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Abstract: A new modified Hayward metric of magnetically charged non-singular black hole
spacetime in the framework of nonlinear electrodynamics is constructed. When the fundamental
length introduced, characterising quantum gravity effects, vanishes, one comes to the general
relativity coupled with the Bronnikov model of nonlinear electrodynamics. The metric can have one
(an extreme) horizon, two horizons of black holes, or no horizons corresponding to the particle-like
solution. Corrections to the Reissner–Nordström solution are found as the radius approaches infinity.
As r → 0 the metric has a de Sitter core showing the absence of singularities, the asymptotic of the Ricci
and Kretschmann scalars are obtained and they are finite everywhere. The thermodynamics of black
holes, by calculating the Hawking temperature and the heat capacity, is studied. It is demonstrated
that phase transitions take place when the Hawking temperature possesses the maximum. Black holes
are thermodynamically stable at some range of parameters.

Keywords: modified Hayward metric; magnetically charged black hole; nonlinear electrodynamics;
thermodynamics

1. Introduction

It is well-known that General Relativity (GR) is ultraviolet (UV) incomplete. In addition, there is
a problem of singularities in the classical Einstein theory of gravity. Thus, solutions of the Einstein
equations for charged (the Reisner–Nordström metric) black holes (BHs) have curvature singularities
in the center (r = 0). Therefore, GR should be modified when the curvature is large. There are some
attempts to overcome problems in the classical Einstein theory of gravity. So, if one adds curvature
terms of the higher order or terms with higher derivatives, the UV behaviour of the Einstein gravity
will be improved [1,2]. But the price for this is the existence of ghosts (non-physical degrees of freedom).
A ghost free modification of the GR, which is UV-complete, was considered in References [3–5] but
such a theory is non-local and has an infinite number of derivatives. Because the fundamental quantum
gravity theory (UV-complete) is absent, some phenomenological models can be useful for solving
problems of singularities. Following References [6–8] (see also Reference [9]), we assume that there
is a critical energy µ and the corresponding length l = µ−1 in such a way that the metric is modified
when the spacetime curvature is in the order of l−2. The length scale, characterising quantum gravity
effects, is smaller than l and one may use the classical metric gµν. In addition, we suppose that
the limiting curvature condition R ≤ cl−2 (R is one of the curvature invariants, c is dimensionless
constant depending on the curvature invariant) is satisfied [6–8]. A simple metric satisfying the above
conditions was proposed by Hayward [10] for a neutral BH. This is the phenomenological approach
that we explore here.
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The first pioneering work representing a regular BH in GR is in Reference [11]. It was shown
in Reference [12] that the Bardeen model can describe the gravitational field of a nonlinear magnetic
monopole. In References [13,14] the regular electrically charged BH solution in GR was presented,
where the source is a nonlinear electrodynamics (NED) field satisfying the weak energy condition.
It worth noting that in accordance with Reference [15], regular electric solutions with the Maxwell
weak-field limit can be described only by different NED theories in different parts of spacetime. Thus,
there is a significant shortcoming in the models of References [13,14].

In this paper, we consider the spherically symmetric non-singular model of the magnetically
charged BH based on NED. In some NED, the electric field in the center of point-like charges is
finite [16–20] and the self-energy of charges is finite unlike classical electrodynamics. It is worth
mentioning that quantum corrections to Maxwell’s electrodynamics, within QED , lead to NED [21].
The universe inflation also can be explained in the framework of the GR coupled with NED [22–29].

Here, with the help of the modified Hayward metric, we study regular magnetically charged BH
solutions within NED considered in Reference [15]. The BH thermodynamics and phase transitions
are investigated. In References [30,31] the authors also considered BH solutions with the modified
Hayward metric based on NED proposed in References [32,33], respectively. The thermodynamics for
a magnetically charged regular BH, which comes from the action of GR and NED, was investigated
in Reference [34]. These authors also used NED proposed in Reference [15]. A similar study was
performed in References [35,36]. The work in Reference [37] analyzes the minimal model proposed
by Hayward for an uncharged BH within GR. The authors introduced an anisotropic fluid and
postulated the expressions for the energy density and pressure but the Lagrangian corresponding to
the stress tensor was not obtained. In the present study we use the NED of Reference [15], explore a
phenomenological extension of GR by introducing a fundamental length l using the modified Hayward
metric, and investigate the magnetically charged BH.

This paper is organized as follows. In Section 2 the modified Hayward metric is studied and
we obtain the asymptotic of the metric and mass functions as r → 0 and r → ∞. Corrections to the
Reissner–Nordström (RN) solution are found. The asymptotic of the Ricci and Kretschmann scalars are
calculated and we show that curvature singularities are absent. In Section 3 we calculate the Hawking
temperature and the heat capacity of BHs. We demonstrate that the second-order phase transitions
occur. It is shown that in some range of parameters BHs are stable. Section 4 is a conclusion.

2. A Regular Magnetized BH Solution

To describe the magnetically charged BH solution we consider the Lagrangian density of NED [15]:

L = − F
cosh2 4

√
|βF|

, (1)

where F = (1/4)FµνFµν = (B2 − E2)/2 and the field tensor is Fµν = ∂µ Aν − ∂ν Aµ. The parameter
β in Equation (1) is positive and it possesses the dimension of (length)4. At the weak field limit the
Lagrangian density (1) becomes:

L → −F βF � 1, (2)

that is, the correspondence principle holds. We will derive the metric function representing the static
magnetic regular BH. Let us consider the spherically symmetric line element, which is given by:

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2(dϑ2 + sin2 ϑdφ2). (3)

The Hayward metric function [10] is given by:

f (r) = 1− 2GMr2

r3 + 2GMl2 , (4)
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where G is the Newton constant, M = constant and l is the fundamental length. We interpret this
metric in the framework of an extension of GR for an uncharged source and replace the Schwarzschild
metric. It should be noted that in GR the metric function (4) may be obtained as a solution within
NED with a nonzero magnetic charge [38]. But in this case the NED Lagrangian is ill-defined. At the
weak-field limit the NED Lagrangian does not approach to the Maxwell Lagrangian. One can consider
and investigate other geometries of the horizon in Equation (3). At l = 0 we come to the Schwarzschild
metric of a BH which is a solution to Einstein’s equation without sources. Now we suppose that the
BH is magnetically charged. Then the mass function of a BH varies with r and is:

M(r) = m0 +
∫ r

0
ρ(r)r2dr = m0 +

∫ ∞

0
ρ(r)r2dr−

∫ ∞

r
ρ(r)r2dr, (5)

where m0 is the Schwarzschild mass, ρ(r) is the magnetic energy density and mM =
∫ ∞

0 ρ(r)r2dr is
the magnetic mass of the BH. In Reference [15] the mass m0, which can be considered as a constant of
integration, was not introduced. But the case m0 6= 0 allows us to consider the uncharged BH when the
charge q = 0. Indeed, if q = 0 (ρ(r) = 0) in Equation (5), the mass function M becomes constant and
we come to the Hayward metric function (4). At E = 0 the magnetic energy density, corresponding to
Equation (1), is given by:

ρ(r) = −L =
F

cosh2 4
√
|βF|

, (6)

where F = B2/2 = q2/(2r4), and q is a magnetic charge. Then the mass function (5) becomes:

M(r) = m0 + mM −
q3/2

23/4β1/4 tanh

(
β1/4√q
21/4r

)
, (7)

where the BH magnetic mass is given by [36]:

mM =
∫ ∞

0
ρ(r)r2dr =

q3/2

23/4β1/4 . (8)

The total BH mass is M(∞) ≡ m = m0 + mM. Then the metric function corresponding to a
charged BH is:

f (r) = 1− 2GM(r)r2

r3 + 2GM(r)l2 , (9)

where M(r) is given by (7).
For a convenience we introduce the dimensionless parameter x = 21/4r/(β1/4√q). Then from

Equations (7)–(9) one obtains the metric function:

f (x) = 1− Ax2g(x)
x3 + Bg(x)

, (10)

where:

A =

√
2Gq√

β
, B =

2Gl2

β
, C =

23/4β1/4m0

q3/2 , g(x) = C + 1− tanh
(

1
x

)
. (11)

From Equations (10) and (11) we find the asymptotic of the metric function as r → ∞ and r → 0:

f (r) = 1− 2Gm
r

+
Gq2

r2 −
G
r4

(√
βq3

3
√

2
− 4Gl2m2

)
+O(r−5) r → ∞, (12)

f (r) = 1− r2

l2 +
r5

2Gm0l4 +O(r6) r → 0. (13)
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Equation (12) shows the corrections to the RN solution that are in the order of O(r−4). At l = 0
and m0 = 0 (when the total BH mass is the magnetic mass) Equation (12) is converted into the equation
obtained in Reference [36]. As r → ∞ we have f (∞) = 1, and the spacetime becomes flat. According
to Equation (13) limr→0 f (r) = 1. Thus, the spacetime has a smooth de Sitter core and the BH is regular.
If β = 0, l = 0 one has the RN solution. The plot of the function f (x) is depicted in Figure 1. This plot
is typical for any regular solution described by the metric (3) (see, e.g., Reference [13]).

0 5 10 15
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f(
x
)

 

 

A=2

A=3.93

A=6

Figure 1. The plot of the function f (x) for B = 1 and C = 0 (m0 = 0). The dashed-dotted line
corresponds to A = 6, the solid line corresponds to A = 2 and the dashed line corresponds to A = 3.93.

In accordance with Figure 1 at A < 3.93 (B = 1, C = 0) horizons are absent and we have
particle-like solution. At A ≈ 3.93 the horizons shrink into one horizon (the extreme solution).
If > 3.93, we have two horizons of a BH. The horizon radii xh are roots of the equation f (xh) = 0.
From Equation (10), at B = 1, C = 0 one finds the inner x− (x− = 21/4r−/(β1/4√q)) and outer x+
(x+ = 21/4r+/(β1/4√q)) horizon radii of the BH that are given in Table 1.

Table 1. The BH inner and outer horizon radii (B = 1, C = 0).

A 4 5 6 7 8 9 10 15

x− 1.56 1.04 0.88 0.78 0.72 0.68 0.64 0.54
x+ 2.11 3.58 4.71 5.78 6.82 7.84 8.87 13.92

The asymptotic of the Ricci and Kretschmann scalars can be obtained from the relations:

R = − f ′′(r)− 4
r

f ′(r)− 2
f (r)− 1

r2 , (14)

K = f ′′2(r) +
(

2 f ′(r)
r

)2

+
4 ( f (r)− 1)2

r4 . (15)

From Equations (14) and (15) we find:

R =
12
l2 −

21r3

Gm0l4 +O(r4) r → 0, (16)
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R = −86Gm
r3 +

12Gq2

r4 − 34G
r6

(√
βq3

3
√

2
− 4Gl2m2

)
+O(r−7) r → ∞, (17)

K =
24
l4 −

84r3

Gm0l6 +O(r4) r → 0, (18)

K =
48G2m2

r6 − 96G2mq2

r7 +O(r−8) r → ∞. (19)

As r → ∞ the Ricci and Kretschmann scalars vanish and the spacetime becomes flat.
Equations (16)–(19) indicate that solutions obtained are regular.

3. Thermodynamics and Phase Transitions

Let us study the thermal stability of magnetized BHs and the possible phase transitions. The
Hawking temperature is given by [39]:

TH =
κ

2π
=

f ′(rh)

4π
, (20)

where κ is the surface gravity and rh is the horizon radius. Making use of Equations (10) and (20) we
obtain the Hawking temperature:

TH =

√
qG

25/4πβ3/4(x3
h + Bg(xh))

(
−2xhg(xh)

− 1
cosh2(1/xh)

+
g(xh)(B + 3x4

h cosh2(1/xh))

(x3
h + Bg(xh)) cosh2(1/xh)

)
. (21)

The horizon radii rh (and xh) are defined as roots of the equation f (rh) = 0 (and f (xh) = 0).
From Equation (10) we obtain:

Gq√
β
=

x3
h + Bg(xh)√

2x2
hg(xh)

. (22)

According to Equation (22) the horizon radius rh (and xh) depends on the magnetic charge q and
the model parameter β. Substituting Gq/

√
β from Equation (22) into Equation (21) we obtain the final

equation for the Hawking temperature:

TH =
1

27/4π
√

qβ1/4g(xh)x2
h

(
−2xhg(xh)

− 1
cosh2(1/xh)

+
g(xh)(B + 3x4

h cosh2(1/xh))

(x3
h + Bg(xh)) cosh2(1/xh)

)
. (23)

The plot of the reduced Hawking temperature TH
√

qβ1/4 is depicted in Figure 2 for different
values of the parameter B (or l).
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Figure 2. The plot of the function TH
√

qβ1/4 vs. horizons xh for C = 0 (m0 = 0). The dashed-dotted
line corresponds to B = 10, the solid line corresponds to B = 1 and the dashed line corresponds to
B = 5.

It follows from Figure 2 that at the bigger value of l (or B) the maximum of the Hawking
temperature shifts to the bigger value of the horizon radius. The temperature curve has one extremum
(maximum) resulting in one phase transition during the evaporation. Similar form of the temperature
curve for a BH takes place in the models studied in [36]. The heat capacity at the constant charge is
defined by the relation [40]:

Cq = TH

(
∂S

∂TH

)
q
=

TH∂S/∂rh
∂TH/∂rh

=
2πrhTH

G∂TH/∂rh
. (24)

The entropy obeys the Hawking area low S = A/(4G) = πr2
h/G. When the Hawking temperature

has the extremum (∂TH/∂rh = 0) the heat capacity is singular and the second-order phase transition
takes place. In Figure 3 the function GCq/(

√
βq) vs. the horizon radius xh for different values of B for

C = 0 (m0 = 0) is presented.
Figure 2 shows the similarity in the considered thermodynamics of our model and the

thermodynamics of a neutral regular BH. It is seen from Figure 3 that second-order phase transitions
at the discontinuity points occur between negative and positive heat capacities. Figure 2 shows that
the maximum of the temperature (the Davies point), where the phase transitions take place, separates
areas with increasing and decreasing BH temperatures. The unstable point between the positive
and negative heat capacities has a discontinuity. The positive heat capacity corresponds to the late
stage and the negative capacity to the early stage of the thermodynamics process. Thus, there is an
interval of the horizon radius where the heat capacity is positive and the BH is stable. In accordance
with Figures 2 and 3, the heat capacity possesses a discontinuity at the horizon where the Hawking
temperature possesses a maximum. When the parameter B is bigger, the second-order phase transition
of the BH occurs at the larger value of the horizon radius rh (xh). For the large value of xh the BH is
unstable (Cq < 0).
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Figure 3. The plot of the function CqG/(
√

βq) vs. xh for C = 0 (m0 = 0). The dashed-dotted line
corresponds to B = 10, the solid line corresponds to B = 1 and the dashed line corresponds to B = 5.

4. Conclusions

Solutions of a magnetically charged regular BH in the new model were obtained. This model
is of interest because of its simplicity. We found the mass and metric functions possessing simple
analytical structures. The BH can have one (an extreme horizon), two horizons (trapping horizons), or
no horizons (untrapped surface, see Figure 1). These plots are typical for any regular solution described
by the metric (3). One can find the same behavior of the metric function in Reference [13] for another
BH model. Corrections to the RN solution that are in the order of O(r−4) were obtained as the radius
approaches to infinity. As r → ∞ the spacetime becomes flat. The model of a electrically charged
BH [13] was formulated in so-called P-frame (the Hamiltonian framework). But the Lagrangian
dynamics is specified in F-framework. It was shown in Reference [15] that the regular electric solution
in P-frame corresponds to different Lagrangians in different parts of the space if the function P(F)
is not monotonic. But this problem is absent for magnetic solutions. Thus, in the model [13] the
problem of singularities was not solved completely [41]. We calculated the asymptotic of the Ricci
and Kretschmann scalars as r → ∞ and r → 0 showing the absence of singularities. It was shown
that the spacetime as r → 0 has a de Sitter core (the flatness at the center). Thus, the singularity
at r = 0 has been smoothed out. Our solution describes nonsingular BH with the finite curvature
everywhere including r = 0. The regular behavior of the Ricci and Kretschmann scalars also was
observed in Reference [13]. The Hawking temperature and the heat capacity of the BH were found
demonstrating that second-order phase transitions take place. It was shown that second-order phase
transitions separate areas between negative and positive heat capacities and areas with increasing and
decreasing BH temperatures. For small values of the horizon radius, depending on the parameters
of the model, the Hawking temperature is negative (see Figure 2). The thermodynamic stabilities of
black holes were studied and it was shown that in some range of horizon radii the BHs are stable (the
heat capacity is positive) (see Figure 3). The long standing problem of singularities is solved in this
model, at r = 0 curvature invariants are finite and the BH is regular. In addition, at the weak field limit
NED (1) becomes the Maxwell electrodynamics, that is, the correspondence principle holds. It is worth
noting that, in the Bardeen model, the correspondence principle breaks out [12].
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