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Abstract: Orbital resonances continue to be one of the most difficult problems in celestial mechanics.
They have been studied in connection with the so-called Kirkwood gaps in the asteroid belt for many
years. On the other hand, resonant trans-Neptunian objects are also an active area of research in
Solar System dynamics, as are the recently discovered resonances in extrasolar planetary systems.
A careful monitoring of the trajectories of these objects is hindered by the small size of asteroids
or the large distances of the trans-Neptunian bodies. In this paper, we propose a mission concept,
called CHRONOS (after the greek god of time), in which a spacecraft could be sent to with the initial
condition of resonance with Jupiter in order to study the future evolution of its trajectory. We show
that radio monitoring of these trajectories could allow for a better understanding of the initial stages
of the evolution of resonant trajectories and the associated relativistic effects.

Keywords: orbital resonance; general relativity; celestial mechanics perturbations; radar ranging

1. Introduction

In recent years, the interest in spacecraft missions to study orbital dynamics in general relativity
and other effects has soared, in part due to the discovery of some possible astrometric anomalies that
challenge our current understanding of gravity [1,2]. In particular, we have the anomalous secular
increase of the lunar eccentricity, which has not been completely explained within the context of the
models of tidal interactions in the Moon–Earth system [3,4]. The flyby anomaly has also generated a
wide interest [5], as has the Pioneer anomaly [6], although the latter can now be explained in terms of
the anisotropic thermal emission of the heat generated by the radioisotope thermoelectric generators
of the spacecraft [7,8]. The solution of the problems posed by these anomalies could be found in some
of the proposed, or future, extensions of the theory of general relativity. Corda has provided a method
that might be used to elucidate the correct framework for general relativity [9]. The idea is to check the
angle- and frequency-dependent response functions of gravitational wave interferometers. This could
be a reality in the future if the sensitivity of gravitational wave detectors is adequately improved.

Studies of planetary and asteroid orbits started a long time ago. In a paper published in 1866,
the American astronomer D. Kirkwood performed the first statistics of the orbits of many asteroids
in the asteroid belt located between Mars and Jupiter [10]. In this study, Kirkwood noticed that,
at some particular distances from the Sun, there are marked gaps or depletions in the numbers of
asteroids. He explained this fact in terms of the ratio among the periods of an asteroid in that gap
and the orbital period of Jupiter around the Sun. For the ratios 4:1, 3:1, 5:2, 7:3, and 2:1 it seems that
asteroids, perhaps occupying this position in an earlier time, were ejected by periodic perturbations
with Jupiter. This explanation was extended to the Cassini division in Saturn’s rings, now attributed to
a 2:1 destabilizing resonance with the moon Mimas [11].

In the forties and early fifties of the past century, the idea of a region beyond the orbit of Neptune,
in which the primordial planetary nebulas had condensed into a myriad of small bodies, took form
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by the suggestions of Edgeworth and Kuiper [12]. The discovery of many objects between 30 and 50
AU from the Sun give rise to the modern concept of a trans-Neptunian belt, which, on the other hand,
does not correspond exactly with the initial formulation of Edgeworth-Kuiper. In this belt, we have
some stabilizing resonance ratios with Neptune. In particular, the 2:3 resonance is occupied by Pluto,
the plutino family, and the 1:2 resonance by the twotinos [13].

The recent discovery of many extrasolar systems have also become a fertile ground for the study
of resonances. In some of these systems, resonant behavior has been unraveled. For example, the
system around the red dwarf Gliese 876 contains three exoplanets, named “e”, “b”, and “c”, which
are in a chained 4:2:1 resonance [14]. A four-planet resonance has also been found in the Kepler-223
system. The period ratio is, in this case, 3:4:6:8. Planetary migration is the more likely cause of this
arrangement [15].

The commensurability 2:1 with Jupiter has been particularly difficult to analyze. In the classical
context of the planar, circular-restricted three-body problem, the corresponding resonance seems
to be stable. However, a depletion of objects was clearly observed since the analysis of Kirkwood.
This puzzle has been attacked by many authors. Lemaitre and Henrard disclosed a source of chaos in
the low-eccentricity regime of this resonance [16]. Secular resonances inside the 2:1 commensurability
were later discovered by Morbidelli and Moons [17]. It was found that low eccentricity orbits can evolve
into high eccentricity ones. Simulations for test particles with eccentricities ε < 0.355 and inclinations
ι < 1.5◦ showed median lifetimes of 80 million years [18]. This way, a destabilizing mechanism for
previously proposed islands of stability was disclosed. There are still certain quasi-regular islands of
stability populated by remnants of the Themis family [19].

The presence of chaos in the Solar System is not restricted to the most conspicuous resonances.
According to the discoveries of Laskar, Quinn, Tremaine, and others [20,21], the whole Solar System
exhibits chaotic dynamics with a typical Lyapunov exponent of 1/5 Myr−1. Orbital integration
to simulate the evolution of the whole system in the next five billion years showed that even
planetary collisions or ejections cannot be discarded before the end of the life cycle of the Sun [22].
These large-scale simulations cannot be carried out with standard numerical methods but they
require, instead, symplectic integrators [23]. Symplectic integrators have many advantages in dynamic
astronomy in comparison with the Runge–Kutta or the Adams–Bashforth–Moulton predictor-corrector
methods [24]. In particular, numerical solutions are area-preserving, discretization errors of the energy
integral have no secular terms, and the integration of highly eccentric orbits is possible without
step-size changes. Other merits of some special methods can be the exact conservation of the total
angular momentum or time reversibility of the numerical solution [25]. These properties have proven
essential in obtaining sensible solutions for the integrations in a very large number of orbits [22]. On the
other hand, the ephemerides developed for spacecraft navigation are usually based upon classical
methods since the late sixties. For example, Lieske reported in 1967, on one of the earliest versions of
the ephemeris for the period 1800–2000 that was based upon the Adams-Störmer method [26]. Similar
methods, but improved, have been used in subsequent versions [27].

Another important issue concerning highly-accurate orbital integration over prolonged periods of
time is the incorporation of relativistic corrections. This is a challenging problem that has pervaded the
history of general relativity since its 1915 formulation. In general relativity, particles move along the
geodesics of a curved space-time manifold generated by the other bodies in its neighborhood. For an
overview of the recent status of general relativity and some future perspectives, see, for example,
the editorial by Iorio [28], and the reviews of Debono and Smoot [29] or Vishwakarma [30].

Both the equations of the field and the equations of motion are nonlinear, and moreover, these
equations of motion are not independent from the field equations as it happens in other classical field
theories [31,32]. The non-additive character of the interactions makes the N-body problem particularly
difficult in this case. An approach that has been developed since the thirties of the past century is the
post-Newtonian approximation in which the gravitational field is considered weak and the velocities of
the bodies small compared with the speed of light. A pioneering example of this kind of approximation
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was proposed by Einstein himself in collaboration with Infeld and Hoffmann in 1938 [33]. This EIH
approach can be applied to a system of point-like particles under their mutual gravitational interactions.
This is a first-order post-Newtonian approximation. Higher-order approximations are possible, and
even those taking into account a reaction to the gravitational radiation [34], but, for the purpose of
studying the Solar System dynamics, the EIH is considered sufficiently accurate [35]. The equations
of motion in general relativity include "cross-terms" in the post-Newtonian approximation involving
the interaction with the Sun and other planets as well. By taking into account this effect and the
gravitomagnetism of the moving planets, Will recently deduced a new contribution to the anomalous
perihelion advance of Mercury [36].

In this paper we describe a study on the orbital dynamics of a spacecraft located at an initially
circular orbit around the Sun within a distance allowing for resonance with Jupiter. To perform the
integrations, we compare the traditional, explicit numerical methods with the symplectic partitioned
Runge–Kutta method. For human timescales, both methods yield equivalent results, and consequently,
for the time span of the spacecraft mission a convenient approach may ignore the subtleties of the most
sophisticated integration methods. As the Lyapunov exponent for Solar System dynamics is known to
be in the range of 1/5 Myr−1 [22], no signs of classical chaos were expected to emerge from a study
restricted to a period of decades concerned with the planetary orbits. Nevertheless, some indication of
irregular, non-periodic behavior in the contribution of the relativistic corrections may be disclosed in
this period of time, and in the case of resonant orbits, chaotic motion in certain configurations may
arise. In connection with the mission proposal in this paper, we should notice that Iorio has also
proposed a Jovian probe to test the post-Newtonian gravitomagnetic spin octupole of Jupiter [37].
However, our focus is on the classical resonant trajectories and their modification by general relativistic
corrections to the equations of motion instead of the gravity field of Jupiter in itself.

The paper is organized as follows: In Section 2, we propose a simple geometric model for the study
of perturbations of a major planet on a spacecraft orbiting around the Sun. In this section, we consider
the classical Newtonian effects and compare several methods of integration. Section 3 is devoted to
the analysis of the Einstein–Infeld–Hoffmann post-Newtonian corrections for the three-body system
composed of the Sun, Jupiter, and the spacecraft. With the integration of this system, we show that
the detection of the relativistic corrections is within reach of present radio technology and they will
be manifested after a few years of the start of the mission. The paper ends with a discussion on the
interest of a mission designed to study celestial mechanics resonances.

2. Modelling Jovian Resonances: The Newtonian Approach

In this section we consider a simplified model for the orbital resonance of the spacecraft with
Jupiter in the context of the restricted, 3-body problem of celestial mechanics.

The initial conditions for the spacecraft and Jupiter are plotted in Figure 1.
If we denote by R0 the average distance of Jupiter to the Sun and T0 its orbital period, the Cartesian

coordinates of this planet in the orbital plane would be given by:

Rx(t) = R0 cos
(

2πt
T0

+ φ

)
,

Ry(t) = R0 sin
(

2πt
T0

+ φ

)
.

(1)

Here φ is the initial angle of the position vector of Jupiter with respect to the position vector
of the spacecraft. It is convenient to use normalized quantities by using R0 as unit of distance and
τ = T0/(2π) = R3/2

0 /
√

µ� as unit of time. For Jupiter, we have R0 = 5.204 AU and T0 = 11.862 years.
The mass constant of the Sun is µ� = 132, 712, 440, 018 km3/s2 and we can also define the unit of
velocity as

√
µ�/R0, and the unit of energy (per unit mass) as µ�/R0. If we now define the scaled
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canonical variables qx, qy, px, and py for the position and momentum, the Hamiltonian per unit mass
is then given by:

H =
p2

x
2

+
p2

y

2
− 1√

q2
x + q2

y

− κ√
(qx − Rx(t))2 + (qy − Ry(t))2

,
(2)

where κ = µJ/µ� is the mass ratio of Jupiter and the Sun (κ = 0.000954601) and all the quantities are
scaled, Rx(t)→ Rx(t)/R0, etc.

R

r

Figure 1. Ideal circular orbits for Jupiter and the spacecraft in the 2:1 resonant configuration. The position
vector of Jupiter with respect to the Sun is denoted by R and r for the spacecraft. Initially, there is an
angular difference of φ radians in their orbital positions.

The semi-major axis of the spacecraft osculating orbit at the initial condition is given by a = f 2/3

(in units of R0), where f is the ratio of the orbital period of the spacecraft with respect to Jupiter;
i.e., f = 1/2 for the resonance 2:1. According to Figure 1 we take the initial conditions for the spacecraft
as px(0) = 0, py(0) =

√
1/a, qx(0) = a, and qy(0) = 0. A symplectic partitioned Runge–Kutta method

of difference order 4 was used for integration, with an initial step size, ∆t = 2π/100. Integration
was carried out for a period of 20T0, corresponding to 237 years. The results for the distance of the
spacecraft to the Sun in the resonance 1:1 (with φ = ±π/8) are plotted in Figure 2. We observe a
complicated, but periodic, pattern with no hint of chaos in this approximation. Anyway, it should be
noticed that the large perturbations induced by Jupiter expel the spacecraft from the circular orbit at
distances to the Sun ten per cent larger or smaller than the original distance.

Although the initial osculating orbit is assumed to be circular, the perturbations transform it into
an elliptical one with a variable eccentricity. Therefore, it is also interesting to analyze the evolution of
other orbital parameters with time. In Figure 3, we have plotted the argument of the perihelion as a
function of scaled time. We see that, in this particular configuration, there is a retrograde motion of the
perihelion in the range of several degrees per century.

It is also important to emphasize that, in this timescale, we can also use standard explicit and
implicit numerical methods to obtain similar results. On the other hand, symplectic methods have the
advantage of yielding accurate results even with, relatively, large time-steps.
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Figure 2. Distance of the spacecraft to the Sun in the resonance 2:1 with Jupiter. The initial phase is
φ = π/8 (solid line) and φ = −π/8 (dotted line). Units of distance and time are scaled.
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Figure 3. Argument of the perihelion for a spacecraft in the resonance the resonance 1:1 with Jupiter
and initial phase φ = π/8.

3. Relativistic Effects in Resonant Orbits

The equations of motion of general relativity are far more complicated than those of Newtonian
mechanics. We can say that these equations are conceptually simple because they are given as the
geodesics of a manifold, and moreover, they do not need to be postulated separately from the field
equations [31,32]. Moreover, the practical implementation of these equations has led to whole fields of
research, such as numerical relativity or the post-Newtonian approach.

In the case of strong gravitational fields and, relatively, large velocities there is no easy approach
to the problem as we can expect radiation-reaction effects arising from the emission of gravitational
waves that can only be treated numerically from the very beginning.

In the case of the Solar System, the radiation power of the Jupiter–Sun system amounts to
5200 Watts which is completely negligible even on the scale of the age of the Universe [38]. In this
context, an approximation developed for the weak gravitational field and low velocity regime would
be better suited. This approximation was proposed as early as 1938 by Einstein, Infeld, and Hoffman
for an N-body system of point particles in which the masses are not very large (the Scharzchild’s
radius is small compared to the typical distance among the bodies) and the velocities are always
small compared to the speed of light [33]. As other authors have noticed, in derivations of this
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post-Newtonian approach, it is convenient to start with the Lagrangian [31,32,35]. If we use scaled
variables, as defined in the previous section, the corresponding Lagrangian is given by:

L =
q̇2

x
2

+
q̇2

y

2
+

1√
q2

x + q2
y

+
κ√

(qx − Rx(τ))2 + (qy − Ry(τ))2

+

(
q̇2

x + q̇2
y

)2

8c2 +
3

2c2

q̇2
x + q̇2

y√
q2

x + q2
y

+
κ

2c2
1√

(qx − Rx(τ))2 + (qy − Ry(τ))2

{
3q̇2

x + 3q̇2
y + 3− 7

(
q̇xvJx(τ) + q̇yvJy(τ)

)}
− κ

2c2
1(

(qx − Rx(τ))2 + (qy − Ry(τ))2
)3/2 (q̇x (qx − Rx(τ))

+ q̇y
(
qy − Ry(τ)

)) (
vJx(τ)qx + vJy(τ)qy

)
− 1

2c2
(

q2
x + q2

y

) − κ2

2c2
(
(qx − Rx(τ))

2 +
(
qy − Ry(τ)

)2
) ,

(3)

where c → c
√

R0/µ� ' 22, 961.34 is the scaled speed of light and vJx(τ) = − sin (τ + φ), vJy(τ) =

cos (τ + φ) are the Cartesian velocity components for Jupiter. Here τ = 2πt/T0 is the scaled time and
Rx(τ) = cos (τ + φ), Ry(τ) = sin (τ + φ) are the position vector components for Jupiter, κ = µJ/µ�
being, as before, the ratio of the masses of Jupiter and the Sun. A simplification has also been made in
Equation (3) by assuming that the position and velocity vectors for Jupiter are normal. This is, indeed,
true in the circular orbit approximation we are assuming.

From this Lagrangian we can obtain the equations of motion in the corresponding post-Newtonian
approximation. For clarity, it is convenient to separate the contribution to the acceleration into two
terms: a�, which involves quantities proportional to the inverse of the distance to the Sun, and aJ
related to quantities proportional to the inverse of the distance of the spacecraft to Jupiter. The first
contribution to the acceleration is the simpler one and it can be written as follows:

a� = − q
q3 +

4
c2

(p · q)
q3 p +

7κ

2c2
R
q

− q
q3c2

{
q2 − 4

q2 − κ − κ

2
q · R− 4κ

|q− R|

}
,

(4)

where q and p are the position and velocity vectors for the spacecraft, and R is the position vector of
Jupiter. The reference point is the center of the Sun or, to be precise, the barycenter of the Solar System.
The second contribution is given below:

aJ = −κ(q− R)

|q− R|3 +
κ(p− vJ)

c2|q− R|3
{

4 q · p− 3 q · vJ − 4 p · R
}
− 7κ

2c2
R

|q− R|

− κ(q− R)

c2|q− R|3

{
q2 +

1
2
− 4 p · vJ −

4
q2 +

1
2

q · R− 4κ

|q− R| −
3
2
(q · vJ)

2

|q− R|2

}
.

(5)

Here, vJ is the velocity of Jupiter in its orbit as defined before. Notice also than we can recover
the Newtonian limit from Equations (4) and (5) by taking the limit c→ ∞. The equations of motion
with relativistic corrections that we want to solve can then be written as the system:

dq
dτ

= p ,

dp
dτ

= a� + aJ .
(6)
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These equations were derived in classical references, such as Fock [31] and Landau–Lifshitz [32].
Moreover, they are commonly used in studies of planetary orbital dynamics in the Solar System [35].
We now apply these equations to the case of the spacecraft located at resonance 1:1 with φ = π/8.
The predictions for the position of the spacecraft cannot be distinguished from the Newtonian ones
discussed in Section 2 in the scale of Figure 2. Anyway, the discrepancy is significant if we plot the
difference between the two predictions as shown in Figure 4.
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Figure 4. Relative differences in the distances of the spacecraft to the Sun in the resonance 1:1 with
Jupiter with initial phase φ = π/8. The pattern is not periodic, and most likely, is chaotic in the scale of
several centuries.

We observe that the relativistic effects perturb the spacecraft in such a way that its distance to the
Sun is increased by several kilometers just ten or twenty years after the beginning of the experiment.
This is within the range of radar measurements and could provide an extra test of general relativity
and the validity of the post-Newtonian approximation. It is also important to check if a collision with
Jupiter may happen in the future. To check that, we plotted the distance of the spacecraft to Jupiter
in Figure 5. We see that, although this distance varies periodically, a collision is not expected in the
near future after the placement of the spacecraft in its initial orbit. The period of the oscillations in
the distance of the spacecraft to Jupiter is, approximately, 110 years and it provides another way of
exploring the richness of the resonant behavior.
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Figure 5. Distances of the spacecraft to Jupiter in the same conditions as those of Figure 4. The unit of
distance is R0 (Sun–Jupiter average distance).
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In Figure 6 we also plotted the amount of the relativistic contribution to the distance between of the
spacecraft and Jupiter. We see that this contribution reaches increasing peaks in the range of a hundreds
of kilometers. This contribution could be more easily detected if measurements were performed from
another spacecraft in orbit around Jupiter or a radio antenna located at a Galilean moon.
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Figure 6. Relative differences of the distances of the spacecraft to Jupiter (relativistic prediction minus
Newtonian prediction) in the same conditions as those of Figure 4.

It would be also interesting to consider another case in which the spacecraft is placed initially
even closer to Jupiter. We expect that the chaotic behavior would emerge earlier in these circumstances.
In Figure 7, we plotted the distance of the spacecraft to the Sun for φ = −π/32 both for the Newtonian
prediction and the relativistic one.
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Figure 7. Distance of the spacecraft to the Sun for φ = −π/32: Newtonian prediction (black line) and
the relativistic one (blue line).

In this case, the spacecraft is so close to Jupiter that large amplitude perturbations arise.
Nevertheless, the predictions of both the Newtonian and the post-Newtonian approximations are very
similar except for when the duration is larger than 200 years. This can be also interpreted as a sign of
chaos with a Lyapunov exponent of order 5× 10−3 years. The behavior in a human timescale is better
evidenced by the difference between the distance to the Sun in the Newtonian and post-Newtonian
approximations. as displayed in Figure 8.
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Figure 8. Difference between the distances of the spacecraft to the Sun as predicted for the post-
Newtonian and Newtonian approximations in a resonant 1:1 orbit with φ = −π/32. Integration by the
Runge–Kutta order four method (solid line) and the fourth order Adams predictor-corrector method
(open circles).

Here we see that variations of the order of 30 kms are expected in a period of ten years. This could
provide a reliable, and relatively fast source of data to test the post-Newtonian approximations of
general relativity in addition to the Messenger mission to Mercury and similar planetary missions [39].

Numerical Methods

In order to check the robustness of our results for the different initial conditions we discussed
in the previous sections, we used different numerical methods for the integration of the equations of
motion in the Newtonian and relativistic cases. Despite sensitivity to the initial conditions being high
in this system, if the accuracy of the integration is improved by performing calculations in double,
or even single precision we found that all methods agree in their predictions for the time domain of
interest in this work.

Standard Runge–Kutta methods are the most obvious choice as they are implemented in many
software packages [40]. As an alternative, that preserves the symplecticity of the Hamiltonian, we used
the symplectic partitioned Runge–Kutta methods [41]. The properties of this method allows for the
integration of larger times with a larger initial time-step. Notwithstanding these advantages, it was not
clear how to implement it in the relativistic case, so we checked only the agreement with the typical
Runge–Kutta of order four in the non-relativistic model.

Finally, for the relativistic equations of motion, we have compared them with the four-step
Adams predictor-corrector method—a combination of the Adams–Bashforth and Adams–Moulton
methods [42]. Predictor-corrector methods are explicit methods that combine two iterations per step.
In the first one, we predict a new value of the coordinates (the so-called predictor algorithm) and in
the second one the predicted value is corrected (the correction algorithm). The main inconvenience of
this method is that we need the initial value of the spatial coordinates and velocities for time steps
nh and n = 0, . . . , 3 (in the four-order method). These initial values can be provided by the standard
Runge–Kutta algorithm.

If the total relativistic accelerations are written as Ax(t, px, py, qx, qy) and Ay(t, px, py, qx, qy) for
the x and y components, we can write the algorithm for the predictor step of the qx and px coordinates
as follows:

q̄x,n = qx,n +
h

24
(55px,n − 59px,n−1 + 37px,n−2 − 9px,n−3) ,

p̄x,n = px,n +
h

24
(
55Ax(tn, px,n, py,n, qx,n, qy,n)− 59Ax(tn−1, px,n−1, py,n−1, qx,n−1, qy,n−1)

+ 37Ax(tn−2, px,n−2, py,n−2, qx,n−2, qy,n−2)− 9Ax(tn−3, px,n−3, py,n−3, qx,n−3, qy,n−3)
)

.

(7)
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Then, the corrector step is applied in the following form:

qx,n+1 = qx,n +
h

24
(9p̄x,n + 19px,n − 5px,n−1 + px,n−2) ,

px,n+1 = px,n +
h

24
(
9Ax(tn+1, p̄x,n, p̄y,n, q̄x,n, q̄y,n) + 19Ax(tn, px,n, py,n, qx,n, qy,n)

− 5Ax(tn−1, px,n−1, py,n−1, qx,n−1, qy,n−1) +Ax(tn−2, px,n−2, py,n−2, qx,n−2, qy,n−2)
)

.

(8)

And similar equations should be used for the components in the y coordinate. In Equations (7)
and (8), n denotes the n-th time step and tn = nh, h being the size of the time step. In our implementation
of the method we took h = 10−4 in units of τ = T0/(2π) with T0, the revolution period of Jupiter
around the Sun. Being not natively supported by software packages such as Mathematica, this method
is far more time consuming than the Runge–Kutta or the symplectic Runge–Kutta. In Figure 8 we show
the results of both the fourth order Runge–Kutta method and the four-step Adams predictor-corrector
method for the relativistic prediction of the distance of the spacecraft to the Sun in the resonant 1:1
orbit with φ = −π/32. We took the initial conditions for the Adams method from the Runge–Kutta
method and single precision accuracy was used. A very good agreement was obtained between the
two methods, save for discrepancies around five per cent that can be ascribed to rounding errors.

4. Conclusions

Testing general relativity has been a lengthy and complicated process, mainly as a consequence of
the small effects involved, because gravity is the weakest of all forces in nature [43,44]. One of the main
predictions of the theory, i.e., gravity waves, have only been directly detected very recently [45,46],
just a century after general relativity was cast into its final form by Einstein. Anyway, it is surprising,
in a certain sense, that even in the local environment of the Solar System there are tests that have not
been completed to the precision required. Particularly, the problem of the relativistic contributions
to the precision of the longitude of the ascending node and the argument of the pericenter of
bodies orbiting around a rotating planet, also known as Lense–Thirring effect, is still a controversial
subject [47–54].

These effects, however, are restricted to ideal situations on the ideal assumptions of the two-body
problem. The implication of general relativity to the large-scale evolution of the N-body problem
constituted by the Sun and all the planets, moons, and asteroids of the Solar System is still a major
challenge in what concerns the confrontation of the theory with the observations. In the last decades,
we have seen a startling development in the analysis of the large-scale evolution of the Solar System
for periods of time in the range of millions of years. Laskar and collaborations [20,22] have shown that
the long time regime of the Solar System is chaotic and that considerable fluctuations in the eccentricity
and other orbital parameters are predicted for the inner planets for a period of the order of magnitude
of the age of the Solar System. To perform the simulations for such long periods of time it has been
necessary to employ symplectic methods of integration with the adequate properties of the absent
secular terms in the energy integral, time reversibility, and angular momentum conservation [25,41].

These phenomena are particularly well evidenced for resonant orbits. An asteroid (or spacecraft)
is said to be in resonance with a major planet when it completes its orbital period around the Sun;
then, it is in a rational proportion with that of the major planet. Jupiter, being the largest and closer
gaseous giant planet of the Solar System, is the main cause of resonances in the inner Solar System.
These resonances have consequences for the stability of the asteroid belt in the end, and it is known
to be responsible for the absence of asteroids with orbital periods in proportions 4:1, 3:1, 5:2, 7:3, and
2:1 with that of Jupiter. These are the, so-called, Kirkwood gaps. The destabilizing mechanism that
induces the migration of asteroids from these orbits is still to be elucidated in detail, although a source
of classical chaos was found in simulations by several authors [16–18].

Our objective in this paper was to propose an alternative way to study these resonances by means
of a dedicated mission. In this mission, a spacecraft would be directed initially to a circular orbit in
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resonance 2:1 or 1:1 with Jupiter where the perturbations by the giant planet would be very large.
Monitoring the location and velocity of this spacecraft by Doppler and radar ranging would allow
us to have a clear picture of the evolution of a resonant orbit in its early stages. In addition, it would
also allow us to test the contribution of the relativistic effects to the large scale evolution of the Solar
System. The post-Newtonian approximation of Einstein–Infeld–Hoffman seems entirely adequate for
the analysis of the relativistic contributions, as gravitational radiation reaction can be neglected in the
weak field and low velocities regime we are considering.

We found that, even when the classical Newtonian trajectory seems regular, the relativistic
contributions add a source of non-periodicity to the ephemeris, as expected from chaotic dynamics.
This can be traced even in a period of several years, or decades after launch, because the fluctuations
in the position, for example, can be as large as 10 km. This would provide an experimental tool to
evaluate the quality of the post-Newtonian approximation in a three-body problem, as realized by the
interactions of the spacecraft with the Sun and Jupiter. Furthermore, it would provide an insight into
the evolution and stability of the Solar System in both the past and the future.

We conclude that at the present stage of detailed analysis of the predictions of general
relativity, a mission to study resonances and the associated relativistic effects may be worthwhile.
The information derived from this study would help to establishing the validity of post-Newtonian
mechanics and to probing the resonant perturbations on the human timescale or the role of relativity
in the chaotic evolution of the Solar System and its stability.
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