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Abstract: The approximate method of solving nonperturbative Dyson-Schwinger equations by
cutting off this infinite set of equations to three equations is considered. The gauge noninvariant
decomposition of SU(3) degrees of freedom into SU(2) × U(1) and SU(3)/(SU(2) × U(1)) degrees
of freedom is used. SU(2) × U(1) degrees of freedom have nonzero quantum average, and
SU(3)/(SU(2) × U(1)) have zero quantum average. To close these equations, some approximations
are employed. Regular spherically symmetric finite energy solutions of these equations are obtained.
Energy spectrum of these solutions is studied. The presence of a mass gap is shown. The obtained
solutions describe quasi-particles in a quark-gluon plasma.

Keywords: non-perturbative quantization; energy spectrum; mass gap; quasi-particles;
quark-gluon plasma

1. Introduction

Quantum physical systems in quantum chromodynamics (QCD) have much more complicated
structure than those in quantum electrodynamics (QED). In QCD, a quantum system may have a
granular structure: hedgehogs/dyons with magnetic and electric fields appear as a result of quantum
fluctuations. This is confirmed by lattice calculations, within which, using the maximal abelian
projection, it was shown that in calculating the path integral, a considerable contribution comes from
field distributions containing magnetic monopoles.

In the present work we study a microscopical structure of such fluctuations using
the three-equation approximation for the nonperturbative set of Dyson-Schwinger equations.
This approximation assumes noninvariant decomposition of SU(3) degrees of freedom into two
groups. The first one contains SU(2) × U(1) components of a gauge field, the second one contains
SU(3)/(SU(2) × U(1)) components of a gauge field.

The first group describes almost classical fields for which there exist the nonzero quantum average〈
Âaµ

〉
and quantum fluctuations δ̂A

aµ
:

Âaµ =
〈

Âaµ
〉
+ iδ̂A

aµ
. (1)
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Such a decomposition has been used in Ref. [1] to construct the Yang-Mills quantum-wave excitations
propagating on the background of the classical homogeneous Yang-Mills condensate.

The fields belonging to the second group are purely quantum ones, since the quantum average〈
Âmµ

〉
= 0. (2)

Below we will introduce the scalar field φ to describe the dispersion of these Âmµ degrees of freedom.
One can refer to the field φ as a condensate. In this connection, let us mention that in Ref. [2]
a gauge-invariant description of a spatially homogeneous isotropic Yang-Mills condensate is discussed.
Also, the paper [3] studies the gluon condensate relaxation phenomena using the nonlinear field
equations for the gluonic condensate.

2. Nonperturbative Dyson-Schwinger Equations

Fundamental equations in nonperturbative quantization à la Heisenberg are the operator equations:

Dν F̂Bµν =
gh̄c
2

ˆ̄ψγµλBψ̂, (3)

ih̄γµ
[
∂µψ̂(x)− i

g
2

λB ÂB
µ(x)ψ̂(x)

]
−mcψ̂(x) = 0. (4)

Here all physical quantities are operators of interacting fields which differ conceptually from operators
of noninteracting fields used in perturbatively quantized theories like, for instance, QED; ÂB

µ is the
operator of the SU(3) gauge potential; F̂Bµν is the corresponding operator of the field strength tensor;
g is the coupling constant.

Apparently, these equations cannot be solved in the closed form. Thus, we consider the
corresponding Dyson-Schwinger equations〈

Dν F̂Bµν(x)
〉

=
gh̄c
2

〈
ˆ̄ψγµλBψ̂

〉
, (5)〈

îh̄γµDµψ̂(x)−mqcψ̂(x)
〉

= 0, (6)〈
ÂB1

α1 (x1)Dν F̂Aµν(x)
〉

=
gh̄c
2

〈
ÂB1

α1 (x1) ˆ̄ψγµλBψ̂
〉

, (7)

. . . = 0, (8)〈
ÂB1

α1 (x1) . . . ÂBn
αn (xn)Dν F̂Aµν(x)

〉
= 0. (9)

Such infinite set of equations also seems to be extremely complicated to study. In this connection, the
only possibility to solve this set of equations (at least approximately) appears to be the cutting off the
infinite set of equations to a finite set of equations.

To do this, we use the following physical simplifications:

• We assume that in some physical situations all SU(3) degrees of freedom can be decomposed
into two groups. In the first group, the gauge fields Âa

µ = 〈Âa
µ〉+ iδÂa

µ ∈ SU(2)×U(1) ⊂ SU(3).

In the second group, the gauge fields Âm
µ ∈ SU(3)/

(
SU(2)×U(1)

)
are pure quantum ones in the

sense that 〈Âm
µ 〉 = 0.

• Decomposition for the 2-point Green function:〈
Âmµ(y)Ânν(x)

〉
≈ Cmnµνφ(y)φ(x). (10)

• Decomposition for the 4-point Green function:〈
Âmα(x)Ânβ(x)Âpµ(x)Âqν(x)

〉
= Gmnpqαβµν(x, x, x, x) ≈ Cmnpqαβµνφ2(x)

[
M2 − φ2(x)

]
. (11)
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Thus, the field φ describes the dispersion of quantum degrees of freedom Âmµ, and also the
4-point Green function Gmnpqαβµν for the operator Âmµ.

• Decomposition for the 3-point Green function:〈
ˆ̄ψ(y)λmγµ Âm

µ (x)ψ̂(x)
〉
≈ Λ

[
ζ̄(y)ζ(x)

] (
ζ̄(x)ζ(x)

)
φ(x). (12)

The physical meaning of this approximation is that it is necessary to introduce some approximation
for the interaction between the field Am

µ ∈ SU(3)/(SU(2) × U(1)) and the spinor field ψ

describing quarks. The central idea of the approximation (12) is that the quantum average
between the fields (at the points x and y) with zero average values (〈Âm

µ (x)〉 = 0,
〈
ψ̂(x, y)

〉
= 0,

see Equation (13)) is described by the product of the dispersion φ(x) of the field Am
µ (x), the

correlation function ζ̄(y)ζ(x) from (14), and the dispersion ζ̄(x)ζ(x) of the field ψ at the point x.
• For virtual quarks 〈

ψ̂
〉
= 0. (13)

• The correlation of virtual quarks at the points x and y is〈
ˆ̄ψ(x)γµ(x)λaψ̂(y)

〉
= ζ̄(x)γµ(x)λaζ(y). (14)

Thus, the spinor ζ and the Dirac conjugate spinor ζ̄ describe the dispersion of the spinor ψ and
the 3-point Green function

〈
ˆ̄ψ(x)γµ(x)λaψ̂(y)

〉
.

• Interaction between the gauge field Am
µ and the virtual quarks ψαi with nonzero quantum averages

is described by the nonlinear interaction between their dispersions:

Gαβij(y, y, x) =
〈

ˆ̄ψαi(y) (λm)jk (γ
µ)βγ Âm

µ (y)ψ̂γk(x)
〉

, (15)

Gαβij(y, x, x) ≈ Λ1
[
ζ̄αi(y)ζβj(x)

] [
ζ̄kγ(x)ζkγ(x)

]
φ(x) = Λ1

[
ζ̄αi(y)ζβj(x)

] (
ζ̄ζ
)

φ(x), (16)

Gααii(x, y, x) ≈ Λ2
[
ζ̄αi(y)ζαi(x)

] [
ζ̄kγ(x)ζkγ(x)

]
φ(y) = Λ2

(
ζ̄ζ
)2

φ(y). (17)

• We consider stationary systems only.

As a result, this leads to the following three equations (the three-equation approximation):

DνFaµν −
[(

m2
)abµν

−
(

µ2
)abµν

]
Ab

ν =
gh̄c
2
(
ζ̄γµλaζ

)
, (18)

�φ−
(

m2
φ

)abµν
Aa

ν Ab
µφ− λφ

(
M2 − φ2

)
= Λ2

gh̄c
2
(
ζ̄ζ
)2 , (19)

ih̄γµ
(

∂µζ − i
g
2

λa Aa
µζ
)
+ Λ1

gh̄
2

φζ
(
ζ̄ζ
)
−mqc ζ = 0. (20)

Here
(
m2)abµν,

(
µ2)abµν, M2, and

(
m2

φ

)abµν
are quantum corrections coming from the dispersions of

the operators δ̂A
aµ

from Equation (1) and Âmµ from Equation (2). The appearance of these constants is
a distinctive feature of any approach based on a truncation of an infinite set of equations to a finite one.
In turbulence modeling, such constants are called the closure constants, see Ref. [4].

Equation (18) is obtained from Equation (5) for B = a = 1, 2, 3, 8. Correspondingly, Equation (19)
is obtained from Equation (5) for B = m = 4, 5, 6, 7 after averaging over all indices. Equation (20)
is obtained from Equation (6). We note once more that Equations (18)–(20) are obtained using the
above approximations.

Notice here one very important feature of the aforementioned constants: they have the dimensions
which is absent in the initial Equations (3) and (4). As is known from QCD, there is a new parameter
ΛQCD which is absent in the initial Equations (3) and (4). The parameters

(
µ2)abµν and M2 are
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eigenvalues of the nonlinear eigenvalue problem, and that is why they can be rewritten in the form
where this parameter is used:(

µ2
)abµν

=
(

µ̃2
)abµν

Λ2
QCD, M2 = M̃2Λ2

QCD. (21)

Here the tilde means that these quantities are dimensionless. While solving the eigenvalue problem,
one determines the quantities with tildes.

The physical meaning of these equations is as follows: the first Equation (18) describes a SU(2)
massive gauge field from the subgroup SU(2) × U(1) ⊂ SU(3) interacting with the condensate φ of
gauge fields from SU(3)/(SU(2) × U(1)) and with virtual quarks described by their dispersion ζ; the
second Equation (19) describes an average dispersion of the coset fields from SU(3)/(SU(2) × U(1))
(the condensate) which interact with the field Ab

µ ∈ SU(2) × U(1) and with virtual quarks; the third
Equation (20) refers to virtual quarks described by their dispersion ζ and interacting with the fields Ab

µ

and with the condensate φ.

3. Quasi-Particles in a Quark-Gluon Plasma

Lattice [5–9] and analytical investigations [10–14] indicate that a quark-gluon plasma contains
various quasi-particles: monopoles, dyons, binary bound states (quark-quark (qq), quark-antiquark
(qq̄), gluon-gluon (gg), quark-gluon (qg), etc.). Analytical calculations are phenomenological and they
do not provide a macroscopic description of such objects. In Ref. [13], there is the following assessment
of the state of this problem for a monopole: “. . . we do not have a microscopic description of these
monopoles in terms of the gauge fields.”

The purpose of the present paper is to get a microscopic description of possible quasi-particles
in a quark-gluon plasma based on some approximation for an infinite set of Dyson-Schwinger
equations for nonperturbative Green functions. Consistent with this, below we describe possible
types of quasi-particles in a quark-gluon plasma considered in the literature, and for some of them
we present the resulting characteristics which can be compared with the characteristics obtained in
our investigations.

3.1. Magnetic Monopoles

One of proofs of the existence of magnetic monopoles in a quark-gluon plasma is the calculation
of the magnetic field flux created by such monopoles. Ref. [9] considers the behavior of the magnetic
field flux Φ(r) as a function of distance from the center of a monopole,

Φ(r) = Φ0 exp
(
− L

2ξ

)
sinh

(
L− 2r

2ξ

)
, (22)

where L is the effective length of the box and ξ is the magnetic screening length. By going to the
continuous limit L→ ∞, we get the following expression for the magnetic field flux:

Φ(r) = Φ0 exp
(
− r

ξ

)
. (23)

In Section 5 the asymptotic expression (45) for the gauge field potential will be obtained, for which the
corresponding radial component of color magnetic field is given by the expression

H1,2,3
r ≈ H0

exp
(
− r

l0

)
r2 , (24)

where the magnetic screening length l0 is related to parameters of the system. Calculating this field
flux through the sphere with the radius r, one can derive the expression (23).
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In Ref. [13], the following indirect proof of the existence of monopoles is given: one calculates a
semiclassical partition function that can be Poisson-rewritten into an identical “H” form. It is shown
that it can be done for a pure gauge theory. After that point, it is argued that the resulting partition
function can be interpreted as being generated by moving and rotating monopoles.

In Section 5 we obtain a solution that describes a “quantum monopole” with an exponentially
decaying radial magnetic field that is needed to explain the lattice results.

3.2. Binary Bound States

Other possible quasi-particles in a quark-gluon plasma are binary bound states which describe
states of two particles: qq, qg, gg, etc. In Ref. [10], it is noted that “. . . these bound states are very
important for the thermodynamics of the QGP.” It is pointed out in that paper that to describe such
objects approximately, one can use either the Klein-Gordon equation, or the Dirac equation, or the
Proca equation. The essence of the suggested approach consists in that these equations are employed to
describe two particles, interacting so that they create a coupled pair. To describe the coupling potential,
one uses lattice calculations, based on which the analytical approximate expression for the potential
is suggested.

One can fix the variables f , χ, and ξ in Equations (31)–(35): then the remaining Equations (34)
and (35) will describe two quarks in a virtual state. This means that the quantum average of the
corresponding spinor is zero, 〈

ψ̂
〉
= 0, (25)

but the dispersion of such a quantum state is nonzero. Physically, this means that the obtained solution
describes a quantum object for which the average of field is zero but there exist quantum fluctuations
whose dispersion differs from zero in some region. We assume that this solution microscopically and
approximately describes the binary bound state qq where we neglect the distance between quarks and
for which the orbital quantum number is zero.

4. Ansatz, Equations and Energy

Recall that we use Equations (18)–(20) to describe a microscopical structure of quantum excitations
in a quark-gluon plasma, vacuum, etc.

We employ the following ansatz to obtain a hedgehog with color magnetic and electric fields:

Aa
i =

1
g
[1− f (r)]

0 sin ϕ sin θ cos θ cos ϕ

0 − cos ϕ sin θ cos θ sin ϕ

0 0 − sin2 θ

 , i = r, θ, ϕ (in polar coordinates), (26)

Aa
t = 0, (27)

A8
t =

χ(r)
g

, A8
i = 0, (28)

φ =
ξ(r)

g
, (29)

ζT =
e−i Et

h̄

gr
√

2


 0
−u
0

 ,

u
0
0

 ,

iv sin θe−iϕ

−iv cos θ

0

 ,

 −iv cos θ

−iv sin θeiϕ

0


 . (30)

Here εiaj is the completely antisymmetric Levi-Civita symbol; a = 1, 2, 3; i, j = 1, 2, 3 are the spacetime
indices; the functions u and v depend on the radial coordinate r only; the ansatz (30) is taken
from Refs. [15,16]. After substituting the Expressions (26)–(30) into Equations (12)–(14), we obtain
the equations



Universe 2019, 5, 50 6 of 10

− f ′′ +
f
(

f 2 − 1
)

x2 −m2 (1− f ) ξ̃2 + g̃2 ũṽ
x

= −µ̃2 (1− f ) , (31)

χ̃′′ +
2
x

χ̃′ =
1

2
√

3
g̃2 ũ2 + ṽ2

x2 , (32)

ξ̃ ′′ +
2
x

ξ̃ ′ = ξ̃

[
(1− f )2

2x2 + λ̃
(

ξ̃2 − M̃2
)]
− g̃2Λ̃

8

(
ũ2 − ṽ2)2

x4 , (33)

ṽ′ +
f ṽ
x

= ũ
(
−m̃q + Ẽ + m2Λ̃

ũ2 − ṽ2

x2 ξ̃ +
χ̃

2
√

3

)
, (34)

ũ′ − f ũ
x

= ṽ
(
−m̃q − Ẽ + m2Λ̃

ũ2 − ṽ2

x2 ξ̃ − χ̃

2
√

3

)
. (35)

In these equations, the following dimensionless variables are used: g̃2 = g2h̄c is the dimensionless
coupling constant for the SU(3) gauge field; x = r/r0, where r0 is a constant corresponding to the
characteristic size of the system under consideration (one can show that this parameter is related
to the constant ΛQCD); ũ =

√
r0u/g, ṽ =

√
r0v/g, µ̃ = r0µ, ξ̃ = r0ξ, χ̃ = r0χ, M̃ = gr0M, λ̃ = λ/g2,

m̃q = cr0mq/h̄, Ẽ = r0E/(h̄c), Λ̃ = Λ/r3
0.

The total energy density of the system:

ε̃ =
1
g̃2

{
χ̃′2

2
+

[
f ′2

x2 +

(
f 2 − 1

)2

2x4 − µ̃2 ( f − 1)2

x2

]
+ 2m2

[
ξ̃ ′2 +

( f − 1)2

2x2 ξ̃2 +
λ̃

2

(
ξ̃2 − M̃2

)2
]}

+ Ẽ
ũ2 + ṽ2

x2 + m2 Λ̃
2

ξ̃

(
ũ2 − ṽ2)2

x4 + ε̃∞,

(36)

where the arbitrary constant ε̃∞ corresponding to the energy density at infinity has been
also introduced.

5. A Quantum Monopole Plus Virtual Quarks

For simplicity, consider a quantum monopole interacting with virtual quarks. In this case the set
of equations is as follows:

− f ′′ +
f
(

f 2 − 1
)

x2 −m2 (1− f ) ξ̃2 + g̃2 ũṽ
x

= −µ̃2 (1− f ) , (37)

ξ̃ ′′ +
2
x

ξ̃ ′ = ξ̃

[
(1− f )2

2x2 + λ̃
(

ξ̃2 − M̃2
)]
− g̃2Λ̃

8

(
ũ2 − ṽ2)2

x4 , (38)

ṽ′ +
f ṽ
x

= ũ
(
−m̃q + Ẽ + m2Λ̃

ũ2 − ṽ2

x2 ξ̃

)
, (39)

ũ′ − f ũ
x

= ṽ
(
−m̃q − Ẽ + m2Λ̃

ũ2 − ṽ2

x2 ξ̃

)
. (40)

These equations describe a system consisting of a quantum monopole, two virtual quarks, an extra
color magnetic field created by them, and the condensate. These equations are solved numerically as a
nonlinear eigenvalue problem where the eigenvalues are the parameters µ̃, M̃, and Ẽ.

As x → 0, the solution of the above set of equations can be presented in the form of the
following expansions:
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f = 1 +
f2

2
x2 + . . . , (41)

ξ̃ = ξ̃0 +
ξ̃2

2
x2 + . . . , (42)

ũ = ũ1x +
ũ3

3!
x3 + . . . , (43)

ṽ =
ṽ2

2
x2 +

ṽ4

4!
x4 + . . . , where ṽ2 =

2
3

ũ1

(
Ẽ− m̃q + m2Λ̃ξ̃0ũ2

1

)
. (44)

Figure 1 shows the typical behavior of the solutions. Their asymptotic behavior as x → ∞ is

f (x) ≈ 1− f∞e−x
√

m2 M̃2−µ̃2
, ξ̃(x) ≈ M̃− ξ̃∞

e−x
√

2λ̃M̃2

x
, (45)

ũ ≈ ũ∞e−x
√

m̃2
q−Ẽ2

, ṽ ≈ ṽ∞e−x
√

m̃2
q−Ẽ2

, (46)

where f∞, ξ̃∞, ṽ∞, and ũ∞ are integration constants. The corresponding distributions of different
components of the color magnetic field are shown in Figure 2.

Figure 1. The graphs of the functions ṽ(x), ũ(x), f (x), and ξ̃(x) of the solution describing the
spinball-plus-quantum-monopole system at λ̃ = 0.1, Λ̃ = 1/9, m̃q = 1, Ẽ = 0.8, m = 3, g̃ = 1,
ξ̃0 = 0.5, and f2 = −20. The corresponding eigenvalues are µ̃ ≈ 2.6727842881, M̃ ≈ 1.2756, and
ũ1 ≈ 1.68655.

Figure 2. The profiles of the magnetic fields H̃1,2,3
r and H̃1,2,3

θ,ϕ for the spinball-plus-quantum-
monopole configuration.



Universe 2019, 5, 50 8 of 10

The dimensionless energy density of the system in question has the following form

ε̃ =
1
g̃2

{[
f ′2

x2 +

(
f 2 − 1

)2

2x4 − µ̃2 ( f − 1)2

x2

]
+ 2m2

[
ξ̃ ′2 +

( f − 1)2

2x2 ξ̃2 +
λ̃

2

(
ξ̃2 − M̃2

)2
]}

+ Ẽ
ũ2 + ṽ2

x2 + m2 Λ̃
2

ξ̃

(
ũ2 − ṽ2)2

x4 .

(47)

According to Equations (41)–(44), the total energy, as well as all functions, depends on the
parameters f2 and ũ1. To find the energy spectrum of the system “quantum monopole + virtual
quarks”, we must obtain the dependence of the total energy (47) on these parameters. This dependence
is shown in Figures 3 and 4.

-20 -16 -12 -8 -4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f2
32.50

52.50

72.50

92.50

112.5

132.5

152.5

172.5
E~

Ecr( f2 )
~

Figure 3. Contour plot of the total energy W̃t(Ẽ, f2) from Equation (47). ∆ shows the location of the
mass gap in the

{
f2, Ẽ

}
plane.

Figure 4. Three-dimensional plot for the dependence of the total energy (47) on the parameters f2 and
Ẽ in the vicinity of the mass gap ∆.
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6. Physical Applications and Conclusions

In the present paper, we have employed the approximate gauge noninvariant approach to the set of
Dyson-Schwinger equations to obtain an approximate microscopical structure of quantum fluctuations
in a quark-gluon plasma, QCD vacuum and in other quantum systems within QCD. This means that
we have verified the following model of quantum physical systems in chromodynamics: there is
some condensate, on the background of which there are quantum fluctuations in the form of quantum
monopoles/dyons filled with color magnetic (hedgehog) and electric (dyon) fields, and with virtual
quarks (for which the quantum average is zero).

Thus, the following results have been obtained:

• Within the framework of the three-equation approximation, solutions describing virtual quarks
and gauge fields in a bag have been found.

• It was shown that the bags are created due to the Meissner-like effect, when the coset condensate
expels the gauge fields.

• For the quantum-monopole systems, it was shown that the color magnetic field
decreases asymptotically.

• The nonlinear Dirac equation has been used as an approximate description of an infinite set of
equations for all Green functions of the spinor equation.

We believe that the results obtained have the following physical meaning: the solutions obtained
describe quasi-particles in a quark-gluon plasma. This means that in our approach, the quasi-particles
are clumps consisting of quantum fluctuations of gluon and spinor fields and containing a radial
magnetic field (a hedgehog).

It is interesting to note that in the 1950s the mass gap has in fact been found in Refs. [17,18]
in solving the nonlinear Dirac equation. However, the authors did not use such term, but said of
“the lightest stable particle”. Those papers were devoted to study of the nonlinear Dirac equation, and
Heisenberg offered to use it as a fundamental equation in describing the properties of an electron.
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Conflicts of Interest: The authors declare no conflict of interest.

References

1. Prokhorov, G.; Pasechnik, R.; Vereshkov, G. J. High Energy Phys. 2014, 1407, 003.
2. Addazi, A.; Marcianò, A.; Pasechnik, R.; Prokhorov, G. Emergent Mirror Symmetry in Yang-Mills Vacua.

arXiv 2018, arXiv:1804.09826.
3. Addazi, A.; Marcianò, A.; Pasechnik, R. Time-crystal ground state and production of gravitational waves

from QCD phase transition. arXiv 2018, arXiv:1812.07376.
4. Wilcox, D.C. Turbulence Modeling for CFD; DCW Industries, Inc.: La Canada, CA, USA, 1994.
5. Karsch, F.; Datta, S.; Laermann, E.; Petreczky, P.; Stickan, S.; Wetzorke, I. Hadron correlators, spectral

functions and thermal dilepton rates from lattice QCD. Nucl. Phys. A 2003, 715, 701–704, [CrossRef]
6. Karsch, F.; Laermann, E.; Peikert, A. The Pressure in two flavor, (2+1)-flavor and three flavor QCD.

Phys. Lett. B 2000, 478, 447. [CrossRef]
7. Laursen, M.L.; Schierholz, G. Evidence for Monopoles in the Quantized SU(2) Lattice Vacuum: A Study at

Finite Temperature. Z. Phys. C 1988, 38, 501–509. [CrossRef]
8. Koma, Y.; Koma, M.; Ilgenfritz, E.M.; Suzuki, T. A Detailed study of the Abelian projected SU(2) flux tube

and its dual Ginzburg-Landau analysis. Phys. Rev. D 2003, 68, 114504–114521. [CrossRef]
9. Bornyakov, V.G.; Ichie, H.; Koma, Y.; Mori, Y.; Nakamura, Y.; Pleiter, D.; Polikarpov, M.I.; Schierholz, G.;

Streuer, T.; Stüben, H.; et al. Dynamics of monopoles and flux tubes in two flavor dynamical QCD.
Phys. Rev. D 2004, 70, 074511. [CrossRef]

http://dx.doi.org/10.1016/S0375-9474(02)01470-7
http://dx.doi.org/10.1016/S0370-2693(00)00292-6
http://dx.doi.org/10.1007/BF01584402
http://dx.doi.org/10.1103/PhysRevD.68.114504
http://dx.doi.org/10.1103/PhysRevD.70.074511


Universe 2019, 5, 50 10 of 10

10. Shuryak, E.V.; Zahed, I. Towards a theory of binary bound states in the quark gluon plasma. Phys. Rev. D
2004, 70, 054507. [CrossRef]

11. Liao, J.; Shuryak, E. Strongly coupled plasma with electric and magnetic charges. Phys. Rev. C 2007,
75, 054907. [CrossRef]

12. Ramamurti, A.; Shuryak, E. Effective Model of QCD Magnetic Monopoles From Numerical Study of One-
and Two-Component Coulomb Quantum Bose Gases. Phys. Rev. D 2017, 95, 076019. [CrossRef]

13. Ramamurti, A.; Shuryak, E.; Zahed, I. Are there monopoles in the quark-gluon plasma? Phys. Rev. D 2018,
97, 114028. [CrossRef]

14. Shuryak, E. Are there flux tubes in quark-gluon plasma? arXiv 2018, arXiv:1806.10487.
15. Li, X.Z.; Wang, K.L.; Zhang, J.Z. Light Spinor Monopole. Nuovo Cim. A 1983, 75, 87–93.
16. Wang, K.L.; Zhang, J.Z. The Problem of Existence for the Fermion-Dyon Self-Consistent Coupling System in

a SU2 Gauge Model. Nuovo Cim. A 1985, 86, 32–40.
17. Finkelstein, R.; LeLevier, R.; Ruderman, M. Nonlinear Spinor Fields. Phys. Rev. 1951, 83, 326–340. [CrossRef]
18. Finkelstein, R.; Fronsdal, C.; Kaus, P. Nonlinear Spinor Field. Phys. Rev. 1956, 103, 1571–1580. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevD.70.054507
http://dx.doi.org/10.1103/PhysRevC.75.054907
http://dx.doi.org/10.1103/PhysRevD.95.076019
http://dx.doi.org/10.1103/PhysRevD.97.114028
http://dx.doi.org/10.1103/PhysRev.83.326
http://dx.doi.org/10.1103/PhysRev.103.1571
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Nonperturbative Dyson-Schwinger Equations
	Quasi-Particles in a Quark-Gluon Plasma
	Magnetic Monopoles
	Binary Bound States

	Ansatz, Equations and Energy
	A Quantum Monopole Plus Virtual Quarks
	Physical Applications and Conclusions
	References

