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Abstract: We study the apparent duality between large and small ηH for the constant-roll inflation
with the second slow-roll parameter ηH being a constant. In the previous studies, only the constant-roll
inflationary models with small ηH are found to be consistent with the observations. The apparent
duality suggests that the constant-roll inflationary models with large ηH may be also consistent with
the observations. We find that the duality between the constant-roll inflation with large and small ηH
does not exist, because both the background and scalar perturbation evolutions are very different.
By fitting the constant-roll inflationary models to the observations, we get −0.016 ≤ ηH ≤ −0.0078
at the 95% C.L if we take N = 60 for the models with increasing εH , in which inflation ends when
εH = 1. For the models with decreasing εH , we obtain 3.0135 ≤ ηH ≤ 3.021 at the 68% C.L. and
3.0115 ≤ ηH ≤ 3.024 at the 95% C.L.

Keywords: constant-roll inflation; slow-roll inflation; ultra-slow-roll inflation; duality; observational
constraints

1. Introduction

Inflation explains the flatness and horizon problems in standard cosmology [1–4], and the
quantum fluctuations of the inflaton seed the large scale structure of the Universe and leave imprints
on the cosmic microwave background radiation [5–8]. To solve problems such as the flatness, horizon,
and monopole problems, the number of e-folds remaining before the end of inflation must be large
enough, and it is usually taken to be N = 50 − 60 due to the uncertainties in reheating physics.
This requires the potential of the inflaton to be nearly flat, i.e., the slow-roll inflation. The temperature
and polarization measurements on the cosmic microwave background anisotropy conformed the
nearly scale invariant power spectra predicted by the slow-roll inflation and gave the constraints
ns = 0.965± 0.004 (68% C.L.) and r0.05 < 0.06 (95% C.L.) [9,10].

Recently, the constant-roll inflation with ηH being a constant [11,12] attracted some attention,
because the inflationary potential and the background equation of motion can be solved analytically.
The slow-roll parameter ηH is a constant and it may not be small, so the model is different from the
typical slow-roll inflationary models. In particular, when the inflationary potential becomes very flat,
ηH = 3, we get the ultra-slow-roll inflation [13,14]. Due to the violation of the slow-roll condition in
the constant-roll inflationary models with large ηH , the curvature perturbation may evolve outside
the horizon and the slow-roll results may not be applied [11,12,14–19]. However, for the constant-roll
inflation with ηH > 1, the slow-roll parameter εH decreases with time and is small during inflation,
so we can still use the standard method of Bessel function approximation to calculate the power spectra.
Neglecting the contribution from εH , it was found there exists a duality between the ultra-slow-roll
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inflation and the slow-roll inflation [20–22], i.e., if we replace ηH by η̄H = 3− ηH , we get the same result
for the scalar spectral tilt. Recall that the observational data constrained ηH to be small [23–25]; these
results are in conflict with the duality relation, so it is necessary to revisit the observational constraint
to include the constraint on the ultra-slow inflation. For the ultra-slow-roll inflation, it is legitimate
to neglect εH . For the typical slow-roll inflation, εH and ηH are in the same order, so εH cannot be
neglected and it is interesting to discuss the duality up to the first order of εH in the constant-roll
inflation. The difference in εH may cause different amplitudes for the power spectra or different energy
scale of inflation. Furthermore, due to the smallness of εH in the ultra-slow-roll inflation, it can be
used to generate a large curvature perturbation at small scales, which produces primordial black
holes and secondary gravitational waves [26–29]. For more discussion on the constant-roll inflation,
see, e.g., in [30–42].

In this paper, we extend the discussion of the duality between the ultra-slow-roll inflation and
the slow-roll inflation with constant ηH to include the effect of εH . The paper is organized as follows.
In Section 2, we review the constant-roll inflation and discuss the duality between the ultra-slow-roll
inflation with large constant ηH and the slow-roll inflation with small constant ηH . In Section 3, we fit
constant-roll models to the observational data. The conclusions are drawn in Section 4.

2. The Constant-Roll Inflation

We use the Hubble flow slow-roll parameters [43],

nβH = 2

 (H,φ)n−1H(n+1)
,φ

Hn

1/n

, (1)

where H,φ = dH/dφ and H(n)
,φ = dnH/dφn. In particular, the first three slow-roll parameters are

εH = 2
(

H,φ

H

)2
= − Ḣ

H2 , (2)

ηH =
2H(2)

,φ

H
= − φ̈

Hφ̇
= − Ḧ

2HḢ
, (3)

ξH =
4H,φ H(3)

,φ

H2 =

...
H

2H2Ḣ
− 2η2

H , (4)

and the evolution of the slow-roll parameters are

ε̇H = 2HεH(εH − ηH), (5)

η̇H = H(εHηH − ξH), (6)

where Ḣ = dH/dt. For the constant-roll inflation with constant ηH , we get ξH = εHηH .
From Equation (5), we see that if εH > ηH , then εH increases monotonically with time. Otherwise,
if εH < ηH , then εH decreases monotonically with time. As εH ≤ 1, εH decreases monotonically with
time for the constant-roll inflationary model with ηH > 1, such as the ultra-slow-roll inflation with
ηH ≈ 3.

The scalar perturbation is governed by Mukhanov–Sasaki equation [44,45],

v′′k +

(
k2 − z′′

z

)
vk = 0, (7)
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where

z =
aφ̇

H
, (8)

v′k = dvk/dτ, τ is the conformal time, and the mode function vk for a Fourier mode is related
with the curvature perturbation ζ by vk = zζk. To the first order of εH , aH ≈ −(1 + εH)/τ, and
Equation (7) becomes

v′′k +

(
k2 − ν2 − 1/4

τ2

)
vk = 0, (9)

where

ν ≈ 1
2
|2ηH − 3|+ (2η2

H − 9ηH + 6)εH

|2ηH − 3| . (10)

As ηH is a constant and the change of εH can be neglected which is true for both slow-roll and
ultra-slow-roll inflation 1, so ν can be approximated as a constant, the solution to Equation (9) for the
mode function vk is the Hankel function of order ν,

vk =

√
π

2
ei(ν+1/2)π/2√−τH(1)

ν (−kτ). (11)

Therefore, the power spectrum of the scalar perturbation is

Pζ =
k3

2π2 |ζk|2

=
22ν−3

2εH

[
Γ(ν)

Γ(3/2)

]2

(1 + εH)
1−2ν

(
H
2π

)2 ( k
aH

)3−2ν

.
(12)

The amplitude of the power spectrum at the horizon crossing is

As =
22ν−3

2εH

[
Γ(ν)

Γ(3/2)

]2

(1 + εH)
1−2ν

(
H
2π

)2
. (13)

The scalar spectral tilt is

ns − 1 =
d ln Pζ

d ln k

≈ 3− |2ηH − 3| − 2(2η2
H − 9ηH + 6)εH

|2ηH − 3| .
(14)

Following the same procedure, we get the power spectrum of the tensor perturbation and the
tensor to scalar ratio:

r ≈ 23−|2ηH−3|
(

Γ[3/2]
Γ[|2ηH − 3|/2]

)2

16εH . (15)

If we neglect the contribution of εH in Equations (10), (14), and (15), we see that these expressions
are unchanged if we replace ηH by η̄H = 3 − ηH , i.e., there exists a duality between ηH and
η̄H = 3− ηH as observed in [20,21]. It this duality is true, then we can apply the usual slow-roll
results to ultra-slow-roll inflationary models. In the previous analysis of the observational constraints
on constant-roll inflation, only the model with small ηH was found to be consistent with the
observations [19,23–25]. This duality relation suggests that the ultra-slow-roll inflationary models may
also be consistent with the observations. To investigate whether this is true, we discuss the issue of
duality below.

1 For the ultra-slow-roll inflation, εH can be very small because it decreases with time.



Universe 2019, 5, 215 4 of 11

2.1. The Constant-Roll Models

From Equation (3), we get

H(φ) = c1 exp
(√

ηH
2

φ

)
+ c2 exp

(
−
√

ηH
2

φ

)
, (16)

for ηH > 0. For ηH < 0, the general solution is the form of trigonometric functions sin(x) and cos(x).
Following the authors of [12], for ηH > 0, we consider the particular solutions

H(φ) = M cosh
(√

ηH
2

φ

)
, (17)

with the potential V = 3H2 − 2(H,φ)2,

V(φ) = M2
[

3 cosh2
(√

ηH
2

φ

)
− ηH sinh2

(√
ηH
2

φ

)]
, (18)

and

H(φ) = M sinh
(√

ηH
2

φ

)
, (19)

V(φ) = M2
[

3 sinh2
(√

ηH
2

φ

)
− ηH cosh2

(√
ηH
2

φ

)]
. (20)

For ηH < 0, the particular solutions are

H(φ) = M cos

(√
−ηH

2
φ

)
, (21)

V(φ) = M2

[
3 cos2

(√
−ηH

2
φ

)
+ ηH sin2

(√
−ηH

2
φ

)]
, (22)

and

H(φ) = M sin

(√
−ηH

2
φ

)
, (23)

V(φ) = M2

[
3 sin2

(√
−ηH

2
φ

)
+ ηH cos2

(√
−ηH

2
φ

)]
. (24)

To check if we missed any background solution, we consider the solution 2 [21]

φ(t) = 2

√
2
|γ| arctan[exp(−γH0t)], (25)

V(φ) =H2
0

[
3 cos2

(√
|γ|
2

φ

)
− γ sin2

(√
|γ|
2

φ

)]

=
H2

0(3 sinh2(γH0t)− β)

cosh2(γH0t)
.

(26)

2 In Equation (25), we add the missing factor 2.
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If we take γ = 3 + α, we get the branch 1 solution given by Equations (61) and (63) in [21]. If we
take γ = −α, we get the branch 2 solution given by Equations (62) and (64) in [21]. Combining
Equations (25) and (26), we get

H2 =
H2

0
3

[(
γ2

|γ| − γ

)
+

(
3 + γ− γ2

|γ|

)
tanh2(γH0t)

]
, (27)

and

φ̈ +
dV
dφ

= 2H2
0

(
γ2√
2|γ|

− (3 + γ)

√
|γ|
2

)
sinh(γH0t)

cosh2(γH0t)
. (28)

However, for all possible values of γ, the background equation φ̈ + 3Hφ̇ + dV/dφ = 0 cannot
be satisfied. Therefore, Equations (61)–(64), given in [21], are not background solutions. The possible
background solutions with the trigonometric function are given by Equations (21)–(24) and they are
valid for ηH < 0 only.

For the constant-roll inflation, H(φ) is known, so we obtain the potential V(φ) = 3H2 − 2(H,φ)2

and φ̇ is determined from the relation φ̇ = −2H,φ
3. We don’t consider the exponential solution because

the corresponding power-law inflation is excluded by the observations. The models (18) and (22) were
studied in [12,21,23,24]. For the model (18), ε̇H < 0, so we need to introduce some mechanism to end
inflation. The model (20) was studied in [19]. As discussed in [19], in the model (20), ε̇H > 0 and
εH > ηH , so there is no inflation in this model if ηH > 1, i.e., the model cannot support ultra-slow-roll
inflation and it is not applicable to the discussion of the duality relation.

2.2. The Duality between the Slow-Roll and the Ultra Slow-Roll Inflation

For the slow-roll inflation with ηH = α and |α| � 1, we get

As =
1

2εH

(
H
2π

)2
, (29)

ns − 1 = 2α− 4εH , (30)

and
r = 16εH . (31)

For the ultra-slow-roll inflation with ηH = 3− α and |α| � 1, we get

As =
1

2εH

(
H
2π

)2
, (32)

ns − 1 = 2α + 2εH , (33)

and
r = 16εH . (34)

From Equation (33), we see that to be consistent with the observations ns < 1, we must take α < 0
because εH > 0, so the constant-roll inflation with ηH & 3 may be consistent with the observations.

Equations (29) and (32) show that the amplitudes of the power spectra for both the slow-roll
and ultra-slow-roll inflation have the same form. From Equations (30) and (33), we see that the
power spectra for both the slow-roll and ultra-slow-roll inflation are nearly scale invariant. If we
neglect εH in Equations (30) and (33), the expressions for the slow-roll inflation with ηH = α and the

3 For the potential, solutions other than the constant-roll inflation also exist.
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ultra-slow-roll inflation with ηH = 3− α are the same, so it seems that there exists a duality between
ηH and η̄H = 3− ηH . In particular, the model (18) is self-dual when 0 ≤ ηH ≤ 3.

If the duality holds, then the model (18) with ηH > 3 is dual to the model (22) with ηH <

0. However, the two potentials (18) and (22) and the background evolutions are totally different,
and ε̇H < 0 for the model (18), whereas ε̇H > 0 for the model (22). For the model (18) with ηH > 3,
the inflation climbs up instead of rolling down the potential and the constant-roll inflationary solution
is not an transactor [12]. Furthermore, as shown in [12], in the model (18) with ηH > 3/2, the curvature
perturbation grows on both the subhorizon and superhorizon scales, but the curvature perturbation
decreases on the subhorizon scales and is frozen on the superhorizon scales in both the model (18)
with ηH < 1 and the model (22) as shown in Figures 1 and 2, so this duality is false because the
behaviors of the background and the curvature perturbations are totally different for the constant-roll
inflation with large and small ηH . In Figure 1, we also see that the analytical power spectrum (12) for
the scalar perturbation approximates the exact result very well even when ηH > 3 and the curvature
perturbations grow on superhorizon scales. Due to the growth of the curvature perturbations on
superhorizon scales for the constant-roll model (18) with ηH > 3/2, the scalar power spectrum (12)
should be evaluated at the end of inflation instead of the horizon crossing [18,46–49]. This brings a new
problem on the evaluation of the power spectrum, because inflation does not end naturally and some
unknown mechanisms need to be introduced to end inflation in the model (18), but this problem does
not exist in the model (22). For the model (20), because no inflation happens if ηH > 1, the duality is
inapplicable to this model. For the same reason, the model (24) is not dual to the model (20).

Furthermore, εH is usually not negligible for the slow-roll inflation, whereas it may be negligible
for the ultra-slow-roll inflation, the amplitudes (29) and (32) for both the scalar and tensor spectra will
be different when the effect of εH is included, so there is no duality in the constant-roll inflation with
large ηH ≈ 3 and small ηH ≈ 0. In particular, for the ultra-slow-roll inflation, the scalar perturbation
may be very large and the tensor to scalar ratio r may be negligible.

10−2 10−1 100 101

k/aH

10−12

10−9

10−6

10−3

100

103

106

109

P
k

Scalar, k=3.0
Tensor, ηH=3.015

Scalar Hankel

SR Tensor

Figure 1. The scalar and tensor power spectra for the model (18) with ηH = 3.015. The solid lines
are for the numerical results. The yellow dashed line is the result obtained using the approximate
formulae (11) with the Hankel function, and the red dashed line denotes the asymptotic result with the
slow-roll approximation.
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Figure 2. The scalar and tensor power spectra for the model (22) with ηH = −0.015. The solid
lines are for the numerical results, and the dashed lines denote the asymptotic results with the
slow-roll approximation.

3. The Observational Constraints

For the slow-roll inflation, in terms of the remaining number of e-folds N before the end of
inflation, from Equation (5), we get

εH(N) =
ηHe2ηH N

−1 + ηH + e2ηH N , (35)

where we impose the condition of the end of inflation εH(N = 0) = 1. This formulae only applies to
the model with ε̇H > 0, like the model (20).

For the ultra-slow-roll inflation, εH decreases monotonically with time and inflation ends,
and we need some mechanisms to end inflation. Instead of using N, we introduce the number
of e-folds N̄ after the start of inflation [24]. From Equation (5), we get

εH(N̄) =
ηH

1 + e2ηH(N̄+C)
, (36)

where C is an integration constant. Take N′ = N̄ + C, we get

εH(N̄) =
ηH

1 + e2ηH N′ . (37)

Substituting Equation (35) into Equations (14) and (15), we can calculate ns and r for the
constant-roll inflation with increasing εH . Substituting Equation (37) into Equations (14) and (15),
we can calculate ns and r for the constant-roll inflation with decreasing εH . The results along with
the Planck 2018 and BICEP2 constraints [9,10] are shown in Figure 3. In Figure 3, the black lines
represent the calculated results with Equation (35), and the blue lines denote the calculated results
with Equation (37). The model with increasing εH is excluded by the observations if we take N = 50
(the solid black line) and is marginally consistent with the observations at the 95% level if we take
N = 60 (the dashed black line). The constraint is −0.016 ≤ ηH ≤ −0.0078 at the 95% C.L for N = 60.
The model with decreasing εH is consistent with the observations, we find that N′ ≤ 1.055 at the 68%
C.L. and N′ ≤ 1.121 at the 95% C.L. The constraints on the parameters ηH and N′ for the model (37)
are shown in Figure 4. We get 3.0135 ≤ ηH ≤ 3.021 at the 68% C.L., and 3.0115 ≤ ηH ≤ 3.024 at the
95% C.L. These results show that there is no duality between ηH and η̄H = 3− ηH .
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Figure 3. The marginalized 68% and 95% confidence level contours for ns and r from Planck 2018
and BICEP2 results [9,10], and the observational constraints on the constant-roll inflationary models.
The black lines represent the model Equation (35) and the blue lines denote the model Equation (37).
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N
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Figure 4. The observational constraints on ηH and N′. The yellow and red regions correspond to the
68% and 95% C.L.s, respectively.

4. Conclusions

For constant-roll inflation with large ηH , the slow-roll condition ηH � 1 is violated, but Hankel
function can be used to approximate the solution to Mukhanov–Sasaki equation and analytical
formulae for the power spectrum can be obtained. We show that the analytical formulae for
constant-roll inflation approximates the scalar power spectrum very well even when ηH is large
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and curvature perturbations grow on superhorizon scales. To the first order of εH , the formulae for the
observables ns and r are also derived and they are valid for any constant ηH . Although there exists
duality in the observables ns and r, the apparent duality between the constant-roll inflation with large
and small ηH does not exist due to different behaviors of background and scalar perturbations.

By fitting the constant-roll models to the observations, we find that the model with increasing εH
is excluded by the observations if we take N = 50. If we take N = 60, the constraint is −0.016 ≤ ηH ≤
−0.0078 at the 95% C.L. For the models with decreasing εH , we obtain that 3.0135 ≤ ηH ≤ 3.021 at the
68% C.L. and 3.0115 ≤ ηH ≤ 3.024 at the 95% C.L. The inflation solution for ηH > 3 is not an attractor,
so we need to fine tune the initial conditions to get the constant-roll inflation with ηH > 3. These
results confirm that the duality between ηH and η̄H = 3− ηH does not exist.
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