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Abstract: Recent developments on holography and quantum information physics suggest that
quantum information theory has come to play a fundamental role in understanding quantum gravity.
Cosmology, on the other hand, plays a significant role in testing quantum gravity effects. How to
apply this idea to a realistic universe is still unknown. Here, we show that some concepts in quantum
information theory have cosmological descriptions. Particularly, we show that the complexity of
a tensor network can be regarded as a Fisher information measure (FIM) of a dS universe, followed
by several observations: (i) the holographic entanglement entropy has a tensor-network description
and admits a information-theoretical interpretation, (ii) on-shell action of dS spacetime has a same
description of FIM, (iii) complexity/action(CA) duality holds for dS spacetime. Our result is also
valid for f (R) gravity, whose FIM exhibits the same features of a recent proposed Ln norm complexity.

Keywords: holographic duality; gauge-gravity correspondence; tensor network

1. Introduction

A milestone in the exploration of the unification of general relativity and quantum mechanics
was the work of Bekenstein and Hawking on the area law of black hole entropy [1,2]. Inspired by
this discovery, ’t Hooft [3] and Susskind [4] formulated the holographic principle, which suggests
that the degrees of freedom of a higher dimensional gravitational system can be characterized
by those of a lower dimensional quantum system. This principle is currently widely regarded
as a fundamental principle of quantum gravity, especially after Maldacena’s discovery [5,6] of
AdS(Anti-de Sitter)/CFT(Conformal field theory) correspondence.

However, how these extra degrees of freedom emerge from CFT is still a mystery. A breakthrough
came from the recently proposed holographic entanglement entropy (HEE) [7], which suggests deep
connections between quantum gravity theory and quantum information theory [8,9]. However,
although these connections are generally believed to grasp a significant character of the theory of
quantum gravity, there is a lack of applications to the realistic universe. Most current achievements are
valid only for AdS spacetimes, with very limited efforts to our realistic universe.

In this work, we try to make a preliminary attempt to cross these gaps. We focus on the
possible relations between the Friedmann-Robertson-Walker (FRW) universe (particularly the dS
universe) and quantum information theory. We show that complexity of a multi-scale entanglement
renormalization ansatz (MERA) [10] tensor network can be thought of as FIM of a dS spacetime.
Our argument is based on the following three observations: First, we will show that for MERA
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tensor network, the entanglement entropy of a cut leg can be viewed as a flow—an information-bit
(qubit) flow transmitted by a quantum circuit. It provides an information-theoretical picture of the
MERA network. According to this picture, tensor network and spacetimes admit the same causal
structure. This is consistent with the MERA/spacetime correspondence proposed in [11], where MERA
is regarded as a quantum circuit and the dS metric is derived. A similar perspective can be found
in [12–16], where MERA is viewed as a discretization of kinematic space—the space of bulk geodesics,
instead of the time slice of the original bulk, and the kinematic space of an AdS space is of dS
geometry. Second, the on-shell action of dS can be identified as an FIM, which is a description of the
measure of information. Third, we show that the on-shell Einstein-Hilbert (EH) action of dS spacetime
exhibits the same features as complexity of MERA network, which can be viewed as a dS-version
complexity/action(CA) duality [17–20]. Originally, the CA duality refers to the Wheeler-De Witt(WDW)
patch under asymptotic AdS spacetime. In our dS-version CA duality, we do not need to constrain in
the WDW patch. This follows from recent generalization, for instance, complexity of MERA in terms
of Liouville action as shown in [21–24], and dS spacetime as shown in [25].

2. MERA/de Sitter Correspondence

Given a MERA network, without loss of generality, we assume it is a 2-isometry tensor network,
which means each isometry in the network has two lower legs and one upper leg. Cutting one leg
will gives log2 χ entropy [10], where χ is the bond dimension. The key point is that 2-isometry is
a coarse-graining operator mapping χ2-dimensional Hilbert space to χ-dimensional one as illustrated
in Figure 1a. This property suggests that log2 χ can be regarded as flux of entanglement flow in each leg
and causal relation between tensors can be viewed as causal structure of the emergent spacetime [9,13].
The entanglement entropy is given by counting the number of legs on the causal cut. Before discussing
this MEAR/spacetime correspondence, let us first give a quick snapshot of tensor network in terms of
the kinematic space of AdS3. According to [12–16], MERA tensor network is best viewed as kinematic
space of AdS3 rather than the time slice of the original AdS3. The kinematic space is defined by
a set of boundary-anchored geodesics. The measure of a kinematic space is determined by [12,14]
Dg ∝ (∂2S(u, v)/∂u∂v)dudv, which is the measure of dS2.

A BC

I(A,B|C)

|0〉
log2 χ

log2 χ log2 χ

2− isometry

(a) (b)

Figure 1. (a) A 2−isometry tensor element. (b) The multi-scale entanglement renormalization ansatz
(MERA) network. We have ignored disentangler because the spacetime volume is only interpreted
as conditional mutual information. A and B share the information I(A, B|C) [13]. These entangled
degrees of freedom are transmitted by isometry in the blue region.

In terms of this picture, the volume of a causal diamond D can be explained as conditional
mutual information of two intervals as shown in Figure 1b: I(A : B|C) = S(u− du, v) + S(u, v + dv)−
S(u, v)− S(u− du, v + dv) = (∂2S(u, v)/∂u∂v)dudv. In other words, isometries in the region D share
the information of A and B so they contain the entanglement degrees of freedom between A and B.
The number of information bits in the region D, which is denoted as N , is proportional to the volume
integral over D,



Universe 2019, 5, 221 3 of 15

N =
∫

D
d2x
√
−gΘI , (1)

where ΘI is a constant and gµν is the dS2 metric with radius L. The idea that measuring the volume
of a region in a manifold is replaced by counting the number of elements in this region, was first
suggested by Riemann [26]. This is also the main idea of some quantum gravity models such as causal
sets theory [27] and dS/MERA correspondence [11–13,25,28].

Note that the number of information bits in the diamond D (1) of the kinematic space is the same
as the conditional mutual information, i.e., I = N . Comparing with (1) and the expression of the
conditional mutual information, one immediately has ΘI ∝ c

LD , where c is the central charge of the
boundary system. This constant can be explained as the “density” of each isometry tensor. It counts
the number of information bits (or entangled pairs) in each isometry. In Section 4, we can see that
one outstanding improvement in this paper is that we do not identify the number of the isometry as
the volume, but rather the on-shell action, because (1) is equivalent to the number of quantum gates
acting on an entangled pair in MERA. When ΘI is a constant, the on-shell action is proportional to the
volume, then our statement reduces to the usual one as mentioned above.

Now we treat the (continuous) MERA as a dS geometry rather than the AdS time slice. This implies
the emergent dimension is temporal rather than spatial. That means the opposite direction of coarse
graining can be viewed as the evolution time τ of the universe. We can write down the FRW metric for
this tensor network

ds2
TN = −dτ2 + a2(τ)dx2. (2)

For dS one has a = exp(τ/L), where L is the dS radius. One should note that our proposal can be
applied to general D-dimensional case. Actually, since kinematic space is just an auxiliary space, it is
possible to go beyond kinematic space picture to set up the connections between tensor networks and
spacetime structure (2), and to discuss this model in cosmology.

3. Fisher Information Measure = Gravitational Action

As explained above, the number of isometric tensors can be given by the integral (1). In this
section we show that the integral (1) can be regarded as the on-shell action in dS background, with the
help of an observation that the on-shell action of dS spacetime can be viewed as a FIM [29].

We can even consider a more general D-dimensional spacetime. For a D-dimensional spacetime
without matter, the total action is given by

IG =
1

16πGD

∫
M

dDx
√
−g(R− 2Λ) + IGHY, (3)

where the first term is the EH action and the second is the Gibbons-Hawking-York (GHY) boundary
term. R is the Ricci curvature, Λ = D−2

2D R is the cosmological constant and GD is the D-dimensional
gravitational constant. For D-dimension FRW metric (2), the Ricci curvature is R = 2(D− 1) ä

a + (D−
1)(D − 2) ȧ2

a2 . Particularly, We consider the on-shell action (3) for dS. The Gibbons-Hawking-York
boundary terms, which are used to supplement the action so that the variational principle is
well-defined, are given by the extrinsic curvature of the boundary surface ∂M of the spacetime
M. In general this term reads

IGHY =
1

8πGD

∫
∂M

dD−1xε
√

hK, (4)

where K is the trace of extrinsic curvature of the boundary and hij = a2δij is the induced metric. ε is
equal to +1 (−1) if ∂M is timelike (spacelike). The boundaries of the dS spacetimes are the spacelike τ
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time slices at τi and τf , with outward pointing unit normal nµ and nµnµ = ε = −1. In the FRW metric
we have nµ = (1, 0) at τf and nµ = (−1, 0) at τi. The trace of extrinsic curvature is given by

K = ∇µnµ = hαβ
(

∂βnα − Γγ
αβnγ

)
= (D− 1)

ȧ
a

(5)

The GHY boundary term for the τ = τf slice is obtained

I( f )
GHY = −D− 1

8πGD

∫
∂M f

dD−1xaD−1H, (6)

where we have used
√

h = aD−1. Similarly, we can also obtain the contribution of τ = τi slice Ii
GHY.

And then we can write the total surface integral (4) as a volume integral through

IGHY = −D− 1
8πGD

∫
M

dD−1xdτ
d

dτ

(
aD−2 ȧ

)
(7)

For the dS case, this boundary term reads

IGHY = − (D− 1)2

8πGD

∫
M

dDxaD−1H2, (8)

where dDx ≡ dD−1xdτ.
After taking the GHY boundary term into consideration, the whole on-shell action reduces to

IG = − (D− 1)(D− 2)VD−1

8πGD

∫
dτaD−1

(
ȧ
a

)2
. (9)

where VD−1 is the (D − 1)-dimensional comoving volume. One of the main results in this paper,
as will see below, is to notice that this form of on-shell action can be regarded as FIM of gravity system,
and that it exhibits the same behavior as the complexity by assuming reliability of the CA duality
for dS.

Now let us turn to see how the gravitational action (9) matches a Fisher information measure
(FIM). A FIM is a measure of the information or the disorder of a system and has been studied in
estimation theory for many years [30,31]. Consider a system specified by a parameter θ. Let y be the
data value and x be the noise value, we have y = θ + x. There is a function to estimate the parameter
θ̂(y) from data y. The question is how well θ can be estimated. The answer is related to the fluctuation
of data value y which can be described by a probability density function (PDF) p(y|θ). If the translation
invariance holds: p(y|θ) = p(y− θ) = p(x), i.e., p is only the description of noise. Then the FIM is of
the following definition [30]

IFIM [p] =
∫

dx
(

dp(x)
dx

)2 1
p(x)

. (10)

By introducing a mean-square error e2 =
∫

dy(θ̂(y) − θ)2 p, we always have e2 IFIM ≥ 1 [30]
(Appendix A for detail). This uncertainty relation means a well estimation (small e2) leads to a larger
IFIM. Hence IFIM is a quality of the estimation procedure and we call it “information”.

One can also introduce a more general PDF called “escort probabilities” which is defined as [29,31]

Pq(x) =
p(x)q∫
dxp(x)q =

p(x)q

Q
, (11)

where q is a real parameter and Q =
∫

dxp(x)q. Then a new FIM Iq can be defined in a similar way

Iq ≡
Q
q2 IFIM

[
Pq
]
=
∫

dxp(x)q−2
(

dp(x)
dx

)2

. (12)
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Iq also has information significance of the system.
Comparing Iq with the on-shell gravitational action (9) and setting

q = D− 1, x =
8πGD

(D− 1)(D− 2)VD−1
τ, p(x) = a(τ), (13)

One finds the FIM has the same form as the gravitational action, i.e., Iq = −IG and q is related
to spacetime dimension D. It is well known that the positive cosmological constant solution of the
vacuum Einstein equations is the dS spacetime: a(τ) = exp(τ/L). Then (9) can be written as

Iq = −IG =
(D− 1)(D− 2)VD−1

8πGDL2 ΛD−1
c , (14)

where Λc ≡ eΛ f /L, Λ f is a future cutoff on τ. This implies that the FIM (or the on-shell action) of a dS
spacetime is proportional to its spacetime’s volume.

Although the on-shell de Sitter action has the same form as Fisher information after regarding the
scale factor a(τ) as PDF p(x). We must point out that a(τ) in our case is different from a probability
density in that a(τ) is exponential. So, unlike PDF, such a scale factor has a normalization issue and its
integral diverges at infrared point of de Sitter spacetime. We also need to emphasize that in this article
we only consider the vacuum de Sitter case. Our model is a toy model which comes from the picture
of tensor network/gravity correspondence. Such toy model relies heavily on conformal symmetry and
studies beyond AdS or de Sitter case still lack. Nevertheless, one can introduce energy-momentum
tensor to the right hand side of Einstein equation as a source of matter, such as dust or radiation for
our real universe. For a perfect fluid, the scale factor is given by a(τ) ∼ τα, where α < 1 (α = 2/3
at dust domination and α = 1/2 at radiation domination). More generally, if α is not a constant,
the normalization issue would not occurs anymore [29]. However, we still lack knowledge of the
correspondence between tensor network (or circuit) and gravity with general sources.

4. Complexity Interpreted as FIM

Quantum complexity is the minimum number of elementary operations in producing the target
state in question from a reference state. Here we show the complexity can be interpreted as the on-shell
action, or equivalently as shown above, the FIM.

Firstly, recall that the volume
∫

d2x
√−g can be equivalently given by the number of isometries.

Therefore ΘI in (1) has the meaning of “density” of bits, that is, the number of information bits
in each isometry. There is a similar concept called entanglement density [32], which counts the
number of disentanglers (tensors acting on an entanglement pair) in each bond in the tensor network.
The entanglement entropy of an interval can be obtained by roughly counting the number of bonds
cut by the causal cut and then multiplying by the density. However, as to tensor network associated
with kinematic space, counting the number of entanglement pairs in each isometry (i.e., ΘI) is
more straightforward. As an explicit example, the conditional mutual information is just given
by multiplying the density ΘI by the number of isometry

∫
d2x
√−g in a diamond D. Secondly,

complexity, by definition, has the meaning as the minimum number of elementary gates necessary
to produce a state |Ψ〉 from a simple reference state |Ψ0〉. For MERA in question, the elementary
gate is the gate acting on an entanglement pair1, which means the gates we choose are the simple
gates that operate on a very small number of bits [34]. If we treat IR state of MERA as reference state
and UV state as target state, and recall the MERA/dS correspondence introduced in the last section,

1 The reason we choose element gate like this is that the MERA network can be thought of as an iterative compression
algorithm that maps the density matrix of an interval to a direct product state [13]. In the opposite direction, this tensor
network maps a non-entangled state to an entangled state [33]. Then each of the element quantum gates acts on the simplest
entanglement pair (2-qubit). The simplest toy example of gate set we choose may be shown in Appendix B.
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we conclude that evolution of dS universe can be regarded as a process of quantum circuit from one
state to another [25,33]. And the complexity of MERA is naturally determined by the number of these
quantum gates acting on entangled pairs, which is proportional to

∫
d2x
√−gΘI , namely Appendix B,

C ∝
∫

dDx
√
−gΘI ∝

c
LD

∫
dDxaD−1. (15)

If all these hold, we have C ∝ −IG, where the minus sign comes from the fact that the manifold is
Lorentzian. If we turn it to an Euclidean one by τ → iτ, L→ iL the minus sign vanishes. This implies
the complexity of MERA circuit is nothing but the FIM of the spacetime, i.e.,

C = 1
π

Iq, (16)

where we have associated a prefactor in this equality2. One minor comment is the following: since dS
on-shell action is proportional to spacetime volume, one cannot differentiate the CA duality from the
CV. An argument of the duality between MERA circuit complexity and D-dimensional dS action was
discussed in [25].

One support of the duality (16) comes from a classical relation between central charge of the
boundary theory and the gravitational constant of the gravity theory. From (14) and (15) we have
c ∼ LD−2

GD
, which coincides with the well-known relation in the AdS3 [35]. This implies for fixed L,

the large c limit of the boundary theory will lead to a classical gravity.
One more evidence of this relation refers to Lloyd’s conjecture [36]. This conjecture claims that,

if a set of orthogonal gates Gα are chosen to construct a target state, there is a lower bond for the
computational time that takes a quantum system to reach an orthogonal state. This implies an upper
bond for the growth rate of complexity

dC
dτ
≤ 2E

π
, (17)

where E is the energy of this system. After associating the prefactor in relation of complexity and
action, C = I/π [17,18], the authors proposed that in the bulk the black holes obey this upper bond
for the growth rate of complexity, i.e., dC/dτ = 2M/π, where M is the mass of an uncharged black
hole. However, they use the simple gates which only operate a small number of bits rather than the
orthogonal gates [34,37].

As to our model, considering (9) and (16), the growth rate of complexity is given by

dC
dτ

=
(D− 1)(D− 2)

8π2GD

∫
dD−1x

√
h

ȧ2

a2 =
2Eu

π
, (18)

where we have used the Friedmann equation (D − 1)(D − 2)H2 = 16πGDρ and
√

h = aD−1 is the
determinant of spatial component of FRW metric. Note that Eu =

∫
dD−1x

√
hρ is the energy of this

universe. In other words, the energy of dS universe plays the role of the energy in Lloyd’s bond (17),
just like the black hole’s mass in AdS spacetime. We find that if we write the on-shell action of gravity
as the form of the FIM (9), the growth rate of complexity saturates the Lloyd’s bond.

2 In this paper we set c = h̄ = 1. In general, one should associate a prefactor λ/π where λ is a positive number.
The undetermined prefactor λ is only determined by the choice of gate set and Hamiltonian locality. We have already
claimed above that for MERA the chosen gates are simple. Hence for a system whose Hamiltonian locality equal to
quantum-gate locality, we expect λ = 1 Appendix B. The prefactor is precisely the same as the one obtained for the AdS
black holes [17,18].
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5. Complexity Interpreted as Ln Norm FIM

The proposal of interpreting complexity as FIM can be also tested in theories beyond the Einstein’s
gravity. In this section we try to provide more evidences to support this proposal. We firstly connect
the dS on-shell action in f (R) gravity to Ln norm FIM and then argue the equivalence of these FIM
and MERA complexity defined by Fubini-Study metric.

5.1. Testing in f (R) Gravity

In this subsection we consider the complexity of the gravitational theory beyond the standard
Einstein’s gravity with certain different Ricci curvature term, the f (R) gravity.

The growth rate of complexity of f (R) gravity for AdS black holes has been considered in [38]
and it also saturates the complexity growth rate bound. We assume the prefactor between action and
complexity is the same as the AdS black holes case [17,18], i.e., λ = 1 for simplicity. The corresponding
gravitational action of f (R) gravity is given by bulk term, GHY boundary term and matter term:

IG =
1

16πGD

∫
M

dDx
√
−g f (R) +

1
8πGD

∫
∂M

dD−1xε
√

h f ′(R)K + IM, (19)

where f ′(R) ≡ d f (R)/dR. From this action the equations of motion is derived as

f ′(R)Rµν −
1
2

f (R)gµν +
(

gµν�−∇µ∇ν

)
f (R) = 8πGDT(M)

µν , (20)

where T(M)
µν is the stress tensor corresponding to the matter contribution IM. This modified field

equation can be written as the standard form of the Einstein’s gravity [39], i.e.,

Rµν −
1
2

Rgµν = 8πGD

(
T̃(curv)

µν + T̃(M)
µν

)
, (21)

There are two contributions of the stress tensor, one comes from the matter and the other comes
from the curvature. These effective stress tensors are given by

T̃(M)
µν =

T(M)
µν

f ′(R)
, T̃(curv)

µν =
1

8πGD f ′(R)

{ gµν

2
[

f (R)− R f ′(R)
]
−
(

gµν�−∇µ∇ν

)
f (R)

}
. (22)

We note that the effective stress tensor associated with the matter should be modified by a factor
1/ f ′(R). Here we define a new stress tensor T(curv)

µν of the curvature similar to the matter term as

T(curv)
µν = T̃(curv)

µν f ′(R). (23)

We suggest that T(curv)
µν , like the matter stress tensor T(M)

µν , contribute the energy density and
pressure to the spacetime in our complexity’s proposal. If we consider the flat universe with the FRW
metric, we obtain one of the modified Friedmann equations

H2 =
16πGD

(D− 1)(D− 2) f ′(R)

(
ρ(curv) + ρ(M)

)
, (24)

where the energy density are ρ(curv) = T(curv)
00 and ρ(M) = T(M)

00 , respectively.
In general it’s hard to solve the Equation (21). However here we only look for the solution

included the dS solution we are most interested in. This solution satisfies Rµν = (D − 1)H2gµν.
Then the trace of equation of motion (21) is obtained

R f ′(R) =
D
2

f (R). (25)
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Note that now there is no matter term T(M)
µν = 0 and the energy density of curvature is ρ(curv) =

−[ f (R)− R f ′(R)]/2.
To evaluate the gravitational action IG we should also consider the GHY boundary terms.

As before, we let these boundary surfaces be the spacelike surface (ε = −1) at the beginning and end
of the spacetime. After taking into account these surfaces we can still write the surface integral as
volume integral

IGHY = − (D− 1)2

8πGD

∫
M

dDxaD−1H2 f ′(R). (26)

The total gravitational action is obtained

IG = − (D− 1)(D− 2)
8πGD

∫
M

dDx
√
−gH2 f ′(R), (27)

where we have used
√−g =

√
h = aD−1 and the equation of motion (25). The growth rate of

complexity of this case reads

dC
dτ

= − 1
π

dIG
dτ

=
(D− 1)(D− 2)

8π2GD

∫
∂M

dD−1x
√

hH2 f ′(R)

=
2E(curv)

π
, (28)

where we have used the Friedmann Equation (24). E(curv) is the energy from the contribution of stress
tensor of curvature. It’s interesting enough to see that for the f (R) gravity the complexity growth rate
is also bounded by the Lloyd’s bound. Note that to find this relation we have used the definition of
energy density ρ(curv) from T(curv)

µν (23).
Now we interpret such action in Fisher information theory. From equation of motion (24) we

know the solution included dS is given by f (R) ∼ RD/2, which is the higher order term of curvature.
The on-shell action of f (R) de Sitter then is given by

IG = − (D− 1)(D− 2)VD−1

8πGD

∫
dτaD−1

(
ȧ
a

)D
(29)

We find that in the Einstein’s gravity, the Einstein-Hilbert action involving R, the first-order
of curvature, is corresponding to the Fisher information measuring the second-order error e2.
While considering the f (R) gravity which has the higher order term, such as R2 term for our universe,
this gravitational action can be regarded as the Fisher information measuring the error e4/3, and so
on. It looks natural because in dS universe we have R ∼ H2 ∼ (ȧ/a)2. The higher-order action will
give us higher order ȧ, which results in the different order error from the Hölder’s inequality [40] (see
Table 1). That is, in general (∫

dy
(

∂p
∂θ

)n 1
pn/m

)(∫
dy(θ̂ − θ)m p

)
≥ 1. (30)

where 1/n + 1/m = 1. And we can define the Fisher information according to [I(n)FIM]nem ≥ 1, that is

I(n)FIM = n

√∫
dy
(

∂p
∂θ

)n 1
pn−1 = n

√∫
dx
(

dp
dx

)n 1
pn−1 (31)

Replacing the PDF by the escort probabilities (11) one can obtain a new Fisher information I(n)q
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I(n)q ≡ Q
1
n

q
I(n)FIM[Pq] =

n

√∫
dx
(

dp
dx

)n
pq−n. (32)

This is the Ln norm Fisher information measure. We will calculate this FIM in next section and
compare it with the complexity defined from the Fubini-Study metric.

Table 1. Different theories of gravity exhibit different estimation errors, but the Lloyd’s bound
always hold.

Theory Lagrangian Estimation Error Lloyd’s Bound

Einstein Gravity R e2 Obey
f (R) Gravity RD/2 eD/(D−1) Obey

5.2. FIM as Candidates of Ln Complexity

Recently the definition of complexity of a state in quantum field theory has been proposed in [41].
We first review this proposal in the cMERA we interested in and then compare it with our definition of
Fisher information measure for the dS spacetime.

The complexity CFS in [41] is defined by the minimal length according to the so-called Fubini-Study
metric of a path from a referenced state |Ψ(si)〉 = |Ψ0〉 to a target state |Ψ(s f )〉 = |Ψ〉. We take iterating
generators G(s) from some elementary set G and consider the unitary operators U arising from G(s):

U(σ) = Pe−i
∫ σ

si
G(s)ds

, (33)

where σ ∈ [si, s f ]. Note that in s f we should introduce a UV cutoff Λ. For the intermediate states
|Ψ(σ)〉 = U(σ)|Ψ0〉 the Fubini-Study line element is defined as

dsFS(σ) = dσ
√
〈G2(σ)〉 − 〈G(σ)〉2. (34)

By restricting the allowed operators G(s) this distant is more non-trivial and the complexity of
|Ψ〉 under these allowed operators is defined as the minimal length according to FS metric of a path
from |Ψ0〉 to |Ψ〉:

CFS(|Ψ0〉, |Ψ〉,G, λ) = min
G(s)

∫ s f

si

dsFS(σ). (35)

We are interested in the massless free quantum fields which is also conformal because the metric
gττ of such case is the same as AdS or dS geometry [42]. The corresponding tensor network is cMERA.
We can calculate the complexity of the cMERA network corresponding to the Gaussian states in this
quantum field by using the elementary set G = Span(K(~k)), where K(~k) is the two mode squeezing
operator (dis)entangles the~k and −~k modes. The cMERA circuit maps the Gaussian reference state
|R(M)〉 which has no spatial correlations to a approximate ground state |m(Λ)〉:

|m(Λ)〉 = Pe−
i
2
∫ 0
−∞ du

∫
k≤Λ eu dD−1kK(~k)χ(u)|R(M)〉, (36)

where χ(u) = [e2u/(e2u + m2/Λ2)]/2 and M =
√

Λ2 + m2. u is a renormalization group scale
parameter from IR u = −∞ to UV u = 0, which corresponds to σ ∈ [si, s f ]. The operator G(u) is given
by
∫

k≤Λ eu dD−1kK(~k)χ(u)/2. From Fubini-Study distant (35) we have

C(2)cMERA =
∫ 0

−∞
duχ(u)

√
VD−1

2

∫
k≤Λ eu

dD−1k (37)
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where VD−1 is the volume of (D− 1)-dimensional time slice in quantum field. The superscript (2)
implies (37) is an L2 norm. If we restrict that G contain only K(~k) and not their linear span. This leads
to a L1 norm complexity

C(1)cMERA =
VD−1

2

∫ 0

−∞
duχ(u)

∫
k≤Λ eu

dD−1k. (38)

One can define a general Ln norm as a measure of complexity and in the massless free CFT it
has form

C(n)cMERA =
∫ 0

−∞
du n

√
VD−1

2

∫
k≤Λ eu

dD−1k (χ(u))n (39)

In the massless case m = 0 we have χ(u) = 1/2 and M = Λ, the Ln norm complexity can be
calculated analytically

C(n)cMERA =
n

2(D− 1)
n

√
πd/2

2Γ(D−1
2 + 1)

V
1
n

D−1Λ
D−1

n , (40)

which is proportional to V1/n
D−1ΛD−1/n. This is the only divergence term of the complexity. In general

there are log(M/Λ) divergence terms and they vanish in the cMERA(m = 0) case because of M = Λ.
Now turn to our proposal of the Ln norm Fisher information measure which we have obtained

in (32). The Ln norm Fisher information is a quality metric of the estimation corresponding to en/(n−1)

error. After setting

q− n = D− 1, x =

(
8πG4

(D− 1)(D− 2)VD−1

) 1
n−1

τ, p(x) = a(τ), (41)

we have

I(n)q = n

√
(D− 1)(D− 2)VD−1

8πGD

∫
dτaD−1

(
ȧ
a

)n
. (42)

Comparing the Ln norm Fisher information with the Ln norm complexity of MERA, the divergence
in (39) comes from the integral in momentum with a UV cutoff, which is equivalent to the divergence
from the temporal integral with cutoff in Ln norm Fisher information (42). On the other hand, in (39)
χ(u) is equivalent to (ȧ/a) in (42). To see this, we note that the original form of the χ(u) is [42]:

χ(u) =
1
2

(
|k|∂|k|εk

εk

) ∣∣∣∣
|k|=Λ eu

, (43)

where εk =
√

k2 + m2. The parameter u is related to dS time by Λ eu = eτ . Here we only consider the
cMERA with m = 0 and we have

χ(u) =
1
2
|k|∂u

√
k2 + m2

√
k2 + m2

du
d|k|

∣∣∣∣
|k|=Λ eu ,m=0

=
1
2

d(Λ eu)/du
Λ eu

=
1
2

deτ/dτ

eτ
=

1
2

ȧ
a

. (44)

So the Ln norm complexity of cMERA are coincided with the Ln norm Fisher information.
For the cMERA the dual gravity is a dS spacetime a(τ) = eτ/L. One can transform the FRW metric

to a comformal metric ds2 = (−dt2 + dx2)/t2 by using eτ/L = 1/t. Then the UV cutoff τf = Λ f is
given by eΛ f /L = 1/ε = Λ. The IR state correspond to τi = −∞. Then the Ln norm Fisher information
for the dS universe is obtained
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I(n)q = n

√
(D− 2)

8πGDLn−1 V
1
n

D−1Λ
D−1

n . (45)

We find that the Ln norm Fisher information are coincided with the Ln norm complexity of cMERA
up to a factor [41]

I(n)q ∼ C(n)cMERA ∼ V
1
n

D−1Λ
D−1

n
c , (46)

as we expected. That means they have the same structure of divergence ∼ Λ
D−1

n
c and are also

proportional to n-th root of the volume of time slice ∼ V1/n
D−1. The complexity can be regarded as the

Fisher information measure corresponding to errors.
When n = D these LD norm FIM represent the on-shell gravitational action of the D-dimensional

f (R) gravity we discussed above, i.e., [C(D)
cMERA]

D ∼ [I(D)
FIM]D ∼ −IG. This receives one more support

of our statement. Moreover, this similarity suggests that the Ln norm FIM is a candidate of the dual
theory of the Ln norm complexity of cMERA.

6. Conclusions and Discussion

In summary, based on two premises that the information interpretation of spacetime and the CA
correspondence holds for dS universe, we show that isometry in MERA can be viewed as a quantum
gate which operates information bits and the dS universe may be understood as a MERA tensor
network. More specifically, the complexity of MERA which counts the number of operations on
information bits is given by the on-shell action of the dS spacetime. On the other hand, the on-shell
action can be regarded as the FIM of the “probability density function” a(τ) [29]. Therefore, in this
article we further show that: (i) complexity of a MERA network admits a novel explanation as FIM of
dS universe, i.e., C = Iq/π. We consider the total dS action including cosmological constant and GHY
boundary terms, which are lacking in previous researches. (ii) We extend this statement to theories
beyond Einstein’s gravity. In particular, we find that dS action of D-dimensional f (R) gravity can
also be regarded as the FIM. Because f (R) gravity contains higher order curvature, the corresponding
FIM is the Ln norm FIM, which measures different order error eD/(D−1). It turns out this Ln norm FIM
of f (R) dS is a candidate of the dual theory of the recent proposed Ln norm complexity of cMERA
in [41], where the dual theory of the proposed Ln norm complexity is missing. (iii) The FIM’s form of
complexity(or dS action equivalently) saturates the Lloyd’s bond both for Einstein’s gravity and f (R)
gravity. In Einstein’s gravity the energy of dS universe E =

∫
dD−1x

√
hρ plays the role of the energy

in Lloyd’s bond, while in f (R) gravity the energy in Lloyd’s bond is given by the energy of curvature
E =

∫
dD−1x

√
hρ(curv).
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Appendix A. Fisher Information Measure: A Brief Review

In this section we review the derivation of the Fisher information measure from estimation theory.
One can find the details for these definitions in [30].

Fisher information meausre (FIM) is a measure of how well we can estimate a parameter θ of
a given system. Given a series of data y = θ + x, this parameter can be estimated by an optimal
function θ̂(y). The system is specified by a distribution function p(y|θ), which is called the probability
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density function (PDF) of the data y. We expect that overall measurement procedure is well on average,
i.e., 〈θ̂(y)〉 = θ. So we introduce a mean-square error

e2 ≡
∫

dy(θ̂ − θ)2 p(y|θ) (A1)

in the estimation. The smaller e2 represents the better expected estimation.
Consider the estimator θ̂(y) obeying

〈θ̂ − θ 〉 =
∫

dy(θ̂ − θ)p(y|θ) = 0. (A2)

PDF p(y|θ) describes the fluctuation of data y in the presence of the parameter value θ.
After differentiating this equation w.r.t. θ in both sides we have∫

dy(θ̂ − θ)
∂p
∂θ

=
∫

dyp. (A3)

Because of the normalization of the PDF the r.h.s is equal to 1 and we could write this integral as

∫
dy
(

∂p
∂θ

1√
p

) (
(θ̂ − θ)

√
p
)
= 1. (A4)

Squaring both sides of the equation and using the Schwarz inequality [43], we obtain(∫
dy
(

∂p
∂θ

)2 1
p

)(∫
dy(θ̂ − θ)2 p

)
≥ 1. (A5)

It’s obvious that the right-most term is the mean-square error e2. The left-most term is defined
as the FIM IFIM. Hence we always have e2 IFIM ≥ 1. It is an intrinsic uncertainty due to the outside
sources of noise, which implies IFIM is a quality metric of the estimation procedure.

Appendix B. Remarks on the Quantum Circuit

We make some remarks on the elementary gates in the quantum circuit of our toy model.
The prefactor of the Lloyd’s bound depends on the choice of gate set Gα. Hamiltonian locality implies
each term Hα in the Hamiltonian is k-local, which means they only have a size less than or equal to
a small k3. The gate set is suggested to be chosen at approximate unitary evolution U(τ) = e−iδ H in
a small δ, i.e., Gα = eiδ Hα ' I + iδ Hα, which indicates it is close to the identity and is simple (Gα is
also near k-local). If the Hamiltonian is k-local with large k ∼ N and the gate set is j-local with j� k,
even for small δ the amount of gates increases so fast that violates the bond. Therefore we need to
modify the prefactor as [18]

dC
dτ
≤ g(k)

f (j)
2E
π

, (A6)

where g and f capture the dependence of the Hamiltonian and gate set. If k = j the prefactor g/ f is
equal to 1.

The elementary gates we choose obey the following two requirements: (i) they are simple and
(ii) create the entanglement between qubits. This is also the proposal of the model of the quantum
circuit cosmology as discussed in [33]. A simple example of gate that creates the entanglement is
the following. First we need a Hadamard gate [44]: H = 1√

2
(|0〉〈0|+ |0〉〈1|) + 1√

2
(|1〉〈0| − |1〉〈1|),

which transforms a single-qubit state into a new state in this way

3 In general for a system with N degrees of freedom, the concept of scrambling time that describes how long a O(1)
perturbation spreads over O(N) d.o.f. This concept is only valid for systems with k� N [18].
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H|0〉 = 1√
2
|0〉+ 1√

2
|1〉, H|1〉 = 1√

2
|0〉 − 1√

2
|1〉, (A7)

To proceed, we also need a controlled-NOT gate, i.e., CNOT [44,45]: CNOT = |00〉〈00|+ |01〉〈01|+
|11〉〈10|+ |10〉〈11|. The controlled-NOT gate is a unitary gate that operates on 2-qubit. It flips the
second qubit if and only if the first qubit is |1〉, i.e., when operates on a 2-qubit state, it results in

CNOT|00〉 = |00〉, CNOT|01〉 = |01〉, CNOT|10〉 = |11〉, CNOT|11〉 = |10〉. (A8)

The importance of the controlled-NOT gate is the ability to entangle two bits and produce a Bell
state. That is, when we operate CN on 1/

√
2(|0〉+ |1〉) and |0〉, we have

CNOT

(
(

1√
2
|0〉+ 1√

2
|1〉)⊗ |0〉

)
=

1√
2
|00〉+ 1√

2
|11〉 (A9)

Now it’s easy to construct the elementary gate set Gα operate on 2-qubit in our MERA circuit as

Gα := CNOT (H ⊗ I) , (A10)

which produces an entangled pair. The idea of entanglement equals to geometry was proposed in [8].
If we treat IR state of MERA as reference state and UV state as target state and recall the MERA/dS
correspondence introduced in the last section, we conclude that evolution of dS universe can be
regarded as a process of quantum circuit from a trivial state |Ψ0〉 to another nontrivial entangled
state |Ψ〉. First we operate an elementary gate on |0〉 to create an entanglement pair (A9) in ∆ t = 1
time. This is the beginning of emerge gravity. To further entangle with other qubits, we operate two
elementary gates in ∆ t = 1 time, one on the first qubit of 1/

√
2(|00〉+ |11〉) and a new qubit, and the

other one on the second qubit of 1/
√

2(|00〉+ |11〉) and another new qubit (see Figure A1). And so on,
at time T the number of gates we need is

C ∼ c
T

∑
t=0

2t∆ t ∼ c
T

∑
t=0

et∆ t, (A11)

where c comes from the number of entanglement pairs in each isometry. This is the discrete version of
the dS action IG ∼ 1

GD

∫
eτ/Ldτ. In other words, for obtaining emerge gravity now day the complexity

we need behaves like the on-shell action.

+ =

|0〉

1√
2
(|0〉+ |1〉) 1√

2
(|00〉+ |11〉)

1√
2
(|0〉+ |1〉)

1√
2
(|00〉+ |11〉)

CNOT

|0〉 |0〉

H

|0〉

2-isomerty

1√
2
(|00〉+ |11〉)

|0〉|0〉
+

|0〉

|0〉|0〉

Figure A1. The computation process of the MERA circuit with the Bell gates.
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