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Abstract: In order to clarify the effects of the finite distance from a lens object to a light source and a
receiver, the gravitational deflection of light has been recently reexamined by using the Gauss–Bonnet
(GB) theorem in differential geometry (Ishihara et al. 2016). The purpose of the present paper is to
give a short review of a series of works initiated by the above paper. First, we provide the definition
of the gravitational deflection angle of light for the finite-distance source and receiver in a static,
spherically symmetric and asymptotically flat spacetime. We discuss the geometrical invariance of
the definition by using the GB theorem. The present definition is used to discuss finite-distance effects
on the light deflection in Schwarzschild spacetime for both the cases of weak deflection and strong
deflection. Next, we extend the definition to stationary and axisymmetric spacetimes. We compute
finite-distance effects on the deflection angle of light for Kerr black holes and rotating Teo wormholes.
Our results are consistent with the previous works if we take the infinite-distance limit. We briefly
mention also the finite-distance effects on the light deflection by Sagittarius A∗.

Keywords: gravitational lens; general relativity; black hole; wormhole

1. Introduction

In 1919, the experimental confirmation of the theory of general relativity [1] succeeded [2]. It is
the measurement of the gravitational deflection angle of light. Since then, the gravitational deflection
angle of light has attracted a lot of attention. Many authors have studied the gravitational deflection of
light by black holes [3–16]. The gravitational lens by other objects such as wormholes and gravitational
monopoles also has attracted a lot of interest [17–30]. Very recently, the Event Horizon Telescope (EHT)
team has reported a direct image of the inner edge of the hot matter around the black hole candidate at
the center of M87 galaxy [31–36]. The direct imaging of black hole shadows must again and steeply
raise the importance of the gravitational deflection of light.

Most of those calculations are based on the coordinate angle. The angle respects the rotational
symmetry of the spacetime. Gibbons and Werner (2008) made an attempt at defining, in a more
geometrical manner, the deflection angle of light [37]. In their paper, the source and receiver are
needed to be located at an asymptotic Minkowskian region. The Gauss–Bonnet theorem was applied
to a spatial domain by introducing the optical metric, for which a light ray is expressed as a spatial
geodesic curve. Ishihara et al. have successfully extended Gibbons and Werner’s idea such that the
source and receiver can be at a finite distance from the lens object [38]. They extend the earlier work to
the case of the strong deflection limit, in which the winding number of the photon orbits may be larger
than unity [39]. In particular, the asymptotic receiver and source are not needed. Arakida [40] made
an attempt to apply the Gauss–Bonnet theorem to quadrilaterals that are not extending to infinity and
proposed a new definition of the deflection angle of light, though a comparison between two different
manifolds that he proposed is an open issue. Proposing an alternative definition of the deflection
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angle of light, Crisnejo et al. [41] has recently made a comparison between the alternative definitions in
References [38–40] and showed by explicit calculations that the definition by Arakida in Reference [40]
is different from that by Ishihara et al. [38,39]. Their definition has been applied to study gravitational
lensing with a plasma medium [41].

The earlier works [38,39] are restricted within the spherical symmetry. Ono et al. have extended
the Gauss–Bonnet method with the optical metric to axisymmetric spacetimes [42]. This extension
includes mathematical quantities and calculations, with which most physicists are not very familiar.
Therefore, the purpose of this paper provides a review of the series of papers on the gravitational
deflection of light for finite-distance sources and receivers. In particular, we hope that the detailed
calculations in this paper will be helpful for readers to compute the gravitational deflection of
light by the new powerful method. For instance, this new technique has been used to study the
gravitational lensing in rotating Teo wormholes [43] and also in Damour–Solodukhin wormholes [44].
This formulation has been successfully used to clarify the deflection of light in a rotating global
monopole spacetime with a deficit angle [45].

This paper is organized as follows. Section 2 discusses the definition of the gravitational deflection
angle of light in static and spherically symmetric spacetimes. Section 3 considers the weak deflection
of light in Schwarzschild spacetime. Section 4 discusses the weak deflection of light in the Kottler
spacetime and the Weyl conformal gravity model. The strong deflection of light is examined in Section 5.
Sagittarius A∗ (Sgr A∗) is also discussed as an example for possible candidates. In Section 6, we discuss
the strong deflection of light with finite-distance corrections in Schwarzschild spacetime. Section 7
proposes the definition of the gravitational deflection angle of light in stationary and axisymmetric
spacetimes. Sgr A∗ is also discussed. The weak deflection of light is discussed for Kerr spacetime
in Section 8 and for rotating Teo wormholes in Section 9. Section 10 is a summary of this paper.
Appendix A provides the detailed calculations for the Kerr spacetime. Throughout this paper, we use
the unit of G = c = 1 and the observer may be called the receiver in order to avoid confusion between
rO and r0 by using rR.

2. Definition of the Gravitational Deflection Angle of Light: Static and Spherically
Symmetric Spacetimes

Notation

Following Ishihara et al. [38], this section begins by considering a static and spherically symmetric
(SSS) spacetime. The metric of this spacetime can be written as:

ds2 = gµνdxµdxν

= −A(r)dt2 + B(r)dr2 + r2dΩ2, (1)

where dΩ2 ≡ dθ2 + sin2 θdφ2 and t, θ, and φ are associated with the symmetries of the SSS spacetime.
For a metric of the form in Equation (1), we always have to restrict to the domain where A(r) and B(r)
are positive such that a static emitter and a static receiver can exist. The spacetime has a spherical
symmetry. Therefore, the photon orbital plane is chosen without loss of generality as the equatorial
plane (θ = π/2). We follow the usual definition of the impact parameter of the light ray as:

b ≡ L
E

=
r2

A(r)
dφ

dt
. (2)

From ds2 = 0 for the light ray, the orbit Equation is derived as:(
dr
dφ

)2
+

r2

B(r)
=

r4

b2 A(r)B(r)
. (3)
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Light rays are described by the null condition ds2 = 0, which is solved for dt2 as:

dt2 = γI JdxIdx J

=
B(r)
A(r)

dr2 +
r2

A(r)
dφ2, (4)

where I and J denote 1 and 2 and we used Equation (1). We refer to γI J as the optical metric. The optical
metric can be used to describe a two-dimensional Riemannian space. This Riemannian space is denoted
as Mopt. The light ray is a spatial geodetic curve in Mopt.

In the optical metric space Mopt, let Ψ denote the angle between the light propagation direction
and the radial direction. A straightforward calculation gives:

cos Ψ =
b
√

A(r)B(r)
r2

dr
dφ

. (5)

This is rewritten as:

sin Ψ =
b
√

A(r)
r

, (6)

where we used Equation (3).
We denote ΨR and ΨS as the directional angles of light propagation. ΨR and ΨS are measured

at the receiver position (R) and the source position (S), respectively. We denote φRS ≡ φR − φS as
the coordinate separation angle between the receiver and source. By using angles ΨR, ΨS, and φRS,
we define the following:

α ≡ ΨR −ΨS + φRS. (7)

This is a basic tool that was invented in Reference [38]. In the following, we shall prove that the
definition by Equation (7) is geometrically invariant [38,39].

Here, we briefly mention the Gauss–Bonnet theorem. T is a two-dimensional orientable surface.
Differentiable curves ∂Ta (a = 1, 2, · · · , N) are its boundaries. Please see Figure 1 for the orientable
surface. We denote the jump angles between the curves as θa (a = 1, 2, · · · , N). The Gauss–Bonnet
theorem is as follows [46]:

∫∫
T

KdS +
N

∑
a=1

∫
∂Ta

κgd`+
N

∑
a=1

θa = 2π, (8)

where ` means the line element of the boundary curve, dS denotes the area element of the surface, K
means the Gaussian curvature of the surface T, and κg is the geodesic curvature of ∂Ta. The sign of `
is chosen to be consistent with the surface orientation.

Suppose a quadrilateral ∞
R �

∞
S . Please see Figure 2 for this. This is made of four lines: (1) the

spatial curve for the light ray, (2, 3) two outgoing radial lines from R and from S, and (4) a circular
arc segment Cr that is centered at the lens with the coordinate radius rC (rC → ∞) and intersects the
radial lines at the receiver or the source. We restrict ourselves within the asymptotically flat spacetime.
Then, κg → 1/rC and d` → rCdφ as rC → ∞ (See, e.g., Reference [37]). By using them, we find∫

Cr
κgd`→ φRS. Applying this result to the Gauss–Bonnet theorem for ∞

R �
∞
S , we obtain:

α = ΨR −ΨS + φRS

= −
∫∫

∞
R �∞

S

KdS. (9)

Therefore, α is shown to be invariant for transformations of the spatial coordinates. In addition,
α is well defined even when L is a singular point. This is because the point L does not appear in the
surface integral nor in the line integral. Furthermore, α vanishes in Euclidean space. This means α is a
measure of the deviation from the flat space.
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Figure 1. Gauss–Bonnet theorem: We consider a closed curve in a surface.

Figure 2. ∞
R �∞

S is a quadrilateral embedded in a curved space.

Here, we explain that α defined in Equation (7) is observable in principle. For simplicity, let us
imagine the following ideal situation. The positions of a source and a receiver are known. For instance,
we assume that the lens object is the Sun, the receiver is located at the Earth, and the source is a pulsar
which radiates radio signals with a constant period in an anisotropic manner. In particular, we assume
that the source is one of the known pulsars of which the spin period and pulse signal behaviors such
as pulse profiles are well understood. By very accurate radio observations such as Very Long Baseline
Interferometry (VLBI), the relative positions of the Earth, Sun, and the pulsar can be determined from
the ephemeris. (1) From this, we can know φRS in principle. (2) We can directly measure the angle ΨR
at the Earth between the solar direction and the pulsar direction. (3) More importantly, the direction of
radiating pulses that reaches the receiver can be also determined in principle because the viewing angle
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of the pulsar seen by the receiver is known from the pulse profiles. The viewing angle is changing with
time because of the Earth’s motion around the Sun. By using the pulsar position and the pulse radiation
direction, we can determine ΨS. Please see Figure 3 for this situation. We explain in more detail how
ΨS at S can be measured by the observer at R. We consider a pulsar of which the spin axis is known
from some astronomical observations. A point is that the spin axis of an isolated pulsar is constant
with time. The pulse shape and profile depend on the viewing angle with respect to the spin axis of the
pulsar. The Earth moves around the Sun, and hence, the observer sees the same pulsar with different
viewing angles with time. Accordingly, the observed pulse shape changes. By observing such a change
in the pulse shape, we can in principle determine the intrinsic direction of the radio emission, namely
the angle between the spin axis and the direction of the emitted light to the observer. In addition, we
can know the intrinsic position (including the radial direction from the lens) of such a known pulsar
from the ephemeris. By using the intrinsic position (its radial direction) and emission direction at S,
ΨS can be determined in principle, though it is very difficult with current technology. As a result, we
can determine in principle ΨR −ΨS + φRS from astronomical observations. Namely, α in Equation (7)
is observable. Note that this procedure does not need to assume a different spacetime, while such a
fiducial spacetime was assumed by Arakida (2018) [40], though the receiver in our universe cannot
observe the fiducial different spacetime but can assume (or make theoretical calculations of) some
quantities on the different spacetime.

Sun
(Lens)

Pulsar
(Source)

Earth
(Receiver)

Viewing angle

Figure 3. Observable α in Equation (7): In this schematic figure, the lens, receiver, and source are
respectively the Sun, the Earth, and a pulsar that periodically radiates radio signals in a specific
anistropic manner. From the pulse profile, we can determine the radiation direction at the source.
By using the ephemeris, we know the relative positions of the Sun, Earth, and the pulsar. Hence, we can
determine φRS and ΨS. By observing the pulsar, we can measure ΨR. In principle, therefore, we can
determine ΨR −ΨS + φRS from these astronomical observations.

One can easily see that, in the far limit of the source and the receiver, Equation (9) agrees with the
deflection angle of light as:

α∞ = 2
∫ u0

0

du√
F(u)

− π. (10)

Here, we define u and u0 as as the inverse of r and the inverse of the closest approach (often
denoted as r0), respectively. F(u) is defined as:

F(u) ≡
(

du
dφ

)2
. (11)



Universe 2019, 5, 218 6 of 44

F(u) can be computed by using Equation (3).
The present paper wishes to avoid the far limit for the following reason. Every observed star and

galaxy is never located at infinite distance from us. For instance, we observe finite-redshift galaxies
in cosmology. We cannot see objects at infinite redshift (exactly at the horizon). Except for a few rare
cases in astronomy, the distance to the light source is much larger than the size of the lens. Therefore,
we find a strong motivation for studying a situation in which the distance from the source to the
receiver is finite. We define uR and uS as the inverse of rR and rS, respectively, where rR and rS are
finite. Equation (7) is rewritten in an explicit form as [38,39]:

α =
∫ u0

uR

du√
F(u)

+
∫ u0

uS

du√
F(u)

+ ΨR −ΨS. (12)

Here, we assume light rays that have only one local minimum of the radius coordinate between
rS and rR. This is valid for normal situations in astronomy. However, we should note that multiple
local minima are possible, e.g., if the emitter or the receiver (or both) are between the horizon and the
light sphere in the Schwarzschild spacetime or if the emitter and receiver are at different sides of the
throat of a wormhole spacetime. For such a case of multiple local minima, Equation (12) has to be
modified because it assumes only the local minimum at u = u0.

3. Weak Deflection of Light in Schwarzschild Spacetime

In this section, we consider the weak deflection of light in Schwarzschild spacetime, for which the
line element becomes:

ds2 = −
(

1−
rg

r

)
dt2 +

dr2

1−
rg

r
+r2(dθ2 + sin2 θdφ2), (13)

where rg = 2M in the geometrical unit. Then, F(u) is:

F(u) =
1
b2 − u2 + rgu3. (14)

By using Equation (6), ΨR −ΨS in the Schwarzschild spacetime is expanded as:

ΨSch
R −ΨSch

S ≡ [arcsin(buR) + arcsin(buS)− π]

−1
2

brg

 u2
R√

1− b2u2
R

+
u2

S√
1− b2u2

S

+ O(br2
gu3

S, br2
gu3

R). (15)

Note that ΨR −ΨS → π in the Schwarzschild spacetime as uS → 0 and uR → 0.

4. Other Examples

This section discusses two examples for a non-asymptotically flat spacetime. One is the Kottler
solution to the Einstein Equation. The other is an exact solution in the Weyl conformal gravity. The aim
of this study is to give us a suggestion or a speculation. We note that the present formulation is limited
within the asymptotic flatness, rigorously speaking. As mentioned in the Introduction, Arakida [40]
made an attempt to apply the Gauss–Bonnet theorem to quadrilaterals that are not extending to infinity,
though a comparison between two different manifolds that he proposed is an open issue. A more
careful study that gives a justification for this speculation or perhaps disproves it will be left for
the future.
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In this section, we do not assume the source at the past null infinity (rS → ∞) or the receiver
at the future null infinity (rR → ∞) because A(r) diverges or does not exist as r → ∞. We keep
in mind that the source and receiver are located at finite distances from the lens object. Therefore,
we use Equation (12). As mentioned already, Equation (6) is more useful in calculating ΨR and ΨS
than Equation (5) because Equation (6) requires only the local quantities but not any differentiation.
By straightforward calculations, we obtain the following results for the above two models.

4.1. Kottler Solution

We consider the Kottler solution [47]. This solution is written as:

ds2 = −
(

1− 2M
r
− Λ

3
r2
)

dt2 +
dr2

1− 2M
r
− Λ

3
r2

+r2(dθ2 + sin2 θdφ2), (16)

where the cosmological constant is denoted by Λ.
We use Equation (6) such that ΨR −ΨS can be expanded in terms of 2M and Λ as:

ΨR −ΨS = ΨSch
R −ΨSch

S − bΛ

6uR

√
1− b2u2

R

− bΛ

6uS

√
1− b2u2

S

+
buR(−1 + 2b2u2

R)

8(1− b2u2
R)

3/2

(
4M2u2

R +
4MΛ
3uR

+
Λ2

9u4
R

)

+
buS(−1 + 2b2u2

S)

8(1− b2u2
S)

3/2

(
4M2u2

S +
4MΛ
3uS

+
Λ2

9u4
S

)
+ O(M3, M2Λ, MΛ2, Λ3). (17)

Here, ΨSch
R −ΨSch

S is a pair of the terms that appear also in a case of the Schwarzschild spacetime.
The above expansion of ΨR −ΨS has a divergent term in the limit as uS → 0 and uR → 0. The reason
for this divergent behavior is that the spacetime is not asymptotically flat and, therefore, the limit of
uS → 0 and uR → 0 is no longer allowed. Hence, the power series in Equation (17) is mathematically
valid only within a convergence radius.

For the Kottler spacetime, F(u) becomes:

F(u) =
1
b2 − u2 + rgu3 +

Λ
3

. (18)

We obtain:

φRS =π − arcsin(buR)− arcsin(buS)

+
rg

b

 1√
1− b2u2

R

(
1− 1

2
b2u2

R

)
+

1√
1− b2u2

S

(
1− 1

2
b2u2

S

)
+

Λb3

6

 uR√
1− b2u2

R

+
uS√

1− b2u2
S

+
rgΛb

12

[
2− 3b2u2

R

(1− b2u2
R)

3
2
+

2− 3b2u2
S

(1− b2u2
S)

3
2

]
+ O(r2

g, Λ2). (19)
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By using Equations (17) and (19), α is obtained as:

α =
rg

b

[√
1− b2u2

R +
√

1− b2u2
S

]

− Λb
6


√

1− b2u2
R

uR
+

√
1− b2u2

S

uS


+

rgΛb
12

 1√
1− b2u2

R

+
1√

1− b2u2
S

+ O(r2
g, Λ2). (20)

This Equation has several divergent terms as buR → 0 and buS → 0. The apparent divergent is
problematic only in the case that the source or receiver is located at the horizon. In other words, all the
terms in Equation (20) are finite and, thus, harmless for astronomical situations.

4.2. Weyl Conformal Gravity Case

Next, we consider the Weyl conformal gravity model. This theory was originally suggested by
Bach [48]. The SSS solution in this model is expressed by introducing three new parameters that are
often denoted as β, γ, and k. For this generalized solution in conformal gravity, Birkhoff’s theorem still
holds [49]. The SSS solution in the Weyl gravity model is [50]:

ds2 = −A(r)dt2 +
1

A(r)
dr2 + r2(dθ2 + sin2 θdφ2),

A(r) = 1− 3mγ− 2m
r

+ γr− kr2. (21)

Here, m ≡ β(2− 3βγ)/2. kr2 in the metric plays the same role as the cosmological constant in
the Kottler spacetime that has been studied above. Therefore, we omit the r2 term for simplifying
our analysis.

By using Equation (6), we expand ΨR −ΨS in β and γ. The result is:

ΨR −ΨS ≡ΨSch
R −ΨSch

S

+
bγ

2

 uR√
1− b2u2

R

+
uS√

1− b2u2
S


− mγ

2

[
buR(2− b2u2

R)

(1− b2u2
R)

3/2
+

buS(2− b2u2
S)

(1− b2u2
S)

3/2

]
+ O(m2, γ2). (22)

We should note that this expansion of ΨR − ΨS is divergent as uS → 0 and uR → 0. This
divergent behavior is not so problematic because the limit of uS → 0 and uR → 0 is not allowed in
this spacetime. Hence, we note that, rigorously speaking, Equation (22) is mathematically valid only
within a convergence radius.

For the present case omitting k, we obtain:

F(u) =
1
b2 − u2 + 2mu3 + γu2 − γu. (23)
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φRS is computed as:

φRS =[π − arcsin(buR)− arcsin(buS)]

+
m
b

 2− b2u2
R√

1− b2u2
R

+
2− b2u2

S√
1− b2u2

S


− γ

2

 b√
1− b2u2

R

+
b√

1− b2u2
R


+

mγ

2

[
b3u3

R
(1− b2u2

R)
3/2

+
b3u3

S
(1− b2u2

S)
3/2

]
+ O(m2, γ2). (24)

Consequently, we obtain α as:

α =
2m
b

(√
1− b2u2

R +
√

1− b2u2
S

)

−mγ

 buR√
1− b2u2

R

+
buS√

1− b2u2
S

+ O(m2, γ2). (25)

The linear terms in γ cancel out each other, and they do not appear in the final expression for the
deflection angle of light. This result may suggest a correction to the results in previous papers [51–53]
that reported nonzero contributions from γ.

4.3. Far Source and Receiver

Next, we investigate a situation of a distant source and receiver from the lens object: buS � 1
and buR � 1. Divergent terms in the deflection angle appear in the limit as buS → 0. Therefore,
we carefully investigate the leading part in a series expansion where the infinite limit is not taken. As a
result, approximate expressions for the deflection of light are obtained as follows.

(1) Kottler model:

The expression for φRS in this approximation is the same as the seventh and eighth terms of
Equation (5) in Reference [54], the third and fifth terms of Equation (15) in Reference [55], and the
second term of Equation (14) in Reference [56]. On the other hand, they [54–56] did not take account
ΨR −ΨS. In the far approximation, Equation (20) becomes:

α ∼ 4M
b
− 1

6
Λb
(

1
uR

+
1

uS

)
+

1
3

MΛb. (26)

This expression suggestions a correction to the earlier works [54–56]. For instance, only the term
of φRS was considered in Sereno (2009).

(2) Weyl conformal gravity model:

Next, we consider the Weyl conformal gravity model. The deflection angle of light in the far
approximation is computed as:

α ∼ 4m
b

+ O(m2, γ2), (27)

where mγ parts from ΨR − ΨS and from ψRS cancel out each other. Please see also Equations (22)
and (24). For instance, Reference [57] gives the exact expression of the deflection angle for the
asymptotic receiver and source in the Kottler and Weyl conformal gravity spacetimes.
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5. Extension to the Strong Deflection of Light

In the previous sections, we considered the weak deflection of light: A light ray from the source
to the receiver is expressed by a spatial curve. The curve is simply connected. In the strong deflection
limit, on the other hand, it is possible that the spatial curve has a winding number with intersection
points. We thus divide the whole curve into segments. It is easier to investigate each simple segment.

Loops in the Photon Orbit

We begin with one loop case of the light ray curve. This case is shown by Figure 4.
First, we consider the two quadrilaterals (1) and (2) in Figure 5. They can be constructed by

introducing an auxiliary point (P) and, next, by adding auxiliary outgoing radial lines (solid line in this
figure) from the point P in quadrilaterals (1) and (2). The point P does not need to be the periastron.
The directions of the two auxiliary lines in (1) and (2) are opposite to each other. The two auxiliary lines
thus cancel out to make no contributions to α. Here, θ1 and θ2 denote the inner angle at the point P in
the quadrilateral (1) and that in the quadrilateral (2), respectively. We can see that θ1 + θ2 = π. This is
because the line from the source to the receiver is a geodesic and the point P is located in this line.

Figure 4. A one-loop case for the photon orbit in Mopt.

For a quadrilateral in Figure 5, the method in Section 2 is still applicable. By the same way of
obtaining Equation (9), we obtain:

α(1) = (π − θ1)−ΨS + φ
(1)
RS ,

α(2) = ΨR − θ2 + φ
(2)
RS . (28)

Here, φRS is divided into two parts: One is φ
(1)
RS for one quadrilateral, and the other is φ

(2)
RS for the

other quadrilateral.
If rS = rR, quadrilaterals (1) and (2) are symmetric for reflection and φ

(1)
RS = φ

(2)
RS = φRS/2. If not,

φ
(1)
RS is not the same as φ

(2)
RS . In any case, however, φ

(1)
RS + φ

(2)
RS = φRS. ΨS and (π −ΨR) are the inner

angles at S and R, respectively. Therefore:

α = α(1) + α(2)

= ΨR −ΨS + φRS, (29)

where we use θ1 + θ2 = π and φ
(1)
RS + φ

(2)
RS = φRS. This result is the same as Equation (7), though the

validity domain is different.
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Figure 5. Quadrilaterals: They are made from the photon orbit in a non-Euclidean space. See Figure 4.

Next, we investigate a case of two loops shown by Figure 6. For this case, we add lines in order to
divide the shape into four quadrilaterals as shown by Figure 7. We immediately find:

α(1) = (π − θ1)−ΨS + φ
(1)
RS ,

α(2) = (π − θ3)− θ2 + φ
(2)
RS ,

α(3) = (π − θ5)− θ4 + φ
(3)
RS ,

α(4) = ΨR − θ6 + φ
(4)
RS , (30)

where φ
(1)
RS + φ

(2)
RS + φ

(3)
RS + φ

(4)
RS = φRS. Hence, we obtain:

α = α(1) + α(2) + α(3) + α(4)

= ΨR −ΨS + φRS, (31)
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where we use θ1 + θ2 = θ3 + θ4 = θ5 + θ6 = π. Equation (31) is obtained for the two-loop case in the
same form as Equation (7). A loop does make contributions to α only through the terms of φ

(2)
RS + φ

(3)
RS .

Finally, we shall complete the proof. We consider the arbitrary winding number, say W. For this
case, we prepare 2W quadrilaterals. We denote the inner angles at finite distance from L as θ0, · · · , θ2W
in order from S to R as shown by Figure 8. Here, θ0 = ΨS and θ2W = π − ΨR. Neighboring
quadrilaterals (N) and (N+1) make the contribution to α only through φ

(N)
RS + φ

(N+1)
RS . We can

understand this by noting that θ2N−1 + θ2N = θ2N+1 + θ2N+2 = π, and the auxiliary lines cancel
out. By induction, therefore, we complete the proof; Equation (7) holds for any winding number.

Equation (7) is equivalent to Equation (12). This is shown by using the orbit Equation.
This expression is rearranged as:

α = ΨR −ΨS + φRS

= ΨR −ΨS +
∫ 0

uR

du√
F(u)

+
∫ 0

uS

du√
F(u)

+ 2
∫ u0

0

du√
F(u)

. (32)

We define the difference between the asymptotic deflection angle and the deflection angle for the
finite distance case as δα:

δα ≡ α− α∞. (33)

The meaning of this is the finite-distance correction to the deflection angle of light. By substituting
Equations (10) and (32) into Equation (33), we get:

δα = (ΨR −ΨS + π) +
∫ 0

uR

du√
F(u)

+
∫ 0

uS

du√
F(u)

. (34)

This expression implies two origins of the finite-distance corrections. One origin is ΨR and
ΨS. They are angles that are defined in a curved space. The other origin is the two path integrals.
They contain information on the curved space. If we consider a receiver and source in the weak
gravitational field (as common in astronomy), the finite-distance correction reflects only the weak field
region, even if the light ray passes through a strong field region.

Figure 6. Two loops for the light ray in Mopt.
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Figure 7. Quadrilaterals (1)–(4): They are in a non-Euclidean plane Mopt. See also Figure 6.
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Figure 8. A quadrilateral in any loop number: This case is discussed when we prove by induction that
Equation (7) holds in any loop number.

6. Strong Deflection of Light in Schwarzschild Spacetime

In this section, we consider the Schwarzschild black hole. By using F(u) given by Equation (14),
we solve Equation (32) in an analytic manner. The exact expressions involve incomplete elliptic
integrals of the first kind. When the distances from the lens to the source and the receiver are much
larger than the impact parameter of light (rS � b, rR � b) but the light ray passes near the photon
sphere (r0 ∼ 3M), Equation (32) becomes approximately:

α =
2M

b

[√
1− b2u2

R +
√

1− b2u2
S − 2

]
+ 2 log

(
12(2−

√
3)r0

r0 − 3M

)
− π

+ O
(

M2

rR2 ,
M2

rS
2 , 1− 3M

r0

)
, (35)

where we used a logarithmic term [8] in the last term of Equation (32). Here, the dominant terms
in ΨR and ΨS cancel the terms in the integrals. As a consequence, ΨR and ΨS do not appear in the
approximate expression of Equation (35).

As mentioned above, it follows that the logarithmic term by the strong gravity is free from
finite-distance corrections such as

√
1− (buS)2. By chance, δα in the strong deflection limit

(See Equation (32)) is apparently the same as that for the weak deflection case (See, e.g., Equation (29)
in Reference [39]). Therefore, the finite-distance correction in the strong deflection limit is again:

δα ∼ O
(

Mb
rS

2 +
Mb
rR2

)
. (36)

This is the same expression as that for the weak field case (e.g., Reference [38]). Namely,
the correction is linear in the impact parameter. The finite-distance correction in the weak deflection
case (large b) is thus larger than that in the strong deflection one (small b), if the other parameters
remain the same.
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Sagittarius A∗

Next, we briefly mention an astronomical implication of the strong deflection. One of the most
feasible candidates for the strong deflection is Sagittarius ∗ (Sgr A∗) that is located at our galactic center.
In this case, the receiver distance is much larger than the impact parameter of light and a source star
may live in the bulge of our Galaxy.

The apparent size of Sgr A∗ is expected to be nearly the same as that of the central massive object
of M87. However, the finite-distance correction to Sgr A∗ becomes much larger than that to the M87
case because Sgr A∗ is much closer to us than M87.

For Sgr A∗, Equation (36) is evaluated as:

δα ∼ Mb
rS

2

∼ 10−5arcsec.×
(

M
4× 106M�

)(
b

3M

)(
0.1pc

rS

)2
, (37)

where the central black hole mass is assumed as M ∼ 4× 106M� and we take the limit of strong
deflection b ∼ 3M. Rather interestingly, this correction as ∼ 10−5arcsec. will be reachable by the Event
Horizon Telescope [31–36] and near-future astronomy.

See Figure 9 for numerical estimations of the finite-distance correction by the source distance.
This figure and Equation (37) suggest that δα is ∼ ten (or more) micro arcseconds if a source star is
sufficiently close to Sgr A∗ for instance within a tenth of one parsec from Sgr A∗. For such a case,
the infinite-distance limit does not hold even though the source is still in the weak field. We should
take account of finite-distance corrections that are discussed in this paper.

Figure 9. The finite-distance correction for Sgr A∗ as δαGM: The horizontal axis denotes the source
distance rS. The vertical one means the finite-distance correction to the light deflection. The solid line
(blue in color) and dashed one (red in color) mean b = 102 M and b = 104 M, respectively. The dotted
curve (yellow in color) denotes the leading term of δαGM given by Equation (33). These three lines are
substantially overlapped with each other. This implies that δαGM is weakly dependent on the impact
parameter b.

In the strong deflection case, each orbit around the black hole will have a slightly different r0,
thereby producing a number of “ghost” images (often called relativistic images). In this paper, detailed
calculations about it for the finite-distance source and receiver are not done. It is left for the future.
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7. Defining the Gravitational Deflection Angle of Light for a Stationary and Axially
Symmetric Spacetime

7.1. Optical Metric for the Stationary, Axisymmetric Spacetime

In this section, a stationary and axisymmetric spacetime is considered, for which we shall
discuss how to define the gravitational deflection angle of light especially by using the Gauss–Bonnet
theorem [42]. The line element in this spacetime is [58–60]:

ds2 =gµνdxµdxν

=− A(y1, y2)dt2 − 2H(y1, y2)dtdφ

+ F(y1, y2)γpqdypdyq + D(y1, y2)dφ2. (38)

Here, p and q mean 1 and 2, γpq is a two-dimensional symmetric tensor, µ, ν are from 0 to 3,
and the t and φ coordinates respect the Killing vectors. We rewrite this metric into a form such that γpq

can be diagonal. We prefer to use the polar coordinates rather than the cylindrical ones because the
Kerr metric and the rotating Teo wormhole one are usually expressed in the polar coordinates. In this
paper, we thus use the polar coordinates. In the cylindrical coordinates, the line element is known as
the Weyl-Lewis-Papapetrou form [58–60]. Equation (38) is rewritten as

ds2 =− A(r, θ)dt2 − 2H(r, θ)dtdφ

+ B(r, θ)dr2 + C(r, θ)dθ2 + D(r, θ)dφ2, (39)

where a local reflection symmetry is assumed with respect to the equatorial plane θ = π
2 .

This assumption is expressed as:

∂gµν

∂θ

∣∣∣∣
θ= π

2

= 0. (40)

The functions are A(r, θ) > 0, B(r, θ) > 0, C(r, θ) > 0, D(r, θ) > 0, and H(r, θ) > 0.
This assumption by Equation (40) is needed for the existence of a photon orbit on the equatorial
plane. Note that we do not assume the global reflection symmetry with respect to the equatorial plane.

The null condition ds2 = 0 is solved for dt as [61,62]:

dt =
√

γijdxidxj + βidxi, (41)

where i and j denote from 1 to 3 and γij and βi are defined as:

γijdxidxj ≡ B(r, θ)

A(r, θ)
dr2 +

C(r, θ)

A(r, θ)
dθ2 +

A(r, θ)D(r, θ) + H2(r, θ)

A2(r, θ)
dφ2, (42)

βidxi ≡− H(r, θ)

A(r, θ)
dφ. (43)

This spatial metric γij( 6= gij) is used in order to define the arc length (`) along the photon orbit as:

d`2 ≡ γijdxidxj, (44)

for which we define γij by γijγjk = δi
k. γij defines a 3-dimensional Riemannian space (3)M, where

the photon orbit is a spatial curve. In the appendix of Reference [62], they show that ` is an affine
parameter of a light ray.

If the spacetime is static, spherically symmetric, and asymptotically flat, βi is zero and γij is
nothing but the optical metric. The photon orbit follows a geodesic in a 3-dimensional Riemannian
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space. In this section and after, we refer to γij as the generalized optical metric. Note that the metric γij
has been called the Fermat metric and the one-form βi is called the Fermat one-form by some authors.

We apply the Gauss–Bonnet theorem to a surface (See Figure 1). The Gauss-Bonnet theorem is
expressed as:

∫∫
R∞
R

S∞
S

KdS +
∫ S

R
κgd`+

∫ R∞

S∞
κ̄gd`+ [ΨR + (π −ΨS) + π] = 2π, (45)

where we note that the geodesic curvatures of the path from S to S∞ and the path from R to R∞ are
both 0 because these paths are geodesic. κg is the geodesic curvature of the photon orbit, and κ̄g is the
geodesic curvature of the circular arc segment with an infinite radius.

7.2. Gaussian Curvature

In this subsection, we examine whether the rotational part (βi) of the spacetime makes a
contribution to the Gaussian curvature. The Gaussian curvature on the equatorial plane is expressed
by using the 2-dimensional Riemann tensor (2)Rrφrφ:

K =
(2)Rrφrφ

det γ
(2)
ij

=
1√

det γ
(2)
ij

 ∂

∂φ


√

det γ
(2)
ij

γ
(2)
rr

(2)Γφ
rr

− ∂

∂r


√

det γ
(2)
ij

γ
(2)
rr

(2)Γφ
rφ

 , (46)

where (2)Rrφrφ and (2)Γß
jk are defined by using the generalized optical metric γij on the equatorial

plane. det γ
(2)
ij is the determinant of the generalized optical metric in the equatorial plane.

dS in Equation (45) becomes:

dS =
√

det γ(2)drdφ. (47)

The surface integration of the Gaussian curvature in Equation (45) is rewritten explicitly as:

∫∫
R∞
R �S∞

S

KdS =
∫ φR

φS

∫ ∞

rOE

K
√

det γ(2)drdφ, (48)

where rOE means the solution of the orbit Equation.

7.3. Geodesic Curvature

Let us imagine a parameterized curve in a surface. Roughly speaking, the geodesic curvature of
the parameterized curve is a measure of how different the curve is from the geodesic. The geodesic
curvature of the parameterized curve is defined as the surface-tangential component of the acceleration
(namely the geodesic curvature) of the curve. The normal curvature is defined as the surface-normal
component of the acceleration. The normal curvature does not appear in the present paper because we
consider only the curves on the equatorial plane.

The geodesic curvature in the vector form is defined as (see, e.g., Reference [63,64]):

κg ≡ T′ · (T × N) , (49)

where, for a parameterized curve, T denotes the unit tangent vector for the curve by reparameterizing
the curve using its arc length, T′ means its derivative with respect to the parameter, and N indicates
the unit normal vector for the surface. The geodesic curvature of a curve vanishes if the curve follows
the geodesic. This zero is because the acceleration vector T′ vanishes.
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7.4. Photon Orbit with the Generalized Optical Metric

In this subsection, we discuss geometrical aspects of a photon orbit in terms of the generalized
optical metric. The unit vector tangent to the spatial curve is generally expressed as:

ei ≡ dxi

d`
, (50)

where a parameter ` is defined by Equation (44).
The flight time T of a light from the source to the receiver is obtained by performing the integral

of Equation (41):

T =
∫ tR

tS

dt =
∫ R

S

(√
γijdeidej + βidei

)
d`. (51)

The light ray follows the Fermat’s principle, namely δT = 0 [65]. The Lagrangian for a photon
can be expressed as:

L =
√

γijeiej + βiei. (52)

From this, we obtain:

d
d`

∂L
∂ek =γikei

,lel + γik,leiel + βk,iei, (53)

∂L
∂xk =

1
2

γij,keiej + βi,kei, (54)

where we used γijeiej = 1 and the comma (,) defines the partial derivative. The Euler–Lagrange
Equation is calculated as:

ej
,lel + γkj

(
γik,leiel − 1

2
γil,keiel

)
= γkj(βl,k − βk,l)el . (55)

This leads to the Equation for the light ray [62]:

dei

d`
= −γil(γl j,k −

1
2

γjk,l)ejek + γij(βk,j − β j,k)ek.

Therefore, the geodesic Equation is equivalent to:

ei
|je

j =
dei

d`
+ (3)Γi

jkejek

=
dei

d`
+ γil(γl j,k −

1
2

γjk,l)ejek

=γij(βk,j − β j,k)ek, (56)

where we define | as the covariant derivative with respect to γij. (3)Γi
jk means the Christoffel symbol

by γij.
The acceleration vector ai is defined by:

ai ≡ ei
|je

j = γij(βk|j − β j|k)e
k = γij(βk,j − β j,k)ek. (57)



Universe 2019, 5, 218 19 of 44

By using the Levi–Civita symbol εijk, we express the cross (outer) product: of A and B in the
covariant manner:

√
γεijk AjBk = (A× B)i. (58)

The Levi–Civita tensor εijk is defined by εijk ≡
√

γεijk, where and εijk is the Levi–Civita symbol
(ε123 = 1).

The Levi–Civita tensor εijk in a three-dimensional satisfies:

εsjkεslm =
√

γεsjk
1√
γ

εslm = δl
jδ

m
k − δm

j δl
k, (59)

εsjkεs
lm = γjlγkm − γjmγkl . (60)

By using Equations (58)–(60), Equation (57) is rewritten as:

ai = γijekεsjk(∇× β)s. (61)

Vector ai is the spatial vector representing the acceleration due to βi. In particular, ai is caused in
gravitomagnetism [66]. To be more precise, the gravitomagnetic vector has an analogy to the Lorentz
force in electromagnetism ∝ v × (∇× Am), in which Am denotes the vector potential. The vector
potential is defined as B = ∇× Am, E = −∇φ− ∂Am

∂t , where E and B are the electric and magnetic
fields, respectively, and the electric potential is φ.

γij is not an induced metric but the generalized optical metric. If βi is nonvanishing,
the photon orbit may be different from a geodesic in (3)M with γij, even though the light ray in
the four-dimensional spacetime follows the null geodesic.

In a stationary and axisymmetric spacetime, it is always possible to find out coordinates such that
g0i can vanish and ai = 0. In this case, the photon orbit is considered a spatial geodesic curve in (3)M.

We study axisymmetric cases which allow g0i 6= 0. Therefore, geodesic curvature κg does not
always vanish in the photon orbit in the Gauss–Bonnet theorem because the geodesic curvature κg for
a photon orbit is due to the gravitomagnetic effect. This nonvanishing κg for the photon orbit leads to
a crucial difference from the SSS case [38,39].

7.5. Geodesic Curvature of a Photon Orbit

Equation (49) is rearranged to be in the tensor form:

κg = εijk Niajek, (62)

where ~T and ~T′ correspond to ek and aj, respectively.
In this paper, the acceleration vector of the photon orbit depends on βi. Hence, the geodesic

curvature for the photon orbit also depends on it. A nonvanishing integral of the geodesic curvature
along the light ray appears in the Gauss–Bonnet theorem in Equation (8).

Substituting Equation (57) into ai in Equation (62) leads to:

κg =εijk Niγjl(βn|l − βl|n)e
nek

=γjaNiekebεijkεsabεsml βl|m

=Niekeb(δi
sδk

b − δi
bδk

s)ε
sml βl|m

=− εijk Niβ j|k, (63)
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where we used γijeiej = 1 and γijei N j = 0. The unit vector normal to the equatorial plane is:

Np =
1√
γθθ

δθ
p, (64)

where the upward direction is chosen without loss of generality.
For the equatorial plane, we obtain:

εθpqβq|p = − 1√
γ

βφ,r, (65)

where we use εθrφ = −1/
√

γ and βr,φ = 0 because of the axisymmetry.
By using Equations (64) and (65), κg in Equation (63) becomes:

κg = − 1√
γγθθ

βφ,r. (66)

By using Equation (44), the line element in the path integral is obtained as:

d` =

√
γrr

(
dr
dφ

)2
+ γφφdφ, (67)

where θ = π/2.

7.6. Geodesic Curvature of a Circular arc Segment

In a flat space, the geodesic curvature κ of the circular arc segment of radius R is obtained as:

κ =
1
R

. (68)

The geodesic curvature κ̄g of a circular arc segment of radius Rc = R∞ is obtained as:

κ̄g =
1
R c

, (69)

where the radius Rc is sufficiently larger than rR and rS and the circular arc segment is in the
asymptotically flat region.

Equation (44) becomes d`2 = dr2 + r2(dθ2 + sin2 θdφ2) because we assume an asymptotically flat
spacetime. Hence, the line element in the path integral of κ̄g is obtained as:

d` = Rcdφ, (70)

where we choose θ = π/2 and r = Rc for the circular arc segment.
Therefore, the path integral of κ̄g in Equation (45) is rewritten as:

∫ R∞

S∞
κ̄gd` =

∫ φR

φS

dφ = φR − φS = φRS, (71)

where we denote the angular coordinate values of the receiver and the source as φR and φS, respectively.
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7.7. Impact Parameter and Light Rays

By using Equation (39), we study the orbit Equation on the equatorial plane. The Lagrangian for
a photon in the equatorial plane is obtained as:

L̂ = −A(r)ṫ2 − 2H(r)ṫφ̇ + B(r)ṙ2 + D(r)φ̇2, (72)

where the dot denotes the derivative with respect to the affine parameter and the
functions A(r), B(r), D(r), and H(r) mean, to be rigorous, A(r, π/2), B(r, π/2), D(r, π/2),
and H(r, π/2) respectively.

The metric (or the Lagrangian L̂ in the 4-dimensional spacetime) is independent from t and
φ. Therefore:

d
d`

∂L̂
∂ṫ

= 0,

d
d`

∂L̂
∂φ̇

= 0.

Then, associated with the two Killing vectors ξµ = (1, 0, 0, 0) and ξ̄µ = (0, 0, 0, 1), respectively:

∂L̂
∂ṫ

= gµνξµkν,

∂L̂
∂φ̇

= gµν ξ̄µkν, (73)

where kµ = dxµ

d` is the vector tangent to the light ray in the four-dimensional spacetime. There are two
constants of motion:

E = A(r)ṫ + H(r)φ̇, (74)

L = D(r)φ̇− H(r)ṫ, (75)

where E denotes the energy of the photon and L means the angular momentum of the photon.
The impact parameter of the photon is defined as:

b ≡ L
E

=
−H(r)ṫ + D(r)φ̇
A(r)ṫ + H(r)φ̇

=
− H(r) + D(r)

dφ

dt

A(r) + H(r)
dφ

dt

. (76)

In terms of the impact parameter b, L̂ = 0 can be considered as the orbit Equation:(
dr
dφ

)2
=

A(r)D(r) + H2(r)
B(r)

D(r)− 2H(r)b− A(r)b2

[H(r) + A(r)b]2
, (77)

where we used Equation (39). By introducing u ≡ 1/r, we rewrite the orbit Equation as:(
du
dφ

)2
= F(u), (78)
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where F(u) is:

F(u) =
u4(AD + H2)(D− 2Hb− Ab2)

B(H + Ab)2 . (79)

We examine the angles (ΨR and ΨS in Figure 10) at the receiver position and the source one.
The unit vector tangent to the photon orbit in (3)M is ei. Its components on the equatorial plane are
expressed as:

ei =
1
ξ

( dr
dφ

, 0, 1
)

, (80)

where ξ satisfies:

1
ξ
=

A(r)[H(r) + A(r)b]
A(r)D(r) + H2(r)

. (81)

This can be derived also from γijeiej = 1 by using Equation (77).
In the equatorial plane, the unit radial vector is:

Ri =
( 1√

γrr
, 0, 0

)
, (82)

where the outgoing direction is chosen for a sign convention.
By using the inner product between ei and Ri, we therefore define the angle as:

cos Ψ ≡γijeiRj

=
√

γrr
A(r)[H(r) + A(r)b]
A(r)D(r) + H2(r)

dr
dφ

, (83)

where Equations (80)–(82) are used. This is rewritten as:

sin Ψ =
H(r) + A(r)b√

A(r)D(r) + H2(r)
, (84)

where Equation (77) is used. We should note that sin Ψ in Equation (84) is more useful in practical
calculations, because it needs only the local quantities. On the other hand, cos Ψ by Equation (83)
needs the derivative dr/dφ. In addition, the domain of this Ψ is 0 ≤ Ψ ≤ π and, hence, sin Ψ is
always positive.

By substituting rR and rS into r of Equation (84), we obtain sin ΨR and sin ΨS, respectively.
We note that the range of the principal value of y = arcsin x is −π

2 ≤ y ≤ π
2 as usual. However,

the range of ΨR (ΨS) is 0 ≤ ΨR(ΨS)≤ π. By using the usual principal value, Equation (84) for (ΨR) and
(ΨS) becomes:

sin ΨR =
H(rR) + A(rR)b√

A(rR)D(rR) + H2(rR)
, (85)

sin(π −ΨS) =
H(rS) + A(rS)b√

A(rS)D(rS) + H2(rS)
, (86)

respectively because ΨR is an acute angle and ΨS is an obtuse angle as shown by Figure 10.
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Figure 10. ΨR and ΨS: ΨR is the angle between the radial direction and the light ray at the receiver
position. ΨS is that at the source position.

7.8. Gravitational Deflection Light in the Axisymmetric Case

We define:
α ≡ ΨR −ΨS + φRS (87)

for the equatorial plane in the axisymmetric spacetime. This definition apparently depends on
the angular coordinate φ. By using the Gauss–Bonnet theorem in Equation (8), this Equation is
rearranged as:

α = −
∫∫

∞
R �∞

S

KdS−
∫ S

R
κgd`. (88)

Here, d` is positive when the photon is in the prograde motion, whereas it is negative for the
retrograde case. Equation (88) means that α is coordinate-invariant for the axisymmetric case. Up until
now, we did not use any Equations for gravitational fields. Therefore, the above discussion and results
still stand not only in the theory of general relativity but also in a general class of metric theories of
gravity only if the light ray in the four-dimensional spacetime is a null geodesic.

8. Weak Deflection of Light in Kerr Spacetime

8.1. Kerr Spacetime and γij

In this section, we focus on the weak deflection of light in the Kerr spacetime as an axisymmetric
example. Kerr metric in the Boyer–Lindquist form is expressed as:

ds2 =−
(

1− 2Mr
Σ

)
dt2 − 4aMr sin2 θ

Σ
dtdφ

+
Σ
∆

dr2 + Σdθ2 +

(
r2 + a2 +

2a2Mr sin2 θ

Σ

)
sin2 θdφ2, (89)
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where Σ and ∆ are defined as:

Σ ≡ r2 + a2 cos2 θ, (90)

∆ ≡ r2 − 2Mr + a2. (91)

Using the Gauss–Bonnet theorem, the deflection angle of light in the Kerr spacetime was calculated
for the asymptotic source and receiver by Werner [67]. However, his method based on the osculating
metric is limited within the asymptotic case. Later, Ono et al. developed a different approach using the
Gauss–Bonnet theorem that enables the calculation of the deflection angle for the finite distance case in
the Kerr spacetime [42].

By using Equations (42) and (43), the generalized optical metric γij and the gravitomagnetic term
βi for the Kerr metric are obtained as:

γijdxidxj =
Σ2

∆(Σ− 2Mr)
dr2 +

Σ2

(Σ− 2Mr)
dθ2

+

(
r2 + a2 +

2a2Mr sin2 θ

(Σ− 2Mr)

)
Σ sin2 θ

(Σ− 2Mr)
dφ2, (92)

βidxi =− 2aMr sin2 θ

(Σ− 2Mr)
dφ. (93)

Note that γij has no linear terms in the Kerr spin parameter a because only g0i in gµν has a
linear term in a and g0i ∝ H contributes to γij through a quadratic term g0ig0j ∝ H2, as shown by
Equation (42).

In order to calculate the Gaussian curvature K of the equatorial plane, the geodesic curvature κg

of the light ray and the geodesic curvature κ̄g of the circular arc of an infinite radius and of the angles
ΨR and ΨS, we use two approximations for the weak field and slow rotation, where M and a play roles
as book-keeping parameters though they are dimensional quantities.

By using Equation (77), we obtain the orbit Equation:

(
dr
dφ

)2
=

b2
{

a2

b2 +
r
b (

r
b −

2M
b )
}2 { a2

b2 (
2M

b + r
b )−

4aM
b2 + 2M

b −
r
b +

r3

b3

}
r
b{

2aM
b2 + r

b −
2M

b }2

=
r4

b2 − r2 + 2Mr− 4r3

b3 aM +O(a2), (94)

where the weak-field and slow-rotation approximations are used in the last line. There are no
M-squared terms in the last line. The orbit Equation becomes:(

du
dφ

)2
= F(u) =

1
b2 − u2 + 2Mu3 − 4u

b3 aM +O(a2u4). (95)

We solve iteratively Equation (95). In order to find the zeroth-order solution, we solve the
truncated Equation (95): (

du
dφ

)2
=

1
b2 − u2 +O(Mu3, aMu4, a2u4). (96)

The zeroth-order solution for this Equation is:

u =
sin φ

b
, (97)
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where we use du
dφ

∣∣∣
φ=π/2

= 0 as the boundary condition. This condition means that the closest approach

of the photon orbit is expressed as r = r0 = 1/u0, φ = π/2. We assume that the linear-order solution
with M is u = sin φ

b + u1(φ)M. In order to obtain u1(φ), we substitute this expression of u into the
Equation (95) with terms linear in M:(

du
dφ

)2
=

1
b2 − u2 + 2Mu3 +O(aMu4, a2u4). (98)

u1(φ) is thus obtained as:

u1(φ) =
1
b2 (1 + cos2 φ), (99)

where we used the boundary condition mentioned above. The solution with a is in a form of u =
sin φ

b + M
b2 (1 + cos2 φ) + u2(φ)a. Since Equation (95) does not include any linear term in a, we find

u2(φ) = 0. The solution with aM is u = sin φ
b + M

b2 (1 + cos2 φ) + u3(φ)aM. We substitute this solution
into Equation (95):

aM
b

{
b3 du3(φ)

dφ
cos φ + b3u3(φ) sin φ + 2 sin φ

}
+O(a2u4) = 0.

(100)

Hence, u3(φ) is obtained as:

u3(φ) = −
2
b3 . (101)

Bringing the above results together, the iterative solution of Equation (95) is expressed as:

u =
sin φ

b
+

M
b2 (1 + cos2 φ)− 2aM

b3 +O
(

M2

b3 ,
a2

b3

)
. (102)

Next, we solve Equation (102) for φ. We obtain φ as:

φ =

arcsin(bu) + −2+b2u2

b
√

1−b2u2 M + 2aM
b2
√

1−b2u2 +O
(

M2

b3 , a2

b3

)
(|φ| < π

2 )

π − arcsin(bu)− −2+b2u2

b
√

1−b2u2 M− 2aM
b2
√

1−b2u2 +O
(

M2

b3 , a2

b3

)
(π

2 < |φ|)
, (103)

where we can choose the domain of φ to be −π ≤ φ < π without loss of generality. In the following,
the range of the angular coordinate value φS at the source point is −π

2 ≤ φS < π
2 and the range of the

angular coordinate value φR at the receiver point is |φR| > π
2 . We find |bu| < 1 because the square

root in Equation (103) must be real and nonzero, and the values of b and u are positive. Therefore, bu
satisfies 0 < bu < 1 in our calculation.

8.2. Gaussian Curvature on the Equatorial Plane

Let us explain how to compute the Gaussian curvature by using Equation (46). In the Kerr case,
it becomes:

K =
M
(
−6r

(
a2 + M2)+ 6a2M + 7Mr2 − 2r3)

r5(r− 2M)

=− 2M
r3 +O

(
M2

r4 ,
a2M

r5

)
, (104)

where the weak-field and slow-rotation approximations are used in the last line.



Universe 2019, 5, 218 26 of 44

Next, we discuss the area element on the equatorial plane by using Equation (47). In the Kerr case,
the area element of the equatorial plane is expressed as:

dS = [r + 3M +O(M2/r)]drdφ. (105)

By using Equations (104) and (105), the surface integral of the Gaussian curvature in Equation (88)
is performed as:

−
∫∫

R∞
R �S∞

S

KdS =
∫ φR

φS

∫ rOE

∞
(−2M

r3 r)drdφ +O
(

M2

b2 ,
aM2

b3 ,
a2M
b3

)
=2M

∫ φR

φS

∫ 1
b sin φ+ M

b2 (1+cos2 φ)− 2aM
b3

0
dudφ +O

(
M2

b2 ,
aM2

b3 ,
a2M
b3

)
=2M

∫ φR

φS

[1
b

sin φ
]
dφ +O

(
M2

b2 ,
aM2

b3 ,
a2M
b3

)
=

2M
b

[
cos φS − cos φR

]
+O

(
M2

b2 ,
aM2

b3 ,
a2M
b3

)
=

2M
b

[√
1− b2uS

2 +
√

1− b2uR2
]
+O

(
M2

b2 ,
aM2

b3 ,
a2M
b3

)
, (106)

where rOE in the first line is the solution of Equation (94), we transform the integral variable as r = 1/u
in the second line, and we used cos φS =

√
1− b2uS

2 + O(M/b) and cos φR = −
√

1− b2uR2 +

O(M/b) from Equation (103) in the last line.

8.3. Path Integral of κg

Substituting Equation (93) into βi in Equation (66) leads to:

κg =− 2aM
r2(r− 2M)

 1−
2M

r
+

a2

r2

1 +
a2

r2 +
2a2M

r3


1/2

=− 2aM
r3 +O

(
aM2

r4

)
, (107)

where the weak-field and slow-rotation approximations are used in the last line. We stress that the
terms of an M (n ≥ 2) do not exist in this expression.

The line element for the path integral by Equation (67) becomes:

d` =
[

b
sin2 φ

+O(M)

]
dφ, (108)

where Equation (102) was used for a relation between r and φ.
By using Equations (107) and (108), the path integral of κg in Equation (88) is performed as:

−
∫ S

R
κgd` =−

∫ R

S

2aM
r3 d`+O

(
aM2

r4

)
=− 2aM

b2

∫ φR

φS

sin φdφ +O
(

aM2

r4

)
=− 2aM

b2 [
√

1− b2uR2 +
√

1− b2uS
2] +O

(
aM2

b3

)
. (109)
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Here, we assumed d` > 0, such that the orbital angular momentum can be parallel with the
spin of the black hole, and we used a linear approximation of the photon orbit as 1/r = u =

sin φ/b +O(M/b2, aM/b3) from Equation (102). In the retrograde case, d` becomes negative and the
magnitude of the above path integral thus remains the same but the sign of the integral is opposite.

8.4. φRS Part

The displacement of the angular coordinate φ in Equation (87) is computed as:

φRS =
∫ R

S
dφ

=2
∫ u0

0

1√
F(u)

du +
∫ 0

uS

1√
F(u)

du +
∫ 0

uR

1√
F(u)

du, (110)

where the orbit equation of Equation (78) was used. We substitute Equation (95) into F(u) in
Equation (110) to obtain:

φRS =
∫ u0

uS

(
1√

u02 − u2
+ M

u0
3 − u3

(u02 − u2)3/2 − 2aM
u0

3(u0 − u)
(u02 − u2)3/2

)
du

+
∫ u0

uR

(
1√

u02 − u2
+ M

u0
3 − u3

(u02 − u2)3/2 − 2aM
u0

3(u0 − u)
(u02 − u2)3/2

)
du

+O(M2u0
2, a2u0

2)

=

π

2
− arcsin

(uS
u0

)
+ M

(2u0 + uS)
√

u02 − u2
S

u0 + uS
− 2aM

u0
3
√

u02 − u2
S

u02 + u0uS


+

(
π

2
− arcsin

(uR
u0

)
+ M

(2u0 + uR)
√

u02 − uR2

u0 + uR
− 2aM

u0
3
√

u02 − uR2

u02 + u0uR

)
+O

(
M2u2

0, a2u2
0

)
, (111)

where the prograde case is assumed. In the retrograde motion, the sign of the linear term in a is
opposite. In Equation (111), the impact parameter b is rewritten in terms of the closest approach u0 for
the integration from uS(or uR) to u0. Namely, Equation (95) tells us the relation between the impact
parameter b and the inverse of the closest approach u0 as b = u−1

0 + M− 2aMu0 +O(M2u0, a2u0) in
the weak-field and slow-rotation approximations. By making use of this relation, Equation (111) is
rearranged as:

φRS =π − arcsin(buS)− arcsin(buR) +
M(2− b2uS

2)

b
√

1− b2uS
2
+

M(2− b2uR
2)

b
√

1− b2uR2

− 2aM
b2

[ 1√
1− b2uS

2
+

1√
1− b2uR2

]
+O

(
M2/b2, a2/b2

)
. (112)

The first line of this equation recovers Equation (32) of Reference [38].
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8.5. Ψ Parts

In the Kerr spacetime by Equation (89), Equation (85) is:

sin ΨR =
b

rR
×

1−
2M
rR

+
2aM
brR√

1−
2M
rR

+
a2

rR2

,

=
b

rR

(
1− M

rR
+

2aM
brR

)
+O

(
M2

rR2 ,
a2

rR2 ,
aM2

rR3

)
=buR

(
1−MuR +

2aMuR
b

)
+O

(
M2uR

2, a2uR
2, aM2uR

3
)

, (113)

and Equation (86) is calculated as:

sin(π −ΨS) = buS

(
1−MuS +

2aMuS
b

)
+O

(
M2uS

2, a2uS
2, aM2uS

3
)

, (114)

where rR = 1/uR, rS = 1/uS and we used the weak-field and slow-rotation approximations.
By combining Equations (113) and (114), we obtain ΨR and ΨS as:

ΨR = arcsin
[

buR

(
1−MuR +

2aMuR
b

)]
+O

(
M2uR

2, a2uR
2, aM2uR

3
)

= arcsin(buR)−
MbuR

2√
1− b2uR2

+
2aMuR

2√
1− b2uR2

+O
(

M2uR
2, a2uR

2, aM2uR
3
)

,

π −ΨS = arcsin(buS)−
MbuS

2√
1− b2uS

2
+

2aMuS
2√

1− b2uS
2
+O

(
M2uS

2, a2uS
2, aM2uS

3
)

. (115)

By combining these relations, we obtain the Ψ part in Equation (87) as:

ΨR −ΨS = arcsin(buR) + arcsin(buS)− π − MbuR
2√

1− b2uR2
− MbuS

2√
1− b2uS

2

+
2aMuR

2√
1− b2uR2

+
2aMuS

2√
1− b2uS

2
+O

(
M2u2

R, M2u2
S, a2u2

R, a2u2
S, aM2u3

R, aM2u3
S

)
. (116)

8.6. Deflection of Light in Kerr Spacetime

On the equatorial plane in the Kerr spacetime, the deflection angle of light is described by
Equations (87) and (88). Let us examine whether the two results agree with each other.
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First, we substitute Equations (112) and (116) into Equation (87). We obtain the deflection angle of
light as:

αprog = arcsin(buR) + arcsin(buS)− π − MbuR
2√

1− b2uR2
− MbuS

2√
1− b2uS

2

+
2aMuR

2√
1− b2uR2

+
2aMuS

2√
1− b2uS

2

+ π − arcsin(buS)− arcsin(buR) +
M(2− b2uS

2)

b
√

1− b2uS
2
+

M(2− b2uR
2)

b
√

1− b2uR2

− 2aM
b2

[ 1√
1− b2uS

2
+

1√
1− b2uR2

]
+O

(
M2

b2

)
=

2M
b

(√
1− b2uR2 +

√
1− b2uS

2
)

− 2aM
b2

(√
1− b2uR2 +

√
1− b2uS

2
)
+O

(
M2

b2

)
, (117)

where the prograde orbit of light is assumed. For the retrograde motion, we obtain:

αretro =
2M

b

(√
1− b2uR2 +

√
1− b2uS

2
)

+
2aM

b2

(√
1− b2uR2 +

√
1− b2uS

2
)
+O

(
M2

b2

)
. (118)

Next, we substitute Equations (106) and (109) into Equation (88). Then, we obtain the deflection
angle of light in the prograde motion as:

αprog =
2M

b

(√
1− b2uR2 +

√
1− b2uS

2
)

− 2aM
b2

(√
1− b2uR2 +

√
1− b2uS

2
)
+O

(
M2

b2

)
, (119)

and the deflection angle for the retrograde case as:

αretro =
2M

b

(√
1− b2uR2 +

√
1− b2uS

2
)

+
2aM

b2

(√
1− b2uR2 +

√
1− b2uS

2
)
+O

(
M2

b2

)
. (120)

Note that the a2 terms in the deflection angle in Equation (87) cancel out thanks to Equation (88).
Here, we consider the limit as uR → 0 and uS → 0. In this limit, we get:

α∞ prog →
4M

b
− 4aM

b2 + O
(

M2

b2

)
, (121)

α∞ retro →
4M

b
+

4aM
b2 + O

(
M2

b2

)
. (122)

This shows that Equations (117) and (118) agree with the asymptotic deflection angles that are
known in earlier works [4,68–70]. Precise analytic treatments of the deflection angle of light were done
in a conventional approach, on the equatorial plane of a Kerr black hole [70] and for generic photon
orbits in terms of the generalized hypergeometric functions of Appell and Lauricella [71]. They assume
that both the source and the receiver are located at the null infinity.
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If we wish to consider the deflection angle of light in a case where the receiver point is closer to
the source point than the closest approach point, Equations (117) and (118) become:

αprog =
2M

b

(√
1− b2uS

2 −
√

1− b2uR2
)

− 2aM
b2

(√
1− b2uS

2 −
√

1− b2uR2
)
+O

(
M2

b2

)
,

αretro =
2M

b

(√
1− b2uS

2 −
√

1− b2uR2
)

+
2aM

b2

(√
1− b2uS

2 −
√

1− b2uR2
)
+O

(
M2

b2

)
.

If we wish to consider the deflection angle of light in such a case that the source point is closer to
the receiver than the closest approach point, Equations (117) and (118) become:

αprog =
2M

b

(√
1− b2uR2 −

√
1− b2uS

2
)

− 2aM
b2

(√
1− b2uR2 −

√
1− b2uS

2
)
+O

(
M2

b2

)
,

αretro =
2M

b

(√
1− b2uR2 −

√
1− b2uS

2
)

+
2aM

b2

(√
1− b2uR2 −

√
1− b2uS

2
)
+O

(
M2

b2

)
.

8.7. Finite-Distance Corrections

In the previous subsections so far, we discussed an effect of the spin of the lens object to the
deflection of light. In particular, we do not require the receiver and the source to be located at
infinity. The finite-distance correction to the deflection angle of light is defined as δα. This is the
difference between the asymptotic deflection angle α∞ and the deflection angle for the finite distance
case. Namely:

δα ≡ α− α∞. (123)

Equations (117) and (118) tell us the magnitude of the finite-distance correction to the
gravitomagnetic bending angle due to the spin. The result is:

|δαGM| ∼O

(
aM
r2

S
+

aM
r2

R

)

∼O

(
J

r2
S
+

J
r2

R

)
, (124)

where buR, buS < 1 is assumed, J ≡ aM denotes the spin angular momentum of the lens, and the
subscript GM means the gravitomagnetic part. We introduce the dimensionless spin parameter as:
s ≡ a/M. Hence, Equation (124) is rearranged as:

|δαGM| ∼ O

(
s
(

M
rS

)2
+ s

(
M
rR

)2
)

. (125)

This implies that δαGM is of the same order as the second post-Newtonian effect (with the
dimensionless spin parameter).
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The second-order Schwarzschild contribution to α is 15πM2/4b2. This contribution can be
obtained also by using the present method, especially by using a relation between b and r0 in M2

in calculating φRS. Appendix A provides detailed calculations at the second order of M and a. We
explain detailed calculations for the integrals of K and κg in the present formulation. Note that
δαGM in the above approximations is free from the impact parameter b. We can see this fact from
Figures 11–13 below.

8.8. Possible Astronomical Applications

What are possible astronomical applications? As a first example, we consider the Sun, in which
its higher multipole moments are ignored for simplicity. Its spin angular momentum denoted as J�
is ∼2× 1041 m2 kg s−1 [72,73]. This means GJ�c−2 ∼ 5× 105 m2, for which the dimensionless spin
parameter becomes s� ∼ 10−1.

Here, our assumption is that a receiver on the Earth observes the light deflected by the Sun,
while the distant source is safely in the asymptotic region. For the light ray passing near the Sun,
Equation (125) allows us to make an order-of-magnitude estimation of the finite-distance correction.
The result is:

|δαGM| ∼ O

(
J

r2
R

)

∼ 10−12arcsec.×
(

J
J�

)(
1AU

rR

)2
, (126)

where 4M�/R� ∼ 1.75 arcsec. ∼ 10−5 rad., where Modot means the solar mass and R� denotes the
solar radius. This correction is nearly a pico-arcsecond. Therefore, the correction is beyond the reach of
present and near-future technology [74,75].

Figure 11 shows the finite-distance correction to the light deflection. Our numerical calculations
are consistent with the above order-of-magnitude estimation. This figure shows also the very weak
dependence of δα on b.

See Figures 12 and 13 for the deflection angle with finite-distance corrections for the prograde
motion and retrograde one, respectively, where we choose rS ∼ 1.5 × 108 km and rR ∼ ∞.
The finite-distance correction reduces the deflection angle of light. As the impact parameter b increases,
the finite-distance correction also increases.

As a second example, we discuss Sgr A∗ that is located at our galactic center. This object is a good
candidate for measuring the strong gravitational deflection of light. The distance to the receiver is
much larger than the impact parameter of light. On the other hand, some of the source stars may live
in our galactic center.

For Sgr A∗, Equation (125) becomes:

|δαGM| ∼ s
(

M
rS

)2

∼ 10−7arcsec.×
( s

0.1

)( M
4× 106M�

)2 (0.1pc
rS

)2
, (127)

where we assume that the mass of the central black hole is M ∼ 4× 106M�. This correction is nearly at
a sub-microarcsecond level. Therefore, it is beyond the capability of present technology (e.g., [31–36]).

See Figure 9 for the finite-distance correction due to the source location. The result in this figure
is in agreement with the above order-of-magnitude estimation. This figure suggests the very weak
dependence on the impact parameter b.
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Figure 11. δαGM for the Sun: The horizontal axis is the distance of the receiver distance rR. The vertical
axis means the finite-distance correction due to the gravitomagnetic deflection angle of light. The
solid curve (blue in color) and dashed one (red in color) denote b = R� and b = 105R�, respectively.
The dotted line (black in color) corresponds to the leading term in δαGM given by Equation (124). These
three curves are overlapped. This implies the very weak dependence of δαGM on b.
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Figure 12. α in the prograde motion: The horizontal axis is the impact parameter for a photon orbit.
The vertical axis means the deflection angle of light. The blue curve is the asymptotic deflection angle
by a Kerr black hole. The orange curve means the deflection angle with finite-corrections by a Kerr
black hole. The green curve shows the difference between the asymptotic bending angle and the
deflection angle with finite-corrections by a Kerr black hole.
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Figure 13. α for light of retrograde motion: The horizontal axis denotes the impact parameter for a
photon orbit, and the vertical axis denotes the deflection angle of light. The blue curve is the asymptotic
deflection angle by the Kerr black hole. The orange curve is the deflection angle with finite-correction
by the Kerr black hole. The green curve shows the difference between the asymptotic bending angle
and the deflection angle with finite-correction by the Kerr black hole.

9. Rotating Teo Wormhole: Another Example

9.1. Rotating Teo Wormhole and Optical Metric

In this section, we consider a rotating Teo wormhole [76] in order to examine how our method
can be applied to a wormhole spacetime. The spacetime metric for this wormhole is:

ds2 =− N2dt2 +
dr2

1− b0
r

+ r2H2
[
dθ2 + sin2 θ(dφ−ωdt)2

]
, (128)

where we denote:

N =H = 1 +
d(4ā cos θ)2

r
, (129)

ω =
2ā
r3 . (130)

Here, b0 means the throat radius of this wormhole, ā is corresponding to the spin angular
momentum, and d is a positive constant.

For the rotating Teo wormhole of Equation (128), the components of the generalized optical metric
are [43]:

γijdxidxj =
r7

(r− b0)
(
r4 − 4ā2 sin2 θ

)
(16dā2 cos2 θ + r)2 dr2

+
r6

r4 − 4ā2 sin2 θ
dθ2 +

r10 sin2 θ(
r4 − 4ā2 sin2 θ

)2 dφ2. (131)
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Here, γij is not the induced metric in the Arnowitt-Deser-Misner(ADM) formulation.
The components of βi are obtained as:

βidxi =− 2ār3 sin2 θ

r4 − 4ā2 sin2 θ
dφ. (132)

In this section, we restrict ourselves within the equatorial plane, namely θ = π/2. On the
equatorial plane, the constant d in the metric always vanish because d is always associated with cos θ.

We employ the same way for the Kerr case; we first derive the orbit Equation on the equatorial
plane from Equation (77) as:(

dr
dφ

)2
=−

r5(b0 − r)
(
4ā2b2 − 4ābr3 − b2r4 + r6)

(−4ā2b + 2ār3 + br4)
2

=
r4

b2 − r2 − b0r3

b2 + b0r− 4ār3

b3 +
4āb0r2

b3 +O(ā2/b2), (133)

where b denotes the impact parameter of the light ray and we use the weak field and slow rotation
approximations in the last line. There are no b0 squared terms in the last line. The orbit Equation
thus becomes: (

du
dφ

)2
=

1
b2 − u2 − b0u

b2 + b0u3 − 4āu
b3 −

4āb0u2

b3 +O(ā2/b6). (134)

This Equation is iteratively solved as:

u =
sin φ

b
+

cos2 φ

2b2 b0 −
2
b3 ā +O

(
b0

2

b3 ,
āb0

b4

)
. (135)

Solving Equation (135) for φS and φR, we obtain φS and φR as:

φS = arcsin(buS)−
b0
√

1− b2uS
2

2b
+

2ā
b2
√

1− b2uS
2
+O

(
b0

2

b2 ,
āb0

b3

)
, (136)

φR =π − arcsin(buR) +
b0
√

1− b2uR2

2b
− 2ā

b2
√

1− b2uR2
+O

(
b0

2

b2 ,
āb0

b3

)
. (137)

9.2. Gaussian Curvature

In the weak-field approximation, the Gaussian curvature of the equatorial plane is:

K =− b0

2r3 −
56ā2

r6 +O
(

ā2b0

r7 ,
ā4

r10

)
, (138)

where ā and b0 play roles as book-keeping parameters in the weak-field approximation. It is not
surprising that this Gaussian curvature deviates from Equation (26) in Jusufi and Övgün [77], because
their Gaussian curvature describes a different surface that is defined by using the Randers–Finsler
metric. The Randers–Finsler metric is quite different from our generalized optical metric γij.
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When we perform the surface integral of the Gaussian curvature in Equation (88), we use
Equation (135) for a boundary of the integration domain. The surface integral of the Gaussian
curvature in Equation (88) is thus calculated as:

−
∫∫

∞
R �∞

S

KdS =
∫ φR

φS

∫ r(φ)

∞

(
− b0

2r2

)
drdφ +O

(
b0

2

b2 ,
āb0

b3

)

=
b0

2

∫ φR

φS

∫ sin φ
b +

cos2 φ

2b2 b0− 2
b3 ā

0
dudφ +O

(
b0

2

b2 ,
āb0

b3

)

=
b0

2

∫ φR

φS

[ sin φ

b

]
dφ +O

(
b0

2

b2 ,
āb0

b3

)

=
b0

2

[
− cos φ

b

]φR

φ=φS
+O

(
b0

2

b2 ,
āb0

b3

)

=
b0

2b

(√
1− b2uR2 +

√
1− b2uS

2
)
+O

(
b0

2

b2 ,
āb0

b3

)
, (139)

where we use sin φR = buR +O(āb−2, b0b−1) and sin φS = buS +O(āb−2, b0b−1) by Equations (137)
and (136) in the last line.

9.3. Geodesic Curvature of Photon Orbit

We study the geodesic curvature of the photon orbit on the equatorial plane in the stationary and
axisymmetric spacetime by using the generalized optical metric. It generally becomes [42]:

κg = −
√

1
γγθθ

βφ,r. (140)

In the Teo wormhole, this expression is rearranged as:

κg =− 2ā
r3 +

āb0

r4 +
āb0

2

4r5 +
āb0

3

8r6 +O
(

ā3

r7 ,
ā3b0

r8

)
. (141)

We compute the path integral of the geodesic curvature of the photon orbit. The detailed
calculations and result are:

∫ R

S
κgd` =

∫ S

R

2ā
r3 d`+O

(
b0

2

b2 ,
āb0

b3

)

=
∫ π/2−φS

π/2−φR

2ā cos ϑ

b2 dϑ +O
(

b0
2

b2 ,
āb0

b3

)

=
2ā
b2

[
sin
(π

2
− φS

)
− sin

(π

2
− φR

)]
+O

(
b0

2

b2 ,
āb0

b3

)

=
2ā
b2

(√
1− b2uS

2 +
√

1− b2uR2
)
+O

(
b0

2

b2 ,
āb0

b3

)
, (142)

for the retrograde orbit of the photon. In the last line, we used sin φR = buR +O(āb−2, b0b−1) and
sin φS = buS +O(āb−2, b0b−1) from Equation (135). The above result becomes 4ā/b2, as rR → ∞
and rS → ∞. The sign of the right-hand side in Equation (142) is opposite if the photon is in
prograde motion.
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9.4. φRS Part

The rotating Teo wormhole is an asymptotically flat spacetime, as seen from Equation (128).
Therefore, the integral of the geodesic curvature of the circular arc segment with an infinite radius can
be expressed simply as φRS. By using Equations (136) and (137), φRS is obtained as:

φRS =φR − φS

=π − arcsin(buR)− arcsin(buS) +
b0
√

1− b2uR2

2b
+

b0
√

1− b2uS
2

2b

− 2ā

b2
√

1− b2uR2
− 2ā

b2
√

1− b2uS
2
+O

(
b0

2

b2 ,
āb0

b3

)
. (143)

9.5. Ψ Parts

For the rotating Teo wormhole in Equation (128), Equation (85) is computed as:

sin ΨR =buR + 2āuR
2 − 4ā2buR

5, (144)

and Equation (86) becomes:

sin(π −ΨS) =buS + 2āuS
2 − 4ā2buS

5, (145)

where the slow-rotation approximation is not needed.
Therefore, we obtain ΨR and ΨS as:

ΨR = arcsin(buR) +
2āuR

2√
1− b2uR2

+
2ā2buR

5 (2b2uR
2 − 1

)
(b2uR2 − 1)3/2 +O(ā3/b6), (146)

π −ΨS = arcsin(buS) +
2āuS

2√
1− b2uS

2
+

2ā2buS
5 (2b2uS

2 − 1
)

(b2uS
2 − 1)3/2 +O(ā3/b6), (147)

where we used the slow-rotation approximation.

9.6. Deflection Angle of Light

We combine Equations (139) and (142) to obtain the deflection angle of light in the prograde
orbit as:

αprog =
b0

2b

(√
1− b2uR2 +

√
1− b2uS

2
)
− 2ā

b2

(√
1− b2uR2 +

√
1− b2uS

2
)

+O
(

b0
2

b2 ,
āb0

b3

)
. (148)

The deflection angle of the retrograde light is:

αretro =
b0

2b

(√
1− b2uR2 +

√
1− b2uS

2
)
+

2ā
b2

(√
1− b2uR2 +

√
1− b2uS

2
)

+O
(

b0
2

b2 ,
āb0

b3

)
. (149)
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Next, by using Equations (143), (146), and (147), we obtain the deflection angle of the prograde
light as:

αprog =π − arcsin(buR)− arcsin(buS) +
b0
√

1− b2uR2

2b
+

b0
√

1− b2uS
2

2b

− 2ā

b2
√

1− b2uR2
− 2ā

b2
√

1− b2uS
2
+ arcsin(buR) +

2āuR
2√

1− b2uR2

− π + arcsin(buS) +
2āuS

2√
1− b2uS

2
+O

(
b0

2

b2 ,
āb0

b3

)

=
b0

2b

(√
1− b2uR2 +

√
1− b2uS

2
)
− 2ā

b2

(√
1− b2uR2 +

√
1− b2uS

2
)

+O
(

b0
2

b2 ,
āb0

b3

)
. (150)

The deflection angle of light in the retrograde orbit is:

αretro =
b0

2b

(√
1− b2uR2 +

√
1− b2uS

2
)
+

2ā
b2

(√
1− b2uR2 +

√
1− b2uS

2
)

+O
(

b0
2

b2 ,
āb0

b3

)
. (151)

The deflection of light in the prograde (retrograde) orbit is weaker (stronger) when increasing the
angular momentum of the Teo wormhole. The reason is as follows. The local inertial frame in which
the light travels at the light speed c in general relativity moves faster (slower). Hence, the time-of-flight
of light becomes shorter (longer). On light propagation, a similar explanation is done by using the
dragging of the inertial frame also by Laguna and Wolsczan [78]. They discussed the Shapiro time
delay. The expression of the deflection angle of light by a rotating Teo wormhole is similar to that
by Kerr black hole. This implies that it is hard to distinguish a Kerr black hole from a rotating Teo
wormhole by the gravitational lens observations.

In Equations (150) and (151), the source and receiver can be located at finite distances from the
wormhole. In the limit as rR → ∞ and rS → ∞, Equations (148) and (149) become:

αprog →
b0

b
− 4ā

b2 +O
(

b0
2

b2 ,
āb0

b3

)
,

αretro →
b0

b
+

4ā
b2 +O

(
b0

2

b2 ,
āb0

b3

)
. (152)

They are in complete agreement with Equations (39) and (56) in Jusufi and Övgün [77], where
they restrict themselves within the asymptotic source and receiver (rR → ∞ and rS → ∞).

9.7. Finite-Distance Corrections in the Teo Wormhole Spacetime

To be precise, we define the finite-distance correction to the deflection angle of light as the
difference between the asymptotic deflection angle α∞ and the deflection angle for the finite distance
case. It is denoted as δα.

We consider the following situation. An observer on the Earth sees the light deflected by the solar
mass. The source of light is located in a practically asymptotic region. In other words, we choose
b0 = M�, ā = J�, rR ∼ 1.5× 108 km, rS ∼ ∞. See Figure 14 for the finite-distance correction due to the
impact parameter b. In Figure 14, the green curve means the difference between the asymptotic bending
angle and the deflection angle with finite-distance corrections, the blue curve denotes the asymptotic
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deflection angle, and the orange curve is the deflection angle with finite-distance corrections by the
rotating Teo wormhole. The deflection angle is decreased by the finite-distance correction. If the impact
parameter b increases, the finite-distance correction also increases.

See also Figure 15 for numerical calculations of the finite-distance correction due to the impact
parameter b. In Figure 15, the blue curve is the deflection angle with finite-distance correction by a Kerr
black hole and the red curve is the deflection angle with finite-correction by a rotating Teo wormhole.
The deflection of light is stronger in a Kerr black hole case for the chosen values.
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Figure 14. α in the Teo wormhole: The blue curve is the asymptotic deflection angle by the rotating
Teo wormhole. The orange curve is the deflection angle with finite-distance corrections by the rotating
Teo wormhole. The blue curve shows the difference between the asymptotic deflection angle and the
deflection angle with finite-distance corrections by the rotating Teo wormhole.
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Figure 15. α for prograde motion of light: The horizontal axis is the impact parameter of photon orbit.
The vertical axis means the deflection angle of light. The blue curve means the deflection angle with
finite-distance corrections by the Kerr black hole. The red curve corresponds to that by the rotating Teo
wormhole. For the purpose of this comparison, the mass of a Kerr black hole M and the throat radius
of a rotating Teo wormhole b0 are chosen as M = b0 = M�. The spin angular momentum of a Kerr
black hole and that of a rotating Teo wormhole are chosen as the same as that the Sun for simplicity.
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10. Summary

In this paper, we provided a brief review of a series of works on the deflection angle of light for
a light source and receiver in a non-asymptotic region. [38,39,42,43]. The validity and usefulness of
the new formulation come from the GB theorem in differential geometry. First, we discussed how to
define the gravitational deflection angle of light in a static, spherically symmetric, and asymptotically
flat spacetime, for which we assume the finite-distance source and receiver. We examined whether our
definition is invariant geometrically by using the GB theorem. By using our definition, we carefully
computed finite-distance corrections to the light deflection in Schwarzschild spacetime. We considered
both the cases of weak deflection and the strong one. Next, we extended the definition to stationary and
axisymmetric spacetimes. This extension allows us to compute finite-distance corrections for Kerr black
holes and rotating Teo wormholes. We verified that these results are consistent with previous works in
the infinite-distance limit. We mentioned also the finite-distance corrections to the light deflection by
Sagittarius A∗. It is left as future work to apply the present formulation to other interesting spacetime
models and also to extend it to a more general spacetime structure.
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Appendix A. Detailed Calculations at O(M2/b2) and O(a2/b2) in Kerr Spacetime

First, we investigate the Gaussian curvature K of the equatorial plane in the Kerr spacetime.
Here, we assume the weak-field and slow-rotation approximations. Up to the second order, K is
expanded as:

K =
Rrφrφ

γ

= −2M
r3 +

3M2

r4 + O
(

a2M
r5

)
, (A1)

where γ denotes det (γij). There are no a2 terms in K. More interestingly, only the a2M term at the
third-order level exists in K. By noting that K begins with O(M), what we need for the second-order
calculations is only the linear-order term in the area element on the equatorial plane. This is obtained as:

dS ≡√γdrdφ

=

[
r + 3M + O

(
M2

r

)]
drdφ, (A2)

where terms at O(a) and at O(a2) do not exist in dS. This is because all terms including the spin
parameter cancel out in γ for θ = π/2 and γ thus depends only on M, as shown by direct calculations.
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By using Equations (A1) and (A2), the surface integration of the Gaussian curvature is
performed as:

−
∫∫

KdS =
∫ rOE

∞
dr
∫ φR

φS

dφ
(
− 2M

r3 +
3M2

r4

)
(r + 3M) + O

(
M3

b3 ,
aM2

b3 ,
a2M
b3

)
=
∫ 1

b sin φ+ M
b2 (1+cos2 φ)

0
du
∫ φR

φS

dφ (2M + 3uM2) + O
(

M3

b3 ,
aM2

b3 ,
a2M
b3

)
=
∫ φR

φS

[2M
b

sin φ +
M2

2b2 (7 + cos2 φ)
]
dφ + O

(
M3

b3 ,
aM2

b3 ,
a2M
b3

)
=

2M
b

[
cos φ

]φS

φR
+

M2

2b2

[30φ + sin(2φ)

4

]φR

φS
+ O

(
M3

b3 ,
aM2

b3 ,
a2M
b3

)
=

2M
b

[√
1− b2uS

2 +
√

1− b2uR2
]

+
15M2

4b2 [π − arcsin(buS)− arcsin(buR)]

+
M2

4b2 [
buS(15− 7b2uS

2)√
1− b2uS

2
+

buR(15− 7b2uR
2)√

1− b2uR2
] + O

(
M3

b3 ,
aM2

b3 ,
a2M
b3

)
, (A3)

where we use, in the second line, an iterative solution for the orbit equation of Equation (77) in the
Kerr spacetime.

Next, we study the geodesic curvature. On the equatorial plane, we find:

κg =− 1√√√√ Σ2

∆(Σ− 2Mr)

(
r2 + a2 +

2a2Mr sin2 θ

Σ

)
Σ sin2 θ

(Σ− 2Mr)

βφ,r

=− 2aM
r3 + O

(
aM2

r3

)
. (A4)

Note that a2 terms do not exist. Therefore, we obtain:

∫
cp

κgd` =−
∫ R

S
d`
[

2aM
r2 + O

(
aM2

r3

)]
=− 2aM

b2

∫ φR

φS

cos ϑdϑ + O
(

aM2

b3

)
=

2aM
b2 [

√
1− b2uR2 +

√
1− b2uS

2] + O
(

aM2

b3

)
, (A5)

where we use sin φS =
√

rS
2 − b2/rS + O(M/rS) and sin φR = −

√
rR2 − b2/rR + O(M/rR).
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By combining Equations (A3) and (A5), we obtain:

α ≡−
∫∫

∞
R �∞

S

KdS−
∫ S

R
κgd`

=
2M

b

[√
1− b2uS

2 +
√

1− b2uR2
]

+
15M2

4b2 [π − arcsin(buS)− arcsin(buR)]

+
M2

4b2

[
buS(15− 7b2uS

2)√
1− b2uS

2
+

buR(15− 7b2uR
2)√

1− b2uR2

]

− 2aM
b2

[√
1− b2uR2 +

√
1− b2uS

2
]
+ O

(
M3

b3 ,
aM2

b3 ,
a2M
b3

)
. (A6)

Note that a2 terms and a3 ones do not appear in α for the finite distance situation as well as in the
infinite distance limit. If we assume the infinite distance limit uR, uS → 0, Equation (A6) becomes:

α→ 4M
b

+
15πM2

4b2 − 4aM
b2 . (A7)

This agrees with the known results, especially on the numerical coefficients at the order of M2

and aM.
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Bintley, D.; et al. [Event Horizon Telescope Collaboration]. First M87 Event Horizon Telescope Results. III.
Data Processing and Calibration. Astrophys. J. 2019, 875, L3.

34. Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball1, D.; Baloković, M.; Barrett, J.;
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