇x
[(1 + wx) ρxvx + qx] . (53)

Then, the total (isotropic) pressure perturbation on subhorizon scales k2 � a2H2 are given by

p̂ε

ρ
≡ p̂c

ρ
− ṗ

ρ̇
l = c2

ε
ρx + px

ρ + p
ε + c2

ε ΩmSm

(
a2H2

k2 � 1
)

. (54)

Obviously, the pressure perturbations couple the dynamics of ε to that of the relative perturbations
Sm. The entire dynamics is given by the coupled system of equations for ε and Sm in which there
appear the so far undetermined quantities l and Π. The simplest and most direct way to obtain a
closed system consists of requiring l and Π to be linear combinations of ε and Sm. This is achieved by
a general ansatz for l,

l =
3Hq

ρ
= αε + βSm, (55)

where α and β are phenomenological coefficients, as well as by a corresponding ansatz for Π,

H2Π
ρ

= µε + νSm, (56)

with phenomenological coefficients µ and ν. Notice that relations (55) and (56) are constructed to
parallel the expression (54) for the isotropic pressure. The coefficients α and β quantify the rôle
of the heat flux on the perturbation dynamics, the coefficients µ and ν determine the influence
of the anisotropic pressure. As the sound speed parameter cx, the coefficients α, β, µ and ν

should be calculable from an underlying microscopic theory. Here, these coefficients are entirely
phenomenological. The perfect-fluid case is recovered for α = β = µ = ν = 0. Phenomenological
relations between anisotropic stresses and energy–density perturbations in different contexts can be
found, e.g., in [34–36]. A different parametrization of perturbations via equations of state was put
forward in [18–20] on the basis of a general scalar-field Lagrangian. Eliminating internal degrees of
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freedom, these authors introduced equations of state for the entropy perturbation and the anisotropic
stress in terms of perturbations of the density, the velocity and the metric perturbations to obtain
closed perturbation equations. Their basic variables are different from ours. The entropy perturbation,
e.g., is one of the two basic dynamical quantities in our context and neither velocity components nor
metric functions do appear explicitly in the system of equations. An imperfect fluid description of
scalar-tensor theories has been recently performed also in [21].

4.6. Coupled System of Equations for ε and Sm

With relations (55) and (56) together with Formula (54), the set of Equations (40) and (48) becomes
a closed system for ε and Sm. The result, after transforming to the k-space (∆→ −k2), is

ε′′ +

(
3
2
− 15

2
p
ρ
+ 3

p′

ρ′
+ A1

)
ε′

a
−
[

3
2
+ 12

p
ρ
− 9

2
p2

ρ2 − 9
p′

ρ′
− k2

a2H2 c2
ε Ωx

1 + wx

1 + w
− B1

]
ε

a2

+A2
S′m
a

+

(
k2

a2H2 c2
ε Ωm + B2

)
Sm

a2 = 0, (57)

where
w =

p
ρ
=

px

ρ
= wxΩx, (58)

A1 ≡ 2
k2

a2H2 µ− 3
2

(
1 +

p
ρ

)
α, (59)

A2 ≡ 2
k2

a2H2 ν− 3
2

(
1 +

p
ρ

)
β, (60)

B1 ≡
[

3
(

1− p
ρ
+ 2

p′

ρ′

)
k2

a2H2 −
2
3

k4

a4H4

]
µ− 9

4

(
1 +

p
ρ

)(
1− p

ρ

)
α, (61)

B2 ≡
[

3
(

1− p
ρ
+ 2

p′

ρ′

)
k2

a2H2 −
2
3

k4

a4H4

]
ν− 9

4

(
1 +

p
ρ

)(
1− p

ρ

)
β (62)

and

S′′m +

[
3
2

(
1− p

ρ

)
+

3c2
ε

1 + w
Ωm

]
S′m
a

+ M1(k, a)
Sm

a2 + E1(k, a)
ε′

a
+ E2(k, a)

ε

a2 = 0, (63)

with

M1(k, a) ≡ 1
1 + w

[
k2

a2H2 c2
ε Ωm + 3c2

ε

(
3

p
ρ
+

(
1
2
+ 3

p′

ρ′
− 9

2
p
ρ

)
Ωm

)
− 2

3
k4

a4H4 ν

]
, (64)

E1(k, a) =
3

1 + w

(
c2

ε −
p′x
ρ′x

)
1 + wx

1 + w
Ωx (65)

and

E2(k, a) ≡ 1
1 + w

{[
k2

a2H2 c2
ε + 3

((
c2

ε −
p′x
ρ′x

)(
1
2
+ 3

p′

ρ′
− 9

2
p
ρ
− 3Ωm

1 + w
p′x
ρ′x

)
− a

(
p′x
ρ′x

)′)]
1 + wx

1 + w
Ωx −

2
3

k4

a4H4 µ

}
. (66)

The system (57) and (63) describes the entire linear cosmological perturbation dynamics.
It represents the central set of equations for our analysis. As we shall demonstrate in the following,
its solution determines also the gravitational slip and the growth rate of matter fluctuations.
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4.7. Anisotropic Pressure and Gravitational Potentials

The spatial part of Einstein’s equation can be written as

Ĝa
b −

1
3

δa
b Ĝm

m = 8πG
(

T̂a
b −

1
3

δabT̂m
m

)
, (67)

where the left-hand side is determined by the difference ψ− φ,

Ĝa
b −

1
3

δa
b Ĝm

m =
1
a2

(
∂a∂b −

1
3

δab∆
)
(ψ− φ) , (68)

while the right-hand side of Equation (67) is related to the anisotropic pressure,

T̂a
b −

1
3

δabT̂m
m = Πa

b =
1
a2

(
∂a∂b −

1
3

δab∆
)

Π. (69)

It follows that
ψ− φ = 8πGΠ, (70)

the difference ψ− φ is directly proportional to the anisotropic pressure. Notice that, in the present
gauge, the quantities ψ and φ coincide with the Bardeen potentials Ψ and Φ, respectively. The relation
between the comoving total density perturbation ε and the gravitational potential ψ is given by
Equation (38). Combining Equation (38) with Equations (56) and (70), we obtain the relation

φ =

(
1 + 2µ

k2

a2H2

)
ψ− 3νSm (71)

between ψ and φ. In the limit µ = ν = 0, equivalent to a vanishing anisotropic pressure, we recover
ψ = φ. In the large-scale limit k2

a2 H2 � 1 and assuming the Sm contribution to be small, one has
ψ ≈ φ as well, but, on smaller scales, both potentials may be different. Using Equation (38) to write
relation (71) in the form

φ =

[
1 + 2

k2

a2H2

(
µ + ν

Sm

ε

)]
ψ, (72)

it is obvious that knowledge of the relation between ψ and φ requires the solution of the entire coupled
system of ε and Sm.

4.8. Matter Perturbations

The final aim is to find the matter perturbations from the solution of the system for ε and Sm. From
the definition of Sm (cf. Equation (42)) together with δc = ε + l, it follows that the matter perturbations
are determined by

δc
m =

ε

1 + w
+

l
1 + w

− Sm. (73)

These are the perturbations with respect to the rest frame of the cosmic fluid as a whole,
characterized by the quantity v. It is desirable, however, to calculate the matter-density perturbations
in the matter rest frame, characterized by the matter velocity potential vm. Denoting this perturbation
by δcm

m , the relation between both quantities is

δcm
m = δm −Θvm = δc

m + Θ (v− vm) . (74)

Restricting ourselves to sub-horizon scales again, the matter density perturbations in the matter
rest frame are

δcm
m =

ε

1 + wxΩx
− Sm

(
a2H2

k2 � 1
)

. (75)
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These matter perturbations are directly given by the solution of the coupled system (57) and (63) for ε

and Sm, respectively.
The entire setup so far is completely general and does not use any specific model for the x

component. It is also valid for any homogeneous and isotropic background. Since any generalized or
modified (compared with GR) gravitational theory can formally be rewritten as an effective Einsteinian
theory, our formalism is expected to be applicable for a broad range of models. In the following, we
apply this general scheme to a previously established scalar-tensor extension of the ΛCDM model,
called eΦΛCDM model, which provides us with a non-standard background dynamics. This completes
a preliminary study in [29], where the matter growth rate was obtained in a simplified manner on the
basis of a rough approximation without solving the full dynamics given by Equations (57) and (63)
and without including the heat flux.

5. eΦΛCDM Cosmology

5.1. Jordan–Brans–Dicke Theory

Our example originates from Jordan–Brans–Dicke (JBD) scalar-tensor theory [37–39], which was
inspired by earlier ideas of Mach. Generally, the gravitational interaction in scalar-tensor theories
is mediated by a scalar field in addition to the GR-type interaction through the metric tensor. Our
aim is to find an equivalent GR description of such extended gravitational theory by mapping the
additional (compared with GR) geometric degrees of freedom onto an effective fluid component. The
energy-momentum tensor of this effective fluid will, in general, be of the structure of an imperfect fluid,
i.e., it gives rise to effective anisotropic stresses and energy fluxes which are absent in a perfect-fluid
based GR description. With an effective imperfect fluid description at hand, the perturbation analysis
of the previous sections applies straightforwardly. In particular, it will be possible to calculate the
growth rate of matter perturbations. What is needed, however, is a solution for the homogeneous and
isotropic background which determines the coefficients in the set of first-order perturbation equations.
The background is no longer that of the standard ΛCDM model, but it has to be the background of
the extended gravitational theory. The first part of this section deals with the issue of how to obtain a
suitable solution for a homogeneous and isotropic dynamics that deviates from the ΛCDM model.

Starting from a JBD type action (see, e.g., [40–43])

S(gµν, Φ) =
1

2κ2

∫
d4x
√
−g
[

ΦR− ω(Φ)

Φ
(∇Φ)2 −U(Φ)

]
+ Sm

(
gµν

)
, (76)

where Sm is the matter part, the Jordan-frame gravitational field equations for scalar-tensor theories are

Φ
(

Rµν −
1
2

gµνR
)

= κ2T(m)µν

+
ω(Φ)

Φ

(
∂µΦ∂νΦ− 1

2
gµν (∇Φ)2

)
+∇µ∇νΦ− gµν�Φ− 1

2
gµνU, (77)

with κ2 ≡ 8πG and

�Φ =
1

2ω(Φ) + 3

(
κ2T − dω(Φ)

dΦ
(∇Φ)2 + Φ

dU
dΦ
− 2U

)
, (78)

where T is the trace of the matter energy-momentum tensor

T(m)µν = − 2√−g
δSm

δgµν . (79)

The choice of the symbol T(m)µν indicates that we shall identify this quantity with the matter
energy-momentum tensor of Section 2. In order to relate the entire formalism to the quantities of
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Section 2, we introduce a total effective energy-momentum tensor (cf. Equation (1)) Tµν = T(m)µν +

T(x)µν, where T(x)µν is an effective part that describes geometric “matter" and has the structure

T(x)µν ≡
(

1
Φ
− 1
)

T(m)µν +
1

κ2Φ

[
ω(Φ)

Φ

(
∂µΦ∂νΦ− 1

2
gµν (∇Φ)2

)
+∇µ∇νΦ− gµν�Φ− 1

2
gµνU

]
. (80)

Again, we have used the symbol T(x)µν, introduced in Section 2, to indicate identification with
expression (80). The same is true for the sum Tµν = T(m)µν + T(x)µν. With this definition, the field
Equation (77) acquires the Einsteinian form,

Rµν −
1
2

gµνR = κ2Tµν. (81)

Having written JBD theory as an effective GR theory allows us to use techniques developed within
the latter to make statements concerning the former as well. Our focus will be here on the background
dynamics. In a spatially flat homogeneous and isotropic model, one may associate a Hubble rate to the
scalar-tensor dynamics [43]:

H2 =
κ2

3
ρm

Φ
+

1
3Φ

[
1
2

ω(Φ)

Φ

(
∂Φ
∂t

)2
− 3H

∂Φ
∂t

+
1
2

U

]
, (82)

where H = 1
a

da
dt is the Hubble rate of the Jordan frame and a is the Jordan-frame scale factor.

Furthermore, assuming the matter component to be pressureless, one has

dH
dt

= −κ2

2
ρm

Φ
− 1

2Φ

[
ω(Φ)

Φ

(
∂Φ
∂t

)2
− H

∂Φ
∂t

+
d2Φ
dt2

]
, (83)

and
d2Φ
dt2 + 3H

dΦ
dt

=
1

2ω + 3

(
κ2ρm −

dω

dΦ

(
dΦ
dt

)2
−Φ

dU
dΦ

+ 2U

)
, (84)

as well as the matter conservation (14).
The structure of Equation (82) suggests the definition

ρx(Φ)
=

ρm

3

(
1
Φ
− 1
)
+

1
3κ2Φ

[
1
2

ω(Φ)

Φ

(
∂Φ
∂t

)2
− 3H

∂Φ
∂t

+
1
2

U

]
(85)

such that Equation (82) takes the form of an effective Friedmann equation 3H2 = κ2
(

ρm + ρx(Φ)

)
.

Obviously, ρx(Φ)
is determined by the dynamics of the scalar field, this is indicated by the additional

subscript (Φ).

5.2. JBD Inspired Effective Background Model

Here, we recall the basic elements of the previously established homogeneous and isotropic
scalar-tensor extension of the ΛCDM model [28]. Its main characteristic is an explicit analytical
expression for the Hubble rate in which deviations from the standard model are described by a
single constant parameter which also governs the effective scalar-field dynamics. The background
relations are found through a specific solution of the effective fluid dynamics in the Einstein frame
which subsequently is converted into the Jordan frame via a conformal transformation. To make
our presentation self-contained, we summarize the main steps of the corresponding derivation. The
starting point for the background analysis is the Einstein frame. The reason for this apparent detour is
that it is the Einstein frame in which it is possible to obtain a solution of the dynamics.
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5.2.1. General Einstein-Frame Dynamics

Generally, the Einstein-frame dynamics with a metric g̃µν follows from the (so far considered)
Jordan-frame dynamics with a metric gµν through the conformal transformation

gµν =
1
Φ

g̃µν = e2 b(ϕ) g̃µν (86)

together with a redefinition of the potential term,

V(ϕ) =
U(Φ)

2κ2Φ2 . (87)

Moreover, one has
1

4Φ2

(
dΦ
dϕ

)2
=

(
db
dϕ

)2
=

κ2

4ω(Φ) + 6
. (88)

For an RW metric and assuming uµ

(m)
= uµ, the general relations simplify considerably. With the

Einstein-frame scale factor ã and the Einstein-frame time coordinate t̃ the Einstein-frame Hubble rate
H̃ = 1

ã
dã
dt̃ becomes

H̃2 =
κ2

3

[
ρ̃m +

1
2

(
dϕ

dt̃

)2
+ Ṽ

]
, (89)

where ρ̃m is the matter-energy density in the Einstein frame. Quantities with a tilde have their meaning
in the Einstein frame, those without a tilde refer to the Jordan frame. Different from the Jordan-frame
dynamics, the matter part is not separately conserved but obeys the equation

dρ̃m

dt̃
+ 3H̃ρ̃m =

dϕ

dt̃
db
dϕ

ρ̃m (90)

through which it couples to the following scalar-field dynamics:

d2 ϕ

dt̃2 + 3H̃
dϕ

dt̃
+ Ṽ,ϕ = − db

dϕ
ρ̃m. (91)

Here, Ṽ,ϕ = ∂Ṽ
∂ϕ . The time coordinate t, the scale factor a and the matter energy density ρm of the

Jordan frame are related to their Einstein-frame counterparts by

dt = ebdt̃, a = eb ã and ρm = e−4b ρ̃m, (92)

respectively.

5.2.2. Interacting Fluid Approach in Einstein-Frame Dynamics

We associate an effective energy density ρ̃ϕ and an effective pressure p̃ϕ to the scalar field by

ρ̃ϕ =
1
2

(
dϕ

dt̃

)2
+ Ṽ and p̃ϕ =

1
2

(
dϕ

dt̃

)2
− Ṽ, (93)

respectively. Equation (91) then takes the form

dρ̃ϕ

dt̃
+ 3H̃ (1 + w̃) ρ̃ϕ = −Q ≡ −dϕ

dt̃
db
dϕ

ρ̃m, (94)
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where w̃ =
p̃ϕ

ρ̃ϕ
is the Einstein-frame EoS parameter for the scalar field. Equation (90) can be written as

ρ̃m = ρ̃m0 ã−3 f (ã) ⇒ dρ̃m

dt̃
+ 3H̃ρ̃m =

ρ̃m

f
d f
dt̃

, ⇒ f = eb(ϕ), (95)

where the function f encodes the effects of an interaction between matter and (Einstein-frame) scalar
field. Assuming a power-law behavior of the interaction function f (ã),

f (ã) = ã3m, (96)

the explicit solution of Equation (94) for a constant EoS parameter then is

ρ̃ϕ = ρ̃ϕ0 ã−3(1+w̃) − ρ̃m0 ã−3(1+w̃)
∫ ã

ã0

dã
d f
dã

ã3w̃. (97)

To obtain the explicit solutions (95) with (96) and (97) was the main motivation for considering
the Einstein frame. This implies the expression

Q = 3mH̃ρ̃m (98)

for the interaction term Q, defined in (94). In the simple case of a linear dependence

b = b(ϕ) = Kϕ, K =

√
κ2

4ω + 6
, (99)

it follows that [28]
Φ = e−2Kϕ = e−2b = ã−6m = a−

6m
1+3m . (100)

with Formula (100), we found an explicit expression for the scalar-field variable without having solved
the basic scalar-field equation. We have solved the system of energy-balance Equations (90) and (94)
under the assumptions (96) and (99). This solution implies an explicit scale-factor dependence of
Φ (or ϕ) which does not necessarily have to be a solution of the original scalar-field Equation (78).
Instead, it obeys an alternative effective second-order equation with an alternative effective potential
that does not coincide with U [28]. The point here is that the dynamics on the level of the fluid energy
densities do not require the exact solution of the scalar-field Equation (78). On the other hand, the
specific features of our fluid dynamics imply the existence of the effective scalar field Φ of the form
of (100). Under such condition, the dynamics for w̃ = −1 are explicitly solved, which results in the
expression [28]

H̃2

H̃2
0
= eKϕ Ω̃m0 ã−3

1−m
+ 1− Ω̃m0

1−m
, Ω̃m0 =

8πGρ̃m0

3H̃2
0

(101)

for the Einstein-frame Hubble rate. Having used the Einstein frame to explicitly solve the background
dynamics, we now turn back to the Jordan-frame dynamics.

5.2.3. Effective Hubble Rate

The transformation to the Jordan-frame Hubble rate via

H = e−b (1 + 3m) H̃ (102)

leads to the explicit effective Hubble rate [28]

H2

H2
0
=

AΩm0a−3

Φ
+ [1− AΩm0]Φ, (103)
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where

Ωm0 =
Ω̃m0

(1 + 3m)2 , A ≡ (1 + 3m)2

1−m
(104)

and Φ is explicitly given in terms of the scale factor by Relation (100). Formula (103) represents
an explicit analytic solution for the Hubble rate of our eΦΛCDM model. The scalar Φ modifies the
cosmological dynamics compared with the GR based ΛCDM model. For Φ = 1, equivalent to m = 0,
we recover the ΛCDM model. For any Φ 6= 1, equivalent to m 6= 0, the expression (103) represents a
testable, alternative model with small (|m| � 1) deviations from the ΛCDM model. It is Formula (103)
which allows us to apply the general perturbation dynamics of the previous sections to a specific class
of non-standard models. To motivate the result, (103) has been the main purpose of this section. The
dependence of the Hubble rate (103) on the scalar Φ changes the relative contributions of matter and
the dark-energy (DE) equivalent compared with the ΛCDM model. Deviations from the ΛCDM model
are entirely encoded in the constant parameter m with |m| � 1. The fractional matter contribution is

Ωm =
ρm

ρ
=

Ωm0a−3

AΦ−1Ωm0a−3 + [1− AΩm0]Φ
, (105)

the geometric “matter” part contributes with Ωx = 1 − Ωm. For different values of m, the
fractional abundances Ωm and Ωx are visualized in Figure 1. Postulating a conservation equation
ρ̇x + 3H (1 + wx) ρx = 0, where ρx ≡ ρ− ρm now replaces Expression (85), this corresponds to an
effective, time-varying EoS parameter wx of the geometric DE,

wx(a) = −1 +
2m

1+3m [1− AΩm0]Φ + Ωm0a−3
[

1+m
1+3m AΦ−1 − 1

]
[1− AΩm0]Φ + Ωm0a−3 [AΦ−1 − 1]

. (106)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

a

Ω
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Ωx

m = -0.01

m = -0.001

(a)

0.0 0.2 0.4 0.6 0.8 1.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

a

Ω

Ωm

Ωx

m = 0.01
m = 0.001

(b)

Figure 1. Matter fraction Ωm and geometric energy fraction Ωx for negative (left) and positive (right)
values of m.

For m = 0, it reduces to the ΛCDM value wx = −1. At a high redshift, one has

wx ≈ −1 +

[
1+m

1+3m AΦ−1 − 1
]

[AΦ−1 − 1]
(a� 1). (107)

This value may be close to zero, i.e., the geometric DE may mimic dust in this limit, but the
effective energy density ρx will be negative for m > 0. It crosses ρx = 0 in the redshift range 10 & z & 4
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for the values of m chosen in Figure 1. This behavior reflects that fact that the x-component is very
different from a conventional fluid. The total EoS is well behaved throughout as is demonstrated in
Figure 2. At the present time, the effective EoS parameter is

wx = −1 +
2m

1+3m + 3mΩm0

1−Ωm0
(a = 1). (108)

For small |m|, this remains in the vicinity of wx = −1. In the far future, wx approaches

wx ≈ −1 +
2m

1 + 3m
(a� 1). (109)

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

a

w m = -0.01

m = -0.001

(a)

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

a

w m = 0.01

m = 0.001

(b)

Figure 2. Total EoS parameter w =
p
ρ for various negative (left) and positive (right) values of m.

From a statistical analysis using Supernovae data, data from the differential age of old galaxies
that have evolved passively and baryon acoustic oscillations, we found a best-fit value [28] of m =

0.004+0.011(1σ) +0.017(2σ)
−0.011(1σ) −0.017(2σ)

. This is compatible with the ΛCDM model, but it leaves room for small
deviations. Even a very small non-vanishing value of |m| will modify the standard scenario of
structure formation. The quantitative analysis to follow will rely on the use of the effective Hubble
rate (103) for the background coefficients of the perturbation equations.

6. Growth of Matter Perturbations

Now, we combine the general imperfect-fluid perturbation dynamics, established in Section 4,
with the eΦΛCDM background model of the previous section. The variable of interest, the fractional
matter perturbation δcm

m in Formula (75), is obtained via the solution of the coupled system (57) and (63)
for ε and Sm, respectively. Since on sub-horizon scales gauge issues are less important, we shall omit
from now on the superscript cm and denote this quantity simply by δm. It is convenient to use also
the linear growth rate f defined by f = d ln δm/d ln a. In most cases, observational data are provided
for the combination f σ8 where σ8 is the root-mean-square mass fluctuation in spheres with radius
8 h−1Mpc [44]. In the linear regime, one has [23]

σ8(z) =
δm(z)

δ(z = 0)
σ8(z = 0) (110)



Universe 2019, 5, 68 17 of 23

and

f σ8(z) = −(1 + z)
σ8(z = 0)
δm(z = 0)

d
dz

δm(z). (111)

For the matter distribution variance today, we assume σ8(z = 0) = 0.8, which is compatible
with standard fiducial cosmology as determined by the Planck satellite [12]. This value is biased with
respect to the variance in the distribution of galaxies but the combination f σ8 is independent from
the bias factor [44]. The data of RSD measurements of f σ8 used in our analysis are listed in Table 1.
In the following, we study the influence of some of the model parameters on the growth of matter
perturbations. Differences to the ΛCDM model may already occur if there are isotropic pressure
perturbations, described by a non-vanishing sound speed parameter. Our analysis shows that values
of the order of c2

ε > 10−4 are necessary to produce a noticeable impact (Figure 3).

ΛCDM

cε2=10-4

cε2=10-5

0.0 0.5 1.0 1.5 2.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

z

fσ
8
(z
)

0.0 0.1 0.2 0.3 0.4 0.5
0.42

0.44

0.46

0.48

0.50

z

fσ8(z)

Figure 3. Dependence of f σ8(z) on z for a non-vanishing sound-speed parameter (m = α = β = µ =

ν = 0).

Figure 4 shows the fractional matter energy density perturbations δm as a function of the scale
factor if only the parameter m is modified (different values of m for α = β = µ = ν = 0) with respect
to the ΛCDM model (m = 0). The dependence of the growth rate f σ8 on the redshift for these values
together with the data points is shown in Figure 5. Positive values of m enhance the matter growth,
negative values diminish it. Figure 6 visualizes the scale-factor dependence of the fractional matter
density perturbations for different values of the anisotropic stress parameter µ for m = α = β = ν = 0.
The corresponding growth rate f σ8 for different values of µ is shown in Figure 7. Deviations from
the ΛCDM model require values of µ of the order of |10−10|. Finally, we demonstrate the impact of a
non-vanishing heat flow, represented by the parameter α, on the growth rate (see Figure 8). The heat
flux basically causes a shift of the ΛCDM curve (upward for α > 0, downward for α < 0).
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Table 1. Data points for our analysis. The first 18 entries represent the “Gold” set of [45]. The entries
19 and 20 are taken from [46,47], respectively. The last three values have been reported in [48].

Index Data set z f σ8(z) Year Notes
1 6dFGS + SnIa 0.02 0.428 ± 0.0465 2016 (Ω0m, h, σ8) = (0.3, 0.683, 0.8)
2 SnIa + IRAS 0.02 0.398 ± 0.065 2011 (Ω0m, ΩK) = (0.3, 0)
3 2MASS 0.02 0.314 ± 0.048 2010 (Ω0m, ΩK) = (0.266, 0)
4 SDSS-veloc 0.10 0.370 ± 0.130 2015 (Ω0m, ΩK) = (0.3, 0)
5 SDSS-MGS 0.15 0.490 ± 0.145 2014 (Ω0m, h, σ8) = (0.31, 0.67, 0.83)
6 2dFGRS 0.17 0.510 ± 0.060 2009 (Ω0m, ΩK) = (0.3, 0)
7 GAMA 0.18 0.360 ± 0.090 2013 (Ω0m, ΩK) = (0.27, 0)
8 GAMA 0.38 0.440 ± 0.060 2013
9 SDSS-LRG-200 0.25 0.3512 ± 0.0583 2011 (Ω0m, ΩK) = (0.25, 0)
10 SDSS-LRG-200 0.37 0.4602 ± 0.0378 2011
11 BOSS-LOWZ 0.32 0.384 ± 0.095 2013 (Ω0m, ΩK) = (0.274, 0)
12 SDSS-CMASS 0.59 0.488 ± 0.060 2013 (Ω0m, h, σ8) = (0.307115, 0.6777, 0.8288)
13 WiggleZ 0.44 0.413 ± 0.080 2012 (Ω0m, h) = (0.27, 0.71)
14 WiggleZ 0.60 0.390 ± 0.063 2012
15 WiggleZ 0.73 0.437 ± 0.072 2012
16 Vipers PDR-2 0.60 0.550 ± 0.120 2016 (Ω0m, Ωb) = (0.3, 0.045)
17 Vipers PDR-2 0.86 0.400 ± 0.110 2016
18 FastSound 1.40 0.482 ± 0.116 2015 (Ω0m, ΩK) = (0.270, 0)
19 SDSS-IV 1.52 0.420 ± 0.076 2018 (Ω0m, Ωbh2, σ8) = (0.26479, 0.02258, 0.8)
20 SDSS-IV 1.52 0.396 ± 0.079 2018 (Ω0m,Ωbh2, σ8) = (0.31, 0.022, 0.8225)
21 SDSS-IV 1.23 0.385 ± 0.099 2018 (Ω0m, σ8) = (0.31, 0.8)
22 SDSS-IV 1.526 0.342 ± 0.070 2018
23 SDSS-IV 1.944 0.364 ± 0.106 2018
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Figure 4. Matter growth for various values of the parameter m with α = β = µ = ν = c2
ε = 0.
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Figure 5. Dependence of f σ8(z) on z for different values of the parameter m with α = β = µ = ν =

c2
ε = 0.
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Figure 6. Matter growth in the presence of anisotropic stresses (m = α = β = ν = c2
ε = 0).
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Figure 7. Dependence of f σ8(z) on z in the presence of anisotropic stresses (m = α = β = ν = c2
ε = 0).
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Figure 8. Dependence of f σ8(z) on z in the presence of heat fluxes (m = β = µ = ν = c2
ε = 0).

7. Conclusions

We have established a general phenomenological scheme for implementing (effective)
non-equilibrium effects in a fluid description of the cosmological dark sector. This comprises both
“true" dissipative effects within Einstein’s GR, assuming that the cosmic substratum behaves less simply
than taken for granted in the usually applied perfect-fluid approach, and those features which originate
from a re-interpretation of geometric terms in modified gravitational theories in terms of effective
fluid quantities. Using a combination of the fluid conservation equations with the Raychaudhuri
equation for the expansion scalar, the complete first-order, scalar perturbation dynamics have been
reduced to a manifestly gauge-invariant coupled system of two second-order differential equations
for the total and the relative energy–density perturbations. We clarified how a heat flux (effective
or “true”) modifies the Poisson-type equation for the gravitational potential. A characteristic feature
of our approach consists in the introduction of phenomenological parameters with the purpose to
make the fluid dynamical equations a closed system. The relevant relations by which these coefficients
are introduced are inspired by the manner that the speed of sound is conventionally introduced
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on a phenomenological basis. In a standard perfect-fluid description of the Universe, such relation
between the perturbations of (isotropic) pressure and energy density is required to close the system of
perturbation equations. Here, we are generalizing this procedure by adding relations of a similar type
which take into account anisotropic pressure and heat flux. As in the case of a phenomenologically
introduced sound speed, a derivation from an underlying fundamental theory is left open. Even
for the sound speed parameter, an analytic microscopic justification does exist only in special cases.
This obvious shortcoming of the phenomenological theory is the price to pay for obtaining a robust,
transparent and in large part analytical description of the inhomogeneous dynamics.

Our analysis is preliminary since it so far gives only a very rough account of the relevance of
different (effective) dissipative phenomena on the growth of matter inhomogeneities during the cosmic
history. At this point, also in view of the large error bars of the data, only order-of-magnitude estimates
are possible. Our approach allows for deviations from the standard model as long as these deviations
are small. Additional information is also needed to decide whether deviations from the standard
model which are likely to be tiny, can be attributed to deviations from Einstein’s GR or to a “real”
non-equilibrium nature of the cosmic substratum within GR.

In a general scalar-tensor theory, all the effective fluid quantities energy density, isotropic pressure,
anisotropic pressure and heat flux are given in terms of the perturbations of the scalar field [16,21].
However, this dependence, while exact, is rather involved and, to obtain observationally relevant
quantities, it needs numerical implementation at a much earlier stage compared with the scheme
presented here. Of course, a final justification of this scheme will require a sound microscopic
foundation, a problem we hope to deal with for specific cases in future work.
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