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Abstract: We review the features of Dark Matter as a particle, presenting some old and new instructive
models, and looking for their physical implications in the early universe and in the process of structure
formation. We also present a schematic of Dark Matter searches and introduce the most promising
candidates to the role of Dark Matter particle.
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1. Introduction

In this review, we employ h̄ = c = kB = 1 units, except where otherwise stated.

1.1. Why Do We Need Dark Matter?

Cosmic Microwave Background (CMB) observations strongly suggest that the universe is, at large
scales, nearly spatially flat [1], giving an observed value for the present energy density ρ0 close to its
critical value:

ρ0 ≈ ρcrit ≡
3H2

0
8πGN

≈ 10−29 g/cm3, (1)

corresponding to an average density of 10 protons per cubic meter; in Equation (1) H0 ≈ 70 km/s/Mpc
is the value of the Hubble factor today (i.e., the Hubble constant) and GN ≈ 6.67× 10−11 N m2/kg2 is
Newton’s gravitational constant.

This energy density is made up of various contributions [1], mostly (about 70%) of Dark Energy
(DE), which is responsible for the accelerated expansion of the universe, followed by Dark Matter
(DM, about 26%), which is responsible for the gravitational collapse of ordinary matter (usually called
“baryons” and which makes up the remaining 4%) and eventually for the formation of the structures
that we observe in the sky.

There are several probes able to weigh the Dark Energy (DE) contribution to this average
density—for example, CMB data [1], the distribution of galaxies on large scales, also known as the Large
Scale Structure (LSS) of the universe [2], and a byproduct of the latter, the so-called Baryon Acoustic
Oscillations (BAO) [3]. Moreover, we can also discriminate the contribution of ordinary baryonic
matter and DM, via, for example, Big Bang Nucleosynthesis (BBN) and again CMB observations, see
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for example References [4,5]. In fact, we are able to determine the amount of DM in the universe,
which is the following:

ΩDM ≡
ρDM,0

ρ0
≈ 0.26, (2)

where ρDM,0 is the DM density evaluated today (usually a 0 subscript means, in cosmology, that the
corresponding quantity has to be evaluated at the present time, that is, at the age of the universe t0).
The number in Equation (2) can be rewritten in units more suitable to astrophysics and particle physics
as follows:

ρDM,0 ≈ 1010 M�
Mpc3 ≈ 10−6 GeV

cm3 , (3)

where M� ≈ 2× 1030 kg is the mass of the Sun.
Note that ρDM,0 is 105 times less dense than the average density in clusters of galaxies and 106

less dense than galaxies. Thus, we can conclude, from the point of view of perturbations about a
homogeneous and isotropic background, that the universe is in a highly nonlinear regime.

Dark Matter is a crucial ingredient, necessary in order to produce the large inhomogeneities that
form structures in the universe. Indeed, looking at the CMB sky, we measure very small temperature
fluctuations, proportional to the baryonic density fluctuations, which we infer being of order:

δb ≡
δρb
ρb

. 10−4, (at recombination, i.e., for z ≈ 1100), (4)

where δb is the baryonic density contrast, that is, the ratio of density fluctuations in the baryonic
density and its background value. This number is important because we also know that sub-horizon
pressureless matter (as baryons are) overdensities in the linear regime grow linearly with the scale factor
in the matter-dominated epoch of the evolution of the universe. Therefore, from the recombination
epoch at zrec ≈ 1100 baryon fluctuations, which are finally free to grow, do not have enough time for
entering the nonlinear regime, but they would be of order 10−1 today, so still linear. This issue is solved
if a different “dark” species, which decoupled from photons much earlier than baryons did, is present,
giving time for its perturbations to grow enough in order to trigger, at the recombination epoch, a faster
collapse of baryonic fluctuations and thus eventually making structure formation possible.

For this reason, it is in general difficult to explain consistently structure formation without
recurring to DM. See, for example, Reference [6] for the case against MOdified Newtonian Dynamics
(MOND) [7] and its covariant version TeVeS [8].

1.2. Microscopic Features of Dark Matter

We can get some clues about the microscopic nature of DM by trying to answer the
following questions:

1.2.1. Is Dark Matter Actually Dark?

It is generally believed that DM is not bright, in the sense that DM particles do not interact
electromagnetically and so are not able to scatter photons; in other words they do not possess an
electric charge. However, observation does not exclude DM particles to have indeed a tiny electric
charge [9].

1.2.2. Is Dark Matter Collisionless?

In order for collisional effects in the DM sector to be relevant, the mean free path λMFP of a DM
particle must be larger than the typical size of a cluster of galaxies, that is, ≈1 Mpc, which has a density
of order ρcl ≈ 1 GeV/cm3. Therefore, we get, for a DM particle with mass m = 1 GeV, the following
result for the cross section σ:
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λMFP =
1

σρcl/m
> 1 Mpc ⇒ σ/m . cm2/g ≈ barn/GeV, (5)

which is a cross section whose value is typical of the strong interaction. This suggests that DM might
not be completely collisionless and makes models of Self-interacting Dark Matter (SIDM) appealing.
It is worth also to mention scenarios of Partially Interacting DM, where only a subdominant component
of the total DM contribution is self-interacting [10,11].

1.2.3. Is Dark Matter Classical?

We know that DM must be gravitationally bounded on scales at least as large as the size of a dwarf
spheroidal (dSph) galaxy. We can use this size in order to derive an upper bound on the de Broglie
wavelength λdB of a DM particle and, consequently, a lower bound on its mass. Indeed, consider a DM
particle of mass m with velocity v ≈ 100 km/s. Using the Planck’s constant value (which we recover
for the moment) hPl ≈ 4× 10−15 eV·s and the fact that the particle is non-relativistic, the de Broglie
wavelength λdB = hPl/(mv) is given by:

λdB ≈
4× 10−15

102
eV
m

s2

km
≈ 4 mm

eV
m

. (6)

This result means that in order to have λdB < 1 kpc ≈ 3× 1021 cm we need a mass:

m > 10−22 eV, (7)

which is not a very stringent lower bound.
On the other hand, we know that quantum effects can drastically change such a lower bound,

for example if DM is a fermion, because in this case its phase space density is bounded by the
so-called Pauli blocking effect (i.e., two fermions cannot occupy the same quantum state, because
of Pauli’s exclusion principle). Using the simplest model of a singular isothermal sphere with
ρdSph = σ2

dSph/(2πGNr2), with r radius of the sphere and σ2
dSph a constant velocity dispersion one

obtains the so-called Tremaine-Gunn limit [12]:

m4 >
h3

Pl
(2π)5/2gGNσdSphr2 ≈ (38 eV)4

(
100 km/s

σdSph

)(
10 kpc

r

)2
g−1, (8)

where g is the number of spin states of the DM particle. The difference of 23 orders of magnitude in
the above two bounds in Equations (7) and (8) for the DM particle mass teaches us how important
quantum effects might be in the description of DM.

1.2.4. Is Dark Matter a Fluid?

It is possible to describe DM as a fluid? In this case, we can forget about the particle nature of
DM and simply describe it by using its density and velocity flow. This is also called fluid approximation.
We can get some constraints on the coarse graining of such a fluid, that is, on the scale down to which
the fluid approximation works, by requiring that it must not disrupt, for example clusters of stars.
In fact, if the grains constituting this fluid are too big, for example black holes, they must have effects
on bound compact systems such as globular clusters. In Reference [13] it is shown that this would be
the case for grains with mass m ≥ 106M�.

The estimate energy exchanged in collisions among globular clusters and black holes, using the
impulse approximation according to which the interactions are instantaneous (as if the bodies were
rigid spheres), demand that the energy must be smaller than the gravitational binding energy of the
bound compact system (roughly proportional to GN M2/R, where M is the mass of the system and R
its size), giving a mass of order m . 103M� ≈ 1070 eV, see, for example, Reference [14].
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In conclusion, from the above phenomenological considerations we can list the following
properties of particle DM:

Mass: There are more than 90 orders of magnitude of mass range available for bosons; 70 for fermions.
Interactions: A self-interaction is possible, if of the order at most of the strong interaction, so of the

order of the MeV. It is in principle also possible to have interactions with ordinary Standard
Model particles, as long as such interactions do not involve emission of photons, otherwise
DM halos would shine and be visible. Particularly promising as DM candidates are massive
particles that interact only via weak interactions, the so-called WIMPs (Weakly Interacting
Massive Particle).

Abundance: It has to be enough in order to satisfy the observational constraint ΩDM ≈ 0.26. As we
shall see later, this is achieved naturally for WIMPs and such occurrence is usually referred to as
the WIMP miracle.

1.3. Observational Constraints on Dark Matter Interactions

While only loose model-independent constraints exist on DM self-interaction and on DM
interaction with Standard Model particles, a broad portfolio of experimental probes has been deployed
over the years with the aim of searching for signals coming from specific DM particle models.
The best-developed searches focus on WIMPs and seek to capture the elusive signals from elastic
scattering of WIMPs off nucleons (direct detection), signals of WIMP pair-annihilation or decay
(indirect detection) and the pair-production of WIMPs at colliders in conjunction with detectable
Standard Model particles.

So far, while several signals have been claimed to be possibly associated with different DM
candidates, including WIMPs, no conclusive detection has been agreed upon. Null results from direct
detection experiments at present constrain proton-WIMP interactions to be below the level of a cross
section of 10−47 cm2 for a mass around the weak scale (i.e., about 100 GeV); the absence of emission of
gamma-rays from DM-dominated (this DM-domination is inferred of course by gravitational effects)
nearby structures such as dSph galaxies implies a pair-annihilation cross section times relative velocity
smaller than the required one for thermal production in s-wave annihilation (which means that the
thermal averaged cross section is velocity-independent) for masses between around 10 and 100 GeV,
with weaker limits at larger masses. Finally, no conclusive result from colliders has been reported,
with resulting limits which depend upon the specific WIMP model.

We recommend to the reader the recent review on WIMP searches given in Reference [15] for
further details.

2. Thermal Decoupling

Thermal decoupling provides a successful framework able to explain the origin of species in the
early universe. Built on a synergy among Statistical Mechanics, Particle Physics and General Relativity,
it allows to make highly accurate testable predictions.

The key idea of thermal decoupling is based on the interplay between the rate Γ of a certain
interaction process and the expansion of the universe, described by the Hubble factor H, both
time-dependent. When Γ� H, the interaction is very efficient and, if we are dealing with annihilation
and pair productions, they are in equilibrium (more precisely, chemical equilibrium). However,
because of the expansion of the universe, in general Γ becomes at some time smaller than the Hubble
factor H. At this point the expansion of the universe thwarts the interaction, making it inefficient.
Taking again the example of the annihilation, when Γ ≈ H it stops to be efficient and the species which
was previously annihilating is said to freeze-out. Species that were originally in thermal equilibrium
with the primordial plasma and then freeze-out are said to be thermally produced.
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The reaction rate Γ for a given interaction is specified by the relevant cross section σ, the number
density n of the particle species and the relative velocity v:

Γ = nσv. (9)

We know from Statistical Mechanics that the number density at thermal equilibrium at
temperature T is given by (see Reference [5] for a detailed derivation of these formulae):

nrel ∝ T3 for m� T, (10)

nnon−rel ∝ (mT)3/2 exp (−m/T) for m� T, (11)

where the subscripts refer to the fact that particles of a given species in thermal equilibrium are mostly
relativistic or non-relativistic depending whether the temperature of the thermal bath is much larger
or much smaller than the mass of the particle species under consideration.

The Hubble rate H is given by the Friedmann equation:

H2 =
8πGN

3
ρ. (12)

Using Bose-Einstein statistics, one can show that:

ρbos =
π2

30
gT4, (13)

where g is again the number of spin states of the particle boson species. For fermions, the above result
still holds true if multiplied by a factor 7/8. We can write in a compact way the radiation density
as follows:

ρrad =
π2

30
geffT4, (14)

where geff is an effective total number of spin states of the relativistic particle species, taking into
account the factor 7/8 for relativistic fermions. Note that geff varies with time because massive species
becomes non-relativistic as long as the thermal bath cools down but, after DM and the heaviest particles
have decoupled from the primordial plasma, geff remains basically of order 10. Therefore, we can
finally combine our knowledge of Cosmology (i.e., the Friedmann equation) and Statistical Mechanics
and obtain:

H ≈ T2

MP
, (15)

where MP ≈ 1019 GeV is the Planck mass.

2.1. Thermal Relics

Relics are particles left over when their annihilation reactions are no more efficient, that is, when
their abundance attains a constant (comoving, i.e., not taking into account the standard dilution due to
the expansion of the universe) value. If a species freezes-out when relativistic then it is dubbed hot
thermal relic, whereas it is a cold thermal relic if it freezes-out when non-relativistic.

2.1.1. Hot Thermal Relics

A simple calculation of a hot thermal relic abundance can be carried out, for example for neutrinos,
which constitute the cosmic neutrino background (CνB) once decoupled. To this purpose, let us
consider the interactions:

ν + ν̄↔ f + f̄ , (16)
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of neutrino annihilation and neutrino pair production through fermion-antifermion annihilation. Weak
interaction rule this process, hence the cross section is given by:

σ ' G2
FT2

ν , (17)

where GF ≈ 10−5 GeV−2 is the Fermi coupling constant and Tν is the neutrino thermal bath
temperature. The freeze-out condition Γ = H gives us, using Equation (9):

nν(Tν,freeze−out)σ(Tν,freeze−out) = H(Tν,freeze−out), (18)

where we have taken into account that neutrinos are relativistic (i.e., v = 1, since we are working in
natural c = h̄ = 1 units). For the same reason, from Equation (10) we have that nν ∼ T3

ν and thus
combining the above relations we get:

Tν,freeze−out ' (G2
F MP)

−1/3 ≈ 1 MeV. (19)

For the above estimate, we have used Fermi effective Lagrangian of the weak interaction and the
fact that the particle is relativistic. The first approximation is reasonable because mν � mW , with mW
mass of the W-boson, so that the interaction can be considered pointlike, and Tν � mν is a condition
which holds essentially through all the thermal history of the universe (maybe up to recombination,
if we consider mν = 0.1 eV).

So far we have obtained the freeze-out temperature of the relic neutrinos background but how do
we now evaluate their abundance? Let us introduce the quantity Yν = nν/s, where s is the entropy
density. Since S = sa3 is conserved then Yν ∝ nνa3 is a constant. Therefore:

Yν(Tν,0) = Yν(Tν,freeze−out), (20)

where Tν,0 is the neutrino temperature today. In particular, we can write:

Yν(Tν,0) =
nν,0

s0
= Yν(Tν,freeze−out) =

nν (Tν,freeze−out)

s (Tν,freeze−out)
, (21)

and if we assume neutrinos to be non-relativistic today, so that ρν,0 = nν,0mν, we obtain:

ρν,0 = mνYν(Tν,freeze−out)s0, (22)

and from this relation one determines the so-called Cowsik-McClelland bound [16]:

Ων ≡
ρν,0

ρ0
≈ mν

94 h2 eV
≤ 1, (23)

where h is such that H0 = 100 h km/s/Mpc.

2.1.2. Cold Thermal Relics

Let us see now how to proceed in the case of a cold relic of mass mχ, for which we must use the
non-relativistic expression (11) for the number density:

nχ ' (mχT)3/2 exp (−mχ/T) . (24)

Combining the latter with the freeze-out condition:

nχ,freeze−out '
T2

χ,freeze−out

MPσ
, (25)
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and defining the new variable x ≡ mχ/Tχ, we easily obtain:

√
xe−x ' 1

MPσmχ
. (26)

For the case of WIMPs, we have mχ ≈ 102 GeV and σ ' G2
Fm2

χ, and the solution of the above
equation becomes:

xfreeze−out '
mχ

Tχ,freeze−out
≈ 35. (27)

From this, we can calculate the thermal relic density of WIMPs. As first step, let us write:

Ωχ =
mχnχ,0

ρ0
=

mχT3
0

ρ0

n0

T3
0

. (28)

It is important to stress that in the above computation we are assuming a DM-symmetric universe1,
that is, there is roughly the same amount of DM and anti-DM. Assuming again conservation of the
entropy density s, so that aT = constant, we can use the relation:

nχ,0

T3
χ,0
≈

nχ,freeze−out

T3
χ,freeze−out

, (29)

we finally obtain: (
Ωχ

0.2

)
≈ xfreeze−out

20

(
10−8 GeV−2

σ

)
. (30)

In the above estimate we have neglected the relative velocity of the cold relics, that could be
estimated by considering the equipartition theorem:

3
2

T =
1
2

mv2, (31)

from which we get:

v =

(
3

xfreeze−out

) 1
2
≈ 0.3. (32)

Now let us consider the cross section of a WIMP:

σEW ' G2
FT2

freeze−out ≈ G2
F

(
EEW
20

)2
≈ 10−8 GeV−2, (33)

where EEW ≈ 200 GeV is the electroweak energy scale. We have then:

Ωχ ≈ 0.01 xfreeze−out ≈ 0.3, (34)

which is of the correct order of the observed value ΩDM ≈ 0.26. This is the so-called WIMP miracle.
However, note that in general this is not a special feature of WIMPs. Indeed, in order to guarantee the
result in Equation (34) one has just to use the following values:

mχσMP � 1, σ ≈ 10−8 GeV−2, (35)

1 This is not the case in the so-called Asymmetric WIMPs models, see, for example, Reference [17].
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from which we can read the pretty weak constraint:

mχ � 0.1 eV. (36)

Now it is natural to ask ourselves which is the range of masses expected for cold relics. Since we
want to preserve the unitarity of the interaction (see, e.g., Reference [18] for information on the upper
bound on a cross section coming from the requirement of unitarity of the scattering matrix), the cross
section is bounded as follows:

σ .
4π

m2
χ

, (37)

so that:
Ωχ

0.2
& 10−8 GeV−2 m2

χ

4π
, (38)

from which we finally get the unitarity limit:2( mχ

120 TeV

)2
. 1. (39)

On the other hand, for WIMPs, the cross section is given by σ ∼ G2
Fm2

χ. Therefore, the smaller the
WIMP mass is the earlier the freeze-out takes place and the higher the today WIMP abundance would
be, eventually even overclosing the universe. The bound for which Ωχ = 1 is called the Lee-Weinberg
bound [20]. Plugging instead σ ∼ G2

Fm2
χ into Equation (30), we obtain:

Ωχh2 ≈ 0.1
10−8 GeV−2

G2
Fm2

χ

≈ 0.1
(

10 GeV
mχ

)2
, (40)

showing that a WIMP particle with mass mχ = 10− 100 GeV provides the correct present DM abundance.

2.2. Boltzmann Equation

So far we have used qualitative arguments to characterise a relic density but, of course, precise
calculations are based on the solution of the Boltzmann equation, which can be written in the following
schematic way:

L̂ [ f ] = Ĉ [ f ] , (41)

where L̂ is the Liouville operator and Ĉ the collision term (also an operator). The former is given by:

L̂NR =
d
dt

+
dx
dt
· ∇x +

dv
dt
· ∇v, (42)

L̂cov = pα ∂

∂xα
− Γα

βγ pβ pγ ∂

∂pα
, (43)

in its non-relativistic and covariant forms (boldface letters represent usual 3-vectors and the dot a
scalar product). The latter simplifies in a FLRW background because in this case the probability density
function f depends only on the energy and on the time only due to the cosmological principle of
homogeneity and isotropy:

f (x, p, t)→ f (E, t) , (44)

and the covariant Liouville operator can be written in the following form:

L̂ [ f ] = E
∂ f
∂t
− H|p|2 ∂ f

∂E
. (45)

2 Note that this bound is not valid in presence of Sommerfeld enhancements annihilation, see, for example, Reference [19].
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The number density of a given species is given by the integral over the reduced phase space of f ,
that is, the integral over the proper momentum volume:

n(t) = g
∫ d3 p

(2π)3 f (E, t) , (46)

where g is, as usual, the number of spin (or helicities, for a massless species) states. Using this definition
into the expression for the Liouville operator integrated in the momentum space we get for the left
hand side of the (integrated) Boltzmann equation:

g
∫ d3 p

(2π)3 L̂ [ f ] =
dn
dt

+ 3Hn. (47)

Assuming a 2-to-2 interaction among species of the type:

1 + 2↔ 3 + 4, (48)

the collision factor integrated in the momentum space of particle 1 can be written in the following
form (see, e.g., Reference [21]):

g1

∫ d3 p1

(2π)3 Ĉ [ f1, f2, f3, f4] = −〈σvMl〉
(

n1n2 − neq
1 neq

2

)
. (49)

In the above formula, the superscripts “eq” refers to quantities (in this case the number densities)
in thermal equilibrium, that is, the expressions in Equations (10) and (11) that we have already
encountered. The average 〈· · · 〉 is a thermal one, to be specified in a moment, σ is the total cross
section of the interaction between species 1 and 2:

σ = ∑
f

σ12 → f , (50)

that is, summed over all the possible final states and where we have defined:

vMl ≡

√
(p1 · p2)

2 −m2
1m2

2

E1E2
, (51)

where p1 · p2 is the product of the two four-momenta of the particles 1 and 2, m1 and m2 are their
masses and E1 and E2 their energies. This vMl is the so-called Møller velocity and allows one to write
the interaction rate in a covariant form, similar to the non-covariant expression, that is, Γ = n1n2σvMl.
The thermal average is defined as:

〈σvMl〉 ≡
∫

σvMle−E1/Te−E2/Td3 p1d3 p2∫
e−E1/Te−E2/Td3 p1d3 p2

. (52)

If the particle 1 and 2 are the same, that is, the interaction under investigation is an annihilation
process, Boltzmann equation can be finally written as follows:

dn
dt

+ 3Hn = 〈σv〉
(

n2
eq − n2

)
. (53)

This equation must be solved numerically. Typically one expands 〈σv〉 in powers of the
relative velocity v and the zero order term, that is, assuming a constant 〈σv〉, is usually called the
s-wave approximation.
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The above Boltzmann equation is the standard tool by means of which we are able to compute
relic abundances. However, there exist important exceptions, such as resonances, thresholds and
co-annihilation, for which that standard tool fail. We do not discuss them here but refer the interested
reader to Reference [22].

2.3. Modified Expansion History and Relic Abundance: The Kination Example

Until now we have considered what happens to the thermal history of a certain particle species
by focusing on the left hand side of the freeze-out condition Γ = nσv ' H. We have shown that, for
example for WIMPs the resulting relic abundance Ωχ is in good agreement with the observed value,
that is, ρχ,0 ≈ ρ0. On the other hand, it is worth to also study the implications of modifying instead the
expansion history of the universe, for example the evolution of the Hubble factor H. To this extent,
let us consider a quintessence dark energy model accounting for the dynamics of H, for example an
homogeneous real scalar field φ, whose energy density and pressure are defined as follows:

ρφ =
1
2

(
dφ

dt

)2
+ V(φ), Pφ =

1
2

(
dφ

dt

)2
−V(φ). (54)

For simplicity, we assume a constant equation of state ωφ ≡ Pφ/ρφ, which implies, solving the

continuity equation, that ρφ ∝ a−3(1+ωφ). When the field kinetic energy dominates over the potential
one can see that ωφ ≈ 1 and ρφ ∝ a−6. This phase is called Kination [23].

Let us introduce a scale of temperature TKRE, which represents the temperature of kination
and radiation equality, that is, when the energy density of the scalar field and that of the radiation
component are equal. We can express the Hubble factor above this threshold and the freeze-out
condition as follows:

H ≈ T2

MP

T
TKRE

≈ nσv, (55)

since for T > TKRE the scalar field dominates and thus H ∝ a−3 ∝ T3, where the last proportionality
comes from thermal equilibrium. Now, suppose that, for example WIMPs decouple from the primordial
plasma during the kination epoch. How would their relic abundance be affected, with respect to the
standard case that we have seen earlier? First of all, using Equations (28) and (29), we can establish
also in the present case that:

Ωkination
χ =

T3
0

ρ0
xfreeze−out

nfreeze−out

T2
freeze−out

. (56)

Then, we can estimate the ratio between the relic abundance of WIMPs (or any other cold species,
since the ratio we are computing cancels out the cross section) in presence of a kination epoch and
without it:

Ωkination
χ

Ωstandard
χ

≈
Tstandard

freeze−out
TKRE

.
mχ

20
1

TBBN
≈ 104 mχ

100 GeV
, (57)

where we have used the approximate result Tstandard
freeze−out ≈ mχ/20 and the bound TKRE & TBBN, since

the kination epoch has to take place before the Big Bang Nucleosynthesis, otherwise it would spoil it.
The above example of kination teaches us that from a modified expansion history, different from

the usual radiation-dominated epoch, we can get a huge enhancement of the cold thermal relic density.
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2.4. Dark Matter After Chemical Decoupling

It is possible for DM in the early universe to be in kinetic equilibrium still after chemical
decoupling. This happens due to elastic scattering processes between DM and, for example Standard
Model fermions:

χ + f ↔ χ + f → Γ = nrelσχ+ f↔χ+ f . (58)

Here the relative velocity is unity because the temperature of the thermal bath is considered to be
much higher than the fermion mass, which is therefore relativistic. In the case of a prototypical WIMP
we assume that:

σχ+ f↔χ+ f ' G2
FT2. (59)

Assuming mχ � T, hence nonrelativistic WIMPs, then from equipartition one has on average that:

p2

2mχ
' T, p '

√
mχT, (60)

and since mχ is the dominant energy scale, collisions entail a momentum transfer of the order of the
thermal bath temperature, that is, δp ≈ T. This implies that (δp)/p '

√
T/mχ � 1. Upon a collision,

a WIMP can gain or lose momentum, thus, as for the case of a random walk, after N collisions a WIMP
particle momentum changes on average of the relative amount

√
N(δp)/p. When this quantity is of

order one, the WIMP has changed momentum significantly and this corresponds to the following
number of collisions:

Ncoll =

(
p

δp

)2
'

mχ

T
, (61)

from which we can estimate a typical kinetic decoupling temperature for a WIMP particle, through the
usual formula Γ ≈ H:3

nrel · σχ+ f↔χ+ f Ncoll ' T3 · G2
FT2 · T

mχ
≈ H ≈ T2

MP
, (62)

from which we obtain for the kinetic decoupling temperature Tkd:

Tkd '
(

mχ

MPG2
F

)1/4

≈ 30 MeV
( mχ

100 GeV

)1/4
. (63)

We can see how this results affects structure formation. In fact, for temperatures larger than Tkd
WIMPs cannot form halos because they are coupled to the primordial plasma and thus any fluctuation
in their density is washed away. We can associate to Tkd the following mass scale:

Mcutoff ≈
4π

3

[
1

H (Tkd)

]3
ρχ (Tkd) ≈ 30 MEarth

(
10 MeV

Tkd

)3
, (64)

where Earth’s mass is:
MEarth ≈ 3× 10−6M�. (65)

The above cutoff mass is the total mass of WIMPs contained inside the Hubble radius at the epoch
in the history of the universe where the temperature of the thermal bath was precisely Tkd.

3 Note that when dealing with annihilation this formula provides the freeze-out temperature, whereas when dealing with
elastic scattering this formula provides the kinetic decoupling temperature.
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So the first structures to collapse might be these minihalos with mass proportional to Earth’s
mass, which subsequently merge to form bigger and bigger halos, in a so-called bottom-up scenario of
structure formation. However, note that the kinetic decoupling scale differs significantly for different
theories of DM.

The picture changes dramatically in the case of hot relics. Taking neutrinos as an example, they
decouple, by definition, when T � mν and they can collapse and form structures only on large scales
because on smaller ones they stream away (free-streaming), washing out any inhomogeneities. We can
quantify this claim by computing the distance dν travelled by the neutrino up to the moment in which
T ≈ mν, that is, when it becomes non-relativistic, that is, no more hot:

dν ≈
1

H (T ≈ mν)
. (66)

Assuming again H ≈ T2/MP, we then have dν ≈ MP/m2
ν and thus the cutoff mass for hot

relics becomes:

Mhot relic
cutoff ≈ ρν (T ≈ mν) d3

ν ≈
M3

P
m2

ν
≈ 1012M�

( mν

1 keV

)−2
, (67)

where one uses ρν (T ≈ mν) = nν (T ≈ mν)mν = m4
ν.

How can we compare these results with observation? Observational constraints from Lyman-α
experiments give a cutoff mass scale of order:

Mcutoff � MLy−α ' 1010M�, (68)

and we can conclude that DM can be thermally produced at most at 10 keV scale. In summary,
structure formation differs strikingly between hot and cold DM, the former implying a Top-Down
scenario, whereas the latter a Bottom-Up one. In Reference [24] it has been shown that numerical
simulations of structure formation in a universe with cold DM match the observed large scale structure
of the universe better than the hot DM scenario, which is thus disfavoured.

3. Detectability of Particle Dark Matter

We know that DM particles interact gravitationally with ordinary matter but it is important to
understand whether they also couple through other known or unknown interactions. This is crucial in
order to establish whether there is a chance to directly detect DM particles via experiments in colliders
or detectors in orbit.

3.1. Direct Detection

Detecting particles which interact weakly interaction has always been known to be difficult.
For example, Bethe and Peierls in 1934 [25] estimated the cross section for the weak process:

ν̄e + p→ e+ + n, (69)

to be of order:

σν̄e+p→e++n ' 10−43
(

Eν

MeV

)2
cm2, (70)

and concluding that it is therefore absolutely impossible to observe process of this kind. Bethe and Peierls’
position was perhaps too pessimistic, and since 1953 neutrinos have been abundantly detected in
inelastic processes such as that in Equation (69), whereas elastic neutrino scattering was observed in
1973 in the bubble chamber Gargamelle [26].

Let us use WIMPs again as prototypical DM particles and look for the relevant range of energies
and masses that we could expect on the basis of direct detection. A mass mχ WIMP with velocity v
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colliding and bouncing off a much heavier nucleus of mass mN transmits a maximal recoil momentum
p = 2mχv. Hence the nucleus acquires an energy:

Emax =
(2mχv)2

2mN
. (71)

We can bound the maximal velocity that a DM particle could have with the escape velocity of the
galaxy in which it is located, which is usually of order vmax ≈ 500 km/s. This implies an energy of
order of the keV for DM particles with mass of the order of the GeV.

We also have bounds coming from the event rate R = Kφσ, where:

K ≈ 6.0× 1026

A
, (72)

is the number of targets per kg of material with atomic number A and the incident flux φ is:

φ =
vρDM

mχ
, (73)

from which we get:

R =
0.06 events

kg day

(
100
A

)( σ

10−38 cm2

)( ρDM

0.3 GeV/cm3

)(
v

200 km/s

)
. (74)

In order to achieve direct detection experimentalists have to deal with two crucial points: enough
signal events and enough background suppression, which is not an easy task considering the weakness
of the DM signal. In particular, sources of noise are:

• Slowly decaying “primeval” nuclides such as Uranium, Thorium and Potassium-40, whose
abundance is about 10−4 and half-life is ≈ 109 years;

• Rare, fast decaying trace elements like tritium and Carbon-14, whose abundance is about 10−8

and half-lives of the order of 10 years.

In order to achieve shielding from these environmental noises experiments are often conducted
underground, as in the Italian Gran Sasso National Laboratory, where 1400 tons of rock protect the
experimental setup from cosmic rays.

There is also the possibility of detecting a DM signal in the radioactive background of our planet,
for example through seasonal and diurnal modulations, see for example References [27,28] or by directional
information, see, for example, Reference [29].

Let us consider the direct detection event rate:

dR
dER

= NTnχ〈v
dσ

dER
〉, (75)

where NT is the number of target nuclei, nχ the DM particle density, v the DM particle velocity over
which the average is performed and ER is the recoil energy, which has the following expression:

ER =
q2

2mT
=

µ2

mT
v2(1− cos θ), (76)

where q is the transferred momentum, mT is the target mass and µ is the reduced mass. Taking the
differential, one has:

dER = −d(cos θ)(µ2/mT)v2, (77)

and thus we can write:
dR

dER
= −NT

ρDMmT

mχµ2

∫ vesc

vmin

d3v
f (v)

v
dσ

d cos θ
, (78)
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where f (v) is the velocity probability distribution function of the DM halo.
Of course, we need to calculate the scattering cross section in order to evaluate the above quantity.

In the nonrelativistic limit, the scattering matrix element is given by the Fourier transform of the
WIMP-nucleus potential:

M(q2) =
∫

d3r〈 f |V(r)|i〉eiq·r, (79)

where 〈 f | and |i〉 are the initial and final quantum vector states. To lowest order in v, the potential can
be approximated to be composed by axial and spin-independent contact interactions:

V (r) = ∑
nucleons n

(Gn
s + Gn

a sχ · sn) δ (r− rn) , (80)

where the Gs,a represent, respectively, the effective scalar and axial couplings between DM and nucleons
and sχ and sn are the DM particle and nucleon spins, respectively.

Assuming that a given microscopic theory of DM (i.e., some DM Lagrangian) is given, how we
can infer something about the DM-nucleus cross section? The proper way to deal with this kind of
questions is via Effective Field Theory (EFT), that is, assuming the mass of the mediator particle of the
interaction between DM and Standard Model particles to be larger than the typical momentum transfer.
As an example, in the case of milli-electric charged DM, the cross section is of the form:

σ =
16πα2ε2Z2µ2

q4 , (81)

where α is the fine-structure constant, Z is the nucleus atomic number and ε � 1 is the DM
electric charge.

3.2. Indirect Detection

Another interesting possibility of detection is the indirect one, namely to use debris
(i.e., Standard Model particles) of DM pair annihilation, which are likely to be relevant if DM is
a cold thermal relic, or to use decay of DM particles into Standard Model (hence in principle detectable)
ones. In both cases the rates are:

ΓSM, ann '
(∫

V

ρ2
DM
m2

χ

)
× (σv)× (NSM, ann) , (82)

ΓSM, dec '
(∫

V

ρDM

mχ

)
×
(

1
τdec

)
× (NSM, dec) , (83)

where ρDM is of course the DM density for a DM particle of mass mχ (ρDM/mχ is thus the number
density, for a cold DM species), σ is the annihilation cross section and v the relative velocity of the
annihilating DM particles, τdec is the lifetime of the unstable, decaying DM particle and NSM are the
numbers of Standard Model species (hence the subscript SM) into which DM particles can annihilate
or decay.

We can infer information about the product σv by DM thermal production history, but how can
we obtain information about the decay rate? If we suppose that such decay is mediated by some
mass-scale M particle, then a combination of the type:

Γ5 '
1

M2 m3
χ, (84)

would give:

τ5 ≈ 1 s
(

1 TeV
mχ

)3 ( M
1016 GeV

)2
, (85)
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which is a too short-lived candidate. If we try another combination of powers, that is:

Γ6 '
1

M4 m5
χ, (86)

then we would get:

τ6 ≈ 1027 s
(

1 TeV
mχ

)5 ( M
1016 GeV

)4
, (87)

which is more interesting, because the time factor 1027 s is much larger than the age of the universe
(1017 s). As mass scale M, the Grand Unification Scale 1016 GeV has been chosen above.

If we ask ourselves what we can say about the annihilation final state, our answer is highly
model-dependent and different internal symmetries give very different results. For example:

• If DM particles belong to an SU(2) multiplet, then we expect well-defined combinations of Z̄Z,
W̄W final states;

• In Universal Extra Dimension (UED) theories [30], DM is the Kaluza-Klein KK-1 mode of
hypercharged gauge boson, thus the scattering matrix elementM is proportional to the fermion
hypercharge Yf , that is, |M|2 ∝ |Yf |4, and the preferred annihilation modes are the up quarks
YuL = 4/3 and charged leptons YeR = 2.

• We expect a special selection rule, for example helicity suppression for Majorana fermion
(analogous to charged pion decay):

|M|2 ∝ m2
f . (88)

The decay/annihilation rate of DM can be constrained indirectly in several ways, a possible
classification being the following:

• Very indirect. Looking for DM effects induced in astrophysical objects or in cosmological observations.
• Pretty indirect. Using probes that do not trace back to the annihilation event, since their trajectories

are bent as the particles propagate. For example, cosmic rays.
• Not-so-indirect. Using neutrinos and gamma rays, which have the great added advantage of

traveling in straight lines.

3.2.1. Very Indirect Probes

Examples of very indirect probes include, for example:

• Solar Physics. It is possible that DM could affect Sun’s core temperature or the sound speed in
its interior;

• Neutron Star Capture. DM can lead to Neutron star capture that eventually leads to the formation
of black holes (notably e.g., in the context of asymmetric DM);

• Supernova and Stars, in which DM could be responsible for cooling processes;
• Protostars, for example WIMP-fueled population-III stars;
• Planets warming;
• Cosmological observation, where the DM content has strong implication for, for example Big Bang

Nucleosynthesis or the Cosmic Microwave Background spectrum, also affecting the time of the
recombination, or the structure formation process.

3.2.2. Pretty Indirect Probes

A good idea is to use rare cosmic rays events where antiprotons and positrons are relatively
abundant due to inelastic scattering off interstellar medium protons.

An interesting probe is given by antideuterons or even anti-3He, for which the relevant process is:

p + p→ p + p + p̄ + p + n̄ + n, (89)
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and which has a large energy threshold, about 17 GeV, so typically large momentum, even if caused by
very low momentum DM particles.

Positrons and, in part, antiprotons, have attracted attention due to “anomalies” reported by the
detector PAMELA (part of the AMS-02 project mounted on the International Space Station) [31].

The general scheme for treating galactic CR is with diffusion (the so-called leaky-box) models;
defining the differential in the energy number density of cosmic rays as dn

dE = ψ (x, E, t) we can write a
master equation of the form:

∂

∂t
ψ = D (E)∇2ψ +

∂

∂E
(b (E)ψ) + Q (x, E, t) , (90)

where D(E) represents the diffusion coefficient, b(E) describes energy losses and Q include all the
possible sources. Note that the above master equation can be made arbitrarily more sophisticated,
for example adding the effect of cosmic rays convection or diffusive re-acceleration, or considering
fragmentations and decay. However, we do not consider these possibilities here.

Let us assume assume as boundary conditions a cylindrical slab for our galaxy with typical
dimensions of R ≈ 10 kpc for the radius and h ≈ 1 kpc for the height. Let us also assume an energy
dependence for the diffusion coefficient of the following form:

D (E) ≈ D0

(
E
E0

)δ

, (91)

with E0 ≈ 1 GeV, D0 ≈ 1028 cm2/s and δ ≈ 0.7. We can furthermore simplify the diffusion equation
assuming a steady-state regime, that is, assuming ψ to be constant. In this case the typical diffusion
and energy loss time-scales look like:

τdiff ≈
R2

D0
E−δ, τloss ≈

E
b (E)

, (92)

and the diffusion equation simplifies as follows:

− ψ

τdiff
− ψ

τloss
+ Q = 0, (93)

and has the simple solution:

ψ ≈ Q
τdiffτloss

τdiff + τloss
. (94)

We should distinguish distinguish among different energy phases. For cosmic rays accelerated
via a Fermi mechanism, that is, through multiple reflections in a magnetic field and with no energy
losses (so in this case we neglect τloss), then one has:

Q ∼ E−2 ⇒ ψ ≈ E−2−δ ≈ E−2.7, (95)

which is a good estimate when considering cosmic rays protons, for which indeed energy losses are
irrelevant. In the case of cosmic rays electrons instead energy losses are efficient only above a certain
energy threshold, so that we can write:

be(E) ' b0
IC

( uph

eV/cm3

)
· E2 + b0

sync

(
B

1µG

)2
· E2, (96)

where uph is the background photon energy density, B is the ambient magnetic field (measured in
micro-Gauss µG), b0

IC ≈ 0.76 and b0
sync ≈ 0.025× 10−16 GeV/s represent the energy loss coefficients
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for inverse Compton scattering and synchrotron radiation emission, respectively. Therefore, we expect
a broken power-law for ψ(E), since:

ψprimary, low−energy ≈ Q · τdiff ≈ E−2−δ ≈ E−2.7, (97)

ψprimary, high−energy ≈ Q · τloss ≈ E−2 · E
E2 ≈ E−3. (98)

Instead, the secondary-to-primary (secondary cosmic rays are those produced from the original
particles which are accelerated to high energies and constitute the primary ones) ratios are generically:

ψe+

ψe−
≈ E−δ. (99)

The broken power law in Equations (97) and (98) is in very good agreement with observation
but the prediction for the secondary-to-primary ratio is at odds with the observed rising positron
fraction. Indeed:

• There is no excess of antiprotons, so DM should be leptophilic, which is possible but not generic;
• There is no observed secondary radiation due to bremsstrahlung or inverse Compton scattering;
• A very large pair annihilation rate is required for thermal production, which leads to unseen

gamma-ray or radio emission, that is:

〈σv〉 ≈ 10−24 cm3

s
·
( mχ

100 GeV

)1.5
. (100)

A possible way out is to consider the presence of a nearby point sources, such as a pulsar, that
injects a burst of positrons and that entails the following correction:

ψ ∝ Q · exp

[
−
(

r
rdiff

)2
]

. (101)

Then, we can estimate the age and the distance from us of the putative pulsar as follows (using
E = 100 GeV):

tpulsar � τloss =
E

b (E)
≈ 3 Myr, (102)

distance�
√

D(E)tpulsar ≈ 3 kpc. (103)

An interesting possibility is to use anisotropy in their relative distribution in order to disentangle
pulsars from DM contributions, but complications appear since the Larmor radius of a typical pulsar
magnetic field is of the order of the solar system size, so a very high spatial resolution is needed.

3.2.3. Not-So-Indirect Probes

Even if very hard, it is possible to detect neutrinos from astrophysical sources. The idea is very
interesting, since DM could be gravitationally captured in celestial bodies, here experiencing accretion
and starting annihilation. If the latter process is in equilibrium, we expect that a large flux of neutrinos
could escape, since they have a large mean free path in matter.

The best target is the Sun, since it is sufficiently large, very close to us and naturally emits
low-energy neutrinos. Let us estimate the above-mentioned process quantitatively. First of all,
Sun’s capture rate C� can be written down as follows:

C� = φχ ·
(

M�
mp

)
· σχ−p, φχ ∼ nχ · vDM =

ρDM

mχ
· vDM, (104)
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where the capture cross-section (DM particle χ captured by e.g., a proton p) can be estimated as:

σ
spin−dependent
χ−p . 10−39 cm2, (105)

σ
spin−independent
χ−p . 10−44 cm2, (106)

and hence:

C� ≈ 1023

s

(
ρDM

0.3 GeV/cm3

)
·
(

vDM

300 km/s

)
·
(

100 GeV
mχ

)
·
( σχ−p

10−39 cm2

)
. (107)

The number of accreted DM particles N is:

dN
dt

= C� − A�[N(t)]2 − E�N(t), (108)

where:

A� ' 〈σv〉
Veff

, Veff ' 1028 cm3
( mχ

100 GeV

)3/2
, (109)

being A� the annihilation rate and E� the evaporation rate, taking into account the effect of evaporation
of DM particles due to their thermal velocity. The annihilation can be written as follows:

ΓA =
1
2

A�[N(t�)]2 =
C�

2

[
tanh

(√
C�A�t�

)]2
, (110)

where t� ≈ 4.5 Gyr or 1017 s, is the age of the Sun. Defining the equilibration time as:

teq ≡ 1√
C�A�

� t�, (111)

then thermal DM is in equilibration as long as WIMP-nucleon cross section is larger than 10−41 cm2.
With equilibration, the flux of neutrinos of flavour f only depends on the capture rate and is:

dNν f

dEν f

=
C�

8π(D�)2

(
dNν f

dEν f

)
inj

, (112)

where D� is the diffusion coefficient of the Sun and the inj subscript on the right hand side refers to
the injected flux, that is, the intrinsic flux which the Sun naturally produces.

The number of events of µ-neutrinos detection at the IceCube4 observatory is expected to be:

Nevents =
∫

dEνµ

∫
dy

[
Ae f f

dNνµ

dEνµ

dσ

dy
(Eνµ , y)Rνµ(Eνµ)

]
. (113)

The most probable final states upon DM annihilation are W̄W, Z̄Z or leptons-antileptons pairs.
So far no anomalous events from the Sun have been observed and detection from Earth is even less
promising. Instead, an opportunity comes from low-energy-threshold subdetectors, such as DeepCore
and PINGU (both belonging to IceCube).

Another interesting idea is to look for photons coming from a possible coupling between DM and
Standard Model particles. For example, a “smoking-gun” signal would be a monochromatic, spatially
extended gamma-ray emission, because a monochromatic gamma-ray line with a diffuse morphology

4 https://icecube.wisc.edu.

https://icecube.wisc.edu
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has no astrophysical counterparts. From data by the FermiLAT5 Bringmann [32] and Weniger [33]
identified a 130 GeV line from the galactic center that was initially explained by recurring to DM
annihilation. Unfortunately, the signal turned out to be a statistical fluke, since it was too narrow and
its significance did not increase with time. Finally, when the data were processed with the Pass 8
software no excess was detected.

Generally, we classify photon signals into two categories; in the primary one we have prompt
emission of photons and bremsstrahlung radiation;6 in the secondary one, photons undergo inverse
Compton scattering or constitute synchrotron radiation.

The average photon energies of the second kind of processes (inverse Compton scattering or
synchrotron radiation) are of the order:

〈E′0〉 ≈
4
3

γ2
e E0, (114)

where 〈E′0〉 is the average final energy of the scattered photon, γe is the electron Lorentz factor and E0

is the photon thermal energy which can be, for example:

E0,CMB ≈ 2× 10−4 eV, E0,starlight ≈ 1 eV, E0,dust ≈ 0.01 eV, (115)

for the CMB thermal bath or for different instances of interstellar medium. The typical energy scales
Ee for electrons produced in DM decay or annihilation and the energy of scattered CMB photons can
be estimated as follows:

Ee ≈
mχ

10
⇒ γe ≈ 2× 104

( mχ

100 GeV

)
, (116)

〈E′0,CMB〉 ≈ 105 eV
( mχ

100 GeV

)2
, (117)

while the typical frequency of the synchrotron radiation is:

νsync

MHz
≈ 10

(
Ee

GeV

)2 ( B
µG

)
≈
( γe

1000

)2
(

B
µG

)
. (118)

The prompt emission of photons instead depends only on the annihilation final state and the
target of choice; the flux of photons φγ produced by DM from a given direction ψ within a solid
angle ∆Ω is:

φγ =
∆Ω
4π

{
1

∆Ω

∫
dΩ

∫
dl (ψ) (ρDM)2

}
〈σv〉
2m2

χ
∑

f

dN f
γ

dEγ
, (119)

where
∫

dl is an integration along the line of sight and ∑ f is the sum over all the possible final states.
It is useful to define the socalled J-factor as the expression above between curly brackets:

J(∆Ω, ψ) ≡ 1
∆Ω

∫
dΩ

∫
dl (ψ) (ρDM)2 , (120)

in order to characterise typical sources of radiation for an angular region that varies from 1 to
0.1 degrees. Some of them are the following:

5 https://fermi.gsfc.nasa.gov/science/instruments/lat.html.
6 The interested reader might try to run a simulation with PITHIA, http://home.thep.lu.se/Pythia/.

https://fermi.gsfc.nasa.gov/science/instruments/lat.html
http://home.thep.lu.se/Pythia/
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Dwarf Spheroidal Galaxies

• Draco, J ≈ 1019 GeV2/cm5 ± a factor 1.5;
• Ursa Minor, J ≈ 1019 GeV2/cm5 ± a factor 1.5;
• Segue, J ≈ 1029 GeV2/cm5 ± a factor 3.

Local Milky-Way like galaxies

• M31, J ≈ 1019 GeV2/cm5.

Local clusters of galaxies

• Fornax, J ≈ 1018 GeV2/cm5;
• Coma, J ≈ 1017 GeV2/cm5;
• Bullet, J ≈ 1014 GeV2/cm5.

Galactic center

• 0.1◦, J ≈ 1022−25 GeV2/cm5;
• 1◦, J ≈ 1022−24 GeV2/cm5.

In order to have detection we need to collect enough photons (i.e., we need a high signal-to-noise
ratio). The number of detected photons is given by:

Nγ ≈ Aefftobsφγ ≈ 10−20 J
GeV2/cm5

, (121)

where Aeff is the effective area of the detector and tobs is the typical observation times and in the
second approximation we considering typical values from the Fermi-LAT experiment. The energy
range is of order: ∫

dEγ
dNγ

dEγ
≈

mχ

GeV
, (122)

so that the photon flux can be written as:

φγ = (∆Ω · J) 1
8π

〈σv〉
m2

χ
mχ ≈ 10−32 1

cm2s

(
J

GeV2/cm5

)
, (123)

from which we obtain a J factor of order:

Jtot ≈ 1020GeV2/cm5, (124)

that is a bit bigger than the typical values of J given above for dwarf spheroidal galaxies. Finally, we
can compute the following rough constraint on DM pair annihilation rate depending on the DM mass:

〈σv〉 . 3× 10−26 cm3

s

(
30 GeV

mχ

)
. (125)

For a more detailed analysis see, for example, Reference [34]. In addition, we have also production
of monochromatic photons from χ + χ→ γ + γ, for which:

〈σv〉χ+χ→γ+γ

〈σv〉tot
≈ α2

16π2 . (126)

3.2.4. The Galactic Center Excess

In Reference [35] the authors realised, after analysing data from the the Fermi gamma-ray space
telescope, that there exists an excess of gamma-rays over the background in the center of our Galaxy.
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Such excess was also subsequently reported independently and with a variety of different assumptions
for the background in References [36–38]. If we ask ourselves what might produce such an excess,
it is very easy to fit the data with a signal from DM annihilation; indeed both the morphology and
the spectrum are compatible with some annihilation processes and also compatible with constraints
from CMB and observations of dwarf spheroidal galaxies. On the other hand, trying to explain such
an excess with emissions of astrophysical origin, for example unresolved pulsars, appears problematic
for a variety of reasons.

However, it is possible that the starting assumptions of these analyses are in fact wrong,
for example there is no excess at all and our models for the diffusion emission are simply inadequate
for current data. Indeed, diffusion emission is a complicated physical process that involves numerous
ingredients; cosmic rays are transported from their acceleration sources through the interstellar
medium; most gamma-rays are produced by p-p inelastic collisions via the production of neutral pions
that decay and release radiation or by bremsstrahlung from charged cosmic rays that decelerate due to
interstellar hydrogen.

Why do we expect that our model of emission might be not realistic? The main reason is that the
following assumptions are usually used to evaluate the quantity of radiation that we expect from the
galactic center: (i) a bi-dimensional gas density distribution; (ii) a bi-dimensional model of cosmic rays
propagation; (iii) the hypothesis of steady-state and (iv) a simplistic source distribution for the cosmic
rays. It turns out that each of these assumptions costs a systematic effect which is of the same order
as the excess itself. How can we improve the overall picture towards the next generation of diffuse
gamma-ray models? We should consider a 3-dimensional model for the gas density distribution and
for the propagation of cosmic rays and the effect of transient processes, such as the presence of cosmic
ray bursts, together with a physically motivated choice for the cosmic rays source distributions.

In Reference [39] the authors show how using physically-motivated models for the location of the
acceleration sites of cosmic rays leads to a significant reduction of the Galactic center excess, as well as
to drastic changes to its spectrum and morphology. Additionally, these novel diffuse emission models
provide globally a better fit to the Galactic emission as a whole.

While significant progress is made in the direction of better and more physically motivated
models for the diffuse emission, the discrimination between unresolved point sources and the diffuse
emission is also part of the issue of extracting an excess and understanding its properties. Beyond and
because of these considerations, we remain skeptic about firmly establishing a conclusive DM detection
signal from the Galactic Center; while we still are optimistic about the possibility of detecting DM
from gamma-rays.

3.2.5. Collider Production of Dark Matter Particles

In principle, DM particles can be produced in collider experiments but the expected production
rate is very low compared to Galactic DM fluxes. A possible idea is to look for anomalous events with
missing energy and Standard Model particles, such as for example monojets or monophotons. We can
use two different approach:

1. Top-down: pick a model and scan the parameter space (e.g supersymmetry or unified theories).
2. Bottom-up: use some effective field theory (EFT) or simplified models to sketch of how DM could

manifest itself at colliders.

In the EFT approach one comes up with a list of effective operators compatible with the constraints
on DM coming from collider experiments [40] and then apply the following algorithm: compute the
production cross section and simulate the events and finally set limits on the effective operator scale.

The main issue of such approach is that EFT is meaningful only in a certain range of energy,
whose scale say Λ is given by:

Λ ' M
√

g1g2
, (127)
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where M is the interaction particle mediator mass and the gi’s are the couplings to Standard Model
particles and particles beyond the Standard Model. This entails the question of whether the constraints
that we assumed make sense, that is, if the typical energy of the reaction (say the momentum transfer
q) is smaller then 4πΛ.

An alternative approach is to use simplified models for the interactions of DM with Standard
Model particles; for the coupling with a scalar S and a vector Vµ mediator, we have for example the
following Lagrangians:

LS ⊃ −
1
2

M2S2 − yχSχχ̄− yij
q Sq̄iqj + h.c., (128)

LV ⊃ −
1
2

M2VµVµ − gχVµχ̄γµχ− gij
q Vµ q̄iγ

µqj + h.c., (129)

where the y and the g’s are coupling constants, the γµ are Dirac’s matrices, the symbols ⊃ means
that the contributions on the right hand side are only a part of the total Lagrangian (there still is the
Standard Model one) and h.c. means “hermitian conjugate”.

The idea is to set meaningful constraints on combinations of mediator mass and couplings
constants for given DM masses. Then, we can compare with direct detection results.

An additional probe of DM within colliders is given by the invisible decay of the Higgs boson
into DM, with an interaction term of the form:

λHχχ̄χ̄χ|H|2, (130)

where H is the Higgs scalar (not to be confused with the Hubble factor) and λHχχ̄ is the
DM-Higgs coupling.

The invisible Higgs decay modes may stem from decays of the Higgs boson directly into DM
particles, or into new particles that in turn decay into DM particle, see, for example, Reference [41].

3.2.6. Axions and Axions Searches

Axions are hypothetical particles postulated in order to solve the strong CP problem in Quantum
Chromodynamics (QCD) [42]. Several production mechanisms can lead to abundant production of
axions in the early universe. If the universe is indeed filled with such primordial particles they can be,
in principle, good DM candidates. The QCD Lagrangian is given by:

LQCD = −1
4

Ga
µνGa µν +

n

∑
j=1

[
q̄jγ

µiDµqj −
(

mjq†
L jqR j + h.c.

)]
+

θ

32π2 εµνρσGa
µνGa

ρσ, (131)

where Ga
µν is the gauge-field (the gluon) tensor, the n q’s are the quark fields, Dµ is the gauge-covariant

derivative. The last term, where θ is a coupling and εµνρσ is the Levi-Civita symbol, is innocuous
perturbatively, being a total derivative, but it enters phenomenologically via non-perturbative QCD
effects, producing a large neutron-electron dipole moment:

dn ≈ 5× 10−16θ e cm, dn . 10−26 e cm, (132)

where the last bound is the experimental result [43]. The Peccei-Quinn solution [44] consists of
promoting θ to a dynamical variable which is driven to vanish by its classical potential. Then one
postulates a global (quasi-)symmetry of the theory U(1)PQ (broken by perturbative effects); such a
symmetry is spontaneously broken at a scale fa. In this way, the axion turns out to be the (pseudo)
Nambu-Goldstone boson associated with the group U(1)PQ. Its mass is given by:

ma '
Λ2

QCD

fa
≈ 0.6 eV

(
107GeV

fa

)
, (133)
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where ΛQCD ≈ 200 MeV is the QCD energy scale. As shown in Reference [45], the ground state of the
axion potential solves the strong CP problem. These QCD effects produce effective couplings (slightly
model-dependent) to fermions and photons:

La f f̄ = ig f
m f

fa/N
a f̄ γ5 f , Laγγ = −gγ

α

π

a
fa

E · B, (134)

where a represents here the axion field, N is the number of fermion species considered, γ5 = iγ0γ1γ2γ3,
E and B are the electric and magnetic fields and, as usual, the g’s are the coupling constants.

The setup is similar if we consider Axion Like Particles (ALP): we still have a new global
U(1) symmetry which is spontaneously broken by a hidden Higgs-like mechanism at scale vh.
We parametrize the Higgs field as :

Hh(x) =
1√
2
[vh + hh(x)] eia(x)/vh . (135)

The potential for the ALP field a(x) is flat, and depending on the model realizations one generates
couplings to SM particles:

LALP =
1
2

∂µa∂µa− αs

8π
Cag

a
fa

εµνρσGa
µνGa

ρσ −
α

8π
Caγ

a
fa

εµνρσFµνFρσ +
1
2

Ca f

fa
∂µa f̄ γµγ5 f , (136)

where Fµν is the electromagnetic field tensor. Because of the coupling to Standard Model particles,
in particular photons, axions decay into two photons:

τa→γγ '
16π2

α2

Λ4
QCD

m5
a
≈ 1024 s

(
1 eV
ma

)5
. (137)

To have a sufficiently long-lived axion we must demand also:

τ ≈ 1010 ×
(

π107
)

s . 1024 s
(

1 eV
ma

)5
⇒ ma . 25 eV, fa & 4× 106 GeV. (138)

The axions can have a dramatic impact on stars due to their Compton-like and
Bremsstrahlung-like interactions:

γ + e→ a + e, e + Z → a + e + Z, (139)

which produce an axion luminosity, for example for the Sun, of order:

La ≈ 6× 10−4
( ma

1 eV

)2
L�. (140)

Given the observed luminosity of the Sun, axion emission would require an enhanced nuclear
energy production, which in turns would imply a larger neutrino flux.

Axions can also have impact on the physics of supernovae. If the axion mass is small enough,
axions would free-stream out of supernovae, causing their cooling; the corresponding axion luminosity
is of order:

La ≈ 1059 ergs/s
( ma

1 eV

)2
. (141)

For consistency we should require that this luminosity does not exceed the value of the thermal
neutrino luminosity Lν ≈ 1053 erg/s , which would happen for:

La > Lν for ma > 10−3 eV . (142)
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On the other hand, if axions are too massive, they get trapped and not contribute to supernovae
luminosity efficiently. It turns out that axions would affect supernovae burst duration in the mass range:

10−3 . ma/1 eV . 2. (143)

How can axions be produced? If they are produced thermally, this should happen via interaction
among gluons and quarks of the form:

a + g↔ q̄ + q or g + g , or a + q (q̄)↔ g + q (q̄) . (144)

This kind of process comes from the QCD Lagrangian term proportional to θ, from which we can
also roughly estimate the following cross section:

σq,g '
α3

s
π2 f 2

a
, (145)

where αs is the coupling constant relative to the strong interaction. From the above formula we
can obtain a rough estimate of the temperature at which the processes considered above go out of
equilibrium and the axions freeze-out:

Γ
H
≈ 1 ⇒ T3σq,g ≈

T2

MP
, (146)

Ta,freeze−out ≈ 1011 GeV
(

fa

1012GeV

)
. (147)

However, at lower temperatures (below the QCD phase transition scale) the interactions with
pions must be considered:

π + π ↔ π + a, σπ '
1
f 2
a

. (148)

Such process is in equilibrium when:

nπσπ

H
≈ mπ MP

f 2
a

& 1 ⇒ fa . 5× 108GeV. (149)

Finally, we obtain the density of axions as a function of their mass:

Ωa ≈
ma

130 eV
, (150)

but we know already that this does not work since hot DM is not good for structure formation. Also,
other constraints on axion mass are also not good, because in order to have Ωa ≈ ΩDM ≈ 0.26 we
would need ma ≈ 10 eV and the resulting axion lifetime would be too short.

But then, how about non-thermal production? We can consider for example the so-called
misalignment mechanism for producing cold axions, which results in the following cosmological
density, see Reference [46]:

Ωa,mish2 ≈ 0.4
(

ma

10 µeV

)−1.18 ( θ1

π

)2
, (151)
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where θ1 is a mixing angle. If we assume that the value for θ1 is given by its root mean square we get:

θRMS =

(∫ π

−π
dθ

θ2

2π

) 1
2

=
π√

3
, (152)

Ωa,mis, RMSh2 ≈ 0.13
(

ma

10 µeV

)−1.18
. (153)

On the other hand, if the distribution for θ1 has a non trivial topology, a network of axion strings
and domain walls can be generated; the resulting cosmological density is in general model-dependent
and the results of different groups are in general in disagreement. For example, References [46,47] give
the following different values:

Ωstrings + domain wallsh2 = (3.5± 1.7)
(

ma

10 µeV

)−1.18
, (154)

Ωstrings + domain wallsh2 ∼ 0.4
(

ma

10 µeV

)−1.18
. (155)

Axion laboratory searches include light-shining-through-wall experiments, see for example,
References [48,49] that exploit the process:

γ + Ze↔ Ze + a. (156)

Additional searches are conducted based on microwave cavities [50] and helioscopes [51].

3.2.7. Sterile Neutrinos and the 3.5 keV Line Puzzle

One of the few still open problems of the Standard Model of particle physics is the fact that
neutrinos are not massless. A simple way out is to consider a set of n gauge singlet fermions Na

(the sterile neutrino field) so that:

L = LSM + iN̄a /∂Na − yαa H† L̄αNa −
Ma

2
N̄c

a Na + h.c., (157)

where /∂ ≡ γµ∂µ and L̄α represent the ordinary neutrino field. The mass matrix can be computed to be
the following:

M(n+3) =

[
0 yαa〈H〉

yαa〈H〉 diag (M1, M2 . . . Mn)

]
, (158)

where the Higgs field vacuum expectation value 〈H〉 is usually written as iv/
√

2 (do not confuse v
with any velocity). Just for simplicity, assume only one sterile neutrino family and only one ordinary
neutrino family, so that the above matrix become a 2× 2 matrix:

M =

[
0 y〈H〉

y〈H〉 M

]
. (159)

It is easy then to compute its eigenvalues, which are:

λ± =
M±

√
M2 + 4y2〈H〉2

2
=

M±
√

M2 − 2y2v2

2
, (160)

hence, if the condition yv � M is satisfied, then λ+ � λ−. In general, since λ+λ− = y2v2/2, if one
eigenvalue grows the other decreases and viceversa. This is the so-called Seesaw mechanism. So if
yv� M is satisfied, we have one large eigenvalue M corresponding to the sterile neutrino mass and
one small y2v2/M eigenvalue corresponding to the ordinary neutrino mass.



Universe 2019, 5, 213 26 of 36

Sterile neutrinos mix via explicit (but possibly very small) mixing with ordinary neutrinos; as
such, they decay (into the 3 Standard Model neutrinos):

Γ ≈ θ2G2
Fm5

νs ≈ θ2
( mνs

keV

)5
10−40 GeV⇒ τ ≈ 1016 s, (161)

where mνs is the sterile neutrino mass, θ is the mixing angle and where we have used θ−2 ( mνs
keV

)−5 � 1
because sterile neutrinos are fermions and thus mνs > keV [12].

Sterile neutrino are produced essentially via freeze-in [52]. Briefly, the freeze-in mechanism relates
to particles which are not in thermal equilibrium with the primordial plasma but still interact (and are
produced) with some of the species which instead are in thermal equilibrium with the primordial
plasma. This interaction stops being effective when the latter species freeze-out, so that the weakly
interacting species are said to freeze-in. For sterile neutrinos we can estimate the production rate
as follows:

Γνs ≈ (G2
FT5)θ2 (T) , (162)

where the mixing angle θ is usually considered to be constant, or in some refined models has a
temperature dependence:

θ → θ

1 + 2.4
(

T
200 MeV

)6 ( 1 keV
mνs

)2 . (163)

Abundance of sterile neutrinos can be estimated as the following value [53]:

Ωνs h2 ≈ 0.1
(

θ2

3× 10−9

)( mνs

3 keV

)1.8
. (164)

Additional important effects that can be considered are the Mikheyev-Smirnov-Wolfenstein
effect [54,55] and the Shi-Fuller resonant production effect [56].

What if sterile neutrinos are not produced thermally? A simple alternative is to consider
non-thermal production from singlet scalar coupling with the field S:

ha

2
SN̄c

a Na, (165)

and (or) SH†H, S2H† H, that gives:

Ωνs ≈ 0.2
(

ha

10−8

)3 〈S〉
MS

. (166)

Sterile neutrinos are also interesting from the standpoint of structure formation, since:

Mcutoff, hot ≈
[

1
H(T = mνs)

]3
ρνs(T = mνs) ≈

(
MP

m2
νs

)3
m4

νs =
M3

P
m2

νs

, (167)

M3
P

m2
νs

≈ 1015M�
( mνs

30 eV

)−2
≈ 1012M�

( mνs

1 keV

)−2
. (168)

Another interesting feature of sterile neutrinos is that they can provide an answer for the so called
pulsar kick problem, see, for example, Reference [57].
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What about detection of sterile neutrino DM? The key mechanism is loop-mediated sterile neutrino
decay via weak interactions and mass-mixing with active neutrinos, leading to a naive estimate for the
decay width and the photon flux from decay of:

Γνs→γ+ν ≈
α

16π2 θ2G2
Fm5

νs , (169)

φγ =
Γνs→γ+ν

4π

Eγ

mνs

∫
fov

dΩ
∫

los

ρDM
mνs

dr(ψ), (170)

where fov means “field of view” and los means “line of sight”.
The key background radiation where to searche for sterile neutrino decay is the diffuse cosmic

X-ray background (CXB):

φCXB ≈ 9.2× 10−7
(

E
1 keV

)−0.4
cm−2s−1arcmin−2 ≈ 10−4cm−2s−1. (171)

This implies the following constraints on the mixing angle and mass:

φγ ≈ 10−4cm−2s−1
(

θ2

10−7

)( m
1 keV

)4
(

J
1018 GeV/cm2

)
, (172)(

θ2

10−7

)( m
1 keV

)4
. 1. (173)

In summary, sterile neutrinos are:

• SU(2)L gauge singlet but have a small mixing angle with active neutrinos;
• Cosmologically viable candidates of DM [53];
• not stable because they decay via mixing with active neutrinos.

Claims have been made that sterile neutrino dark matter decay might have already been
detected [58–60]. An emission line of 3.5 keV is roughly compatible with all the above listed properties.
Unfortunately, it is also compatible with the emission line from atomic transition of highly ionised
atoms, in particular, potassium K XVIII has two lines near 3.5 keV.

So how do we tell these potassium lines apart from a sterile neutrino signal? We should try to
predict K XVIII line brightness using other elemental lines but two key complications arise:

• Plasma temperature;
• Relative elemental abundances.

In Reference [58], it is argued against K XVIII since predictions for a potassium 3.5 keV line is
too low (by a factor 20 for solar abundances). However, this prediction makes two mistakes based
on the two complications above. In particular the authors of Reference [58] use very large plasma
temperature, which highly suppresses the potassium emission. Moreover, they underestimate the
abundance of potassium of a factor ≈10.

The authors of Reference [60] show that for clusters of galaxies and for our galaxy K XVIII line
emission could explain the 3.5 keV line. Are there are other possible tests? Of course, we can look
elsewhere, or we can use some different probe rather than the spectrum. About the former option, there
is no trace of signal from dSph galaxies [61], nor from stacked galaxies and groups with low plasma
temperature [62], nor from Andromeda [60]. Also, there is no signal from dedicated observation of
Draco dSph [63]. What about using something different than spectrum? We can use morphology, for
example look at where the 3.5 keV radiation come from. However, morphology of Perseus and the
Milky way shows that decaying DM is strongly disfavoured [64].
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In summary, we are left with the open question: Dark Matter or Potassium? We can look for a
possible answer in the old literature: Entia non sunt multiplicanda praeter necessitatem,7. Occam’s razor
favours Potassium against sterile neutrinos because of the lack of signal from Draco and because of
the morphology of the thermal lines. But what if it is another type of DM? Any challenge is also an
opportunity and an interesting riddle for theorists; according to Redman’s Theorem:8

Theorem. Any competent theoretician can fit any given theory to any given sets of facts.

The 3.5 keV line is an exciting excuse for a new mechanism generating a DM signal. Consider for
example an interaction of the form [66]:

χ1 + f → χ2 + f −→ χ2 → χ1 + γ, (174)

which models interactions between DM and interstellar plasma, resulting in a signal which is
proportional to the product of the DM and gas densities and it is also a good thermal relic. Why should
we be excited by this model?

• It is a new indirect detection channel;
• it has an unmistakable signature, free of background;
• Is a good model, in the sense that it is economic, with a natural UV completion and a thermal

relic DM.

Moreover, it is a highly falsifiable scenario for the following reasons:

• Its line shape, for example geometric average of thermal DM velocities, can be resolved by for
example the Hitomi/astro-h satellite;

• It has unique morphology
• It has unique target-dependence
• Lines could appear anywhere in the spectrum, from eV, to UV, to X-ray.

Possible future tests include implications on structure formation and small scale structure.

4. Dark Matter Bestiarium

In this section we introduce a list of notable candidate models of DM particle.

4.1. Gravitinos

Gravitinos are prototypical DM with Planck-suppressed interactions [67]. The prototype
Lagrangian is:

L = −1
2

εµνρσ∂νΨ̄µγ5∂ρΨσ −
m3/2

4
Ψ̄µ
[
γµ, γν

]
Ψν +

1
2MP

Ψ̄µSµ, (175)

and the resulting cross sections are:

σ
(
G̃ + G → γ + γ

)
=

1
576π

M2
γ̃s2

(m3/2MP)
4 , (176)

σ
(
G̃ + G → f̄ + f

)
=

g f

720π

s3

(m3/2MP)
4 , (177)

7 William of Occam, c. 1286–1347.
8 Quoted in Reference [65], Section 2.5.1, The psychology of astronomers and astrophysicists.
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where we used the symbol G to indicate a gravitino particle. Finally, the freeze-out temperature is:

Tfreeze−out ≈
(

m4
3/2M3

P

M2
γ

)1/5

≈ 450 GeV
(

M3/2

0.1 eV

)4/5 (100 GeV
Mγ

)2/5
. (178)

Thermal gravitinos are hot relics (in fact they were the first super-symmetric DM candidate ever
proposed) and their abundance is calculated as:

Ω3/2h2 =
m3/2n3/2T0

ρ0
h2 ≈ m3/2

keV
Tfreeze−out. (179)

However, this calculation neglects single-gravitino processes that maintain gravitinos out of
equilibrium, for example:

V + λ̃↔ V + G̃; V + V ↔ λ̃ + G̃, (180)

where V is a gauge boson and λ̃ its gauginos (its supersymmetric partner). Generically, there is a
gravitino overproduction problem, so we need to dilute them away:

Ω3/2h2 ≈ 0.00167
m3/2

1 GeV
TRH

1010 GeV
M2

Pγ|T=TRH

T6
RH

, (181)

where TRH is the reheating temperature.
Gravitinos are also produced from next-to-lightest supersymmetric particles (NLSP) decays [68]:

Ω3/2 = m3/2
ΩNLSP
mNLSP

. (182)

Light gravitinos are already ruled out, whereas heavier gravitinos are still viable for certain
combinations of mass and TRH . Moreover, they might also be NLSP with long lifetimes:

TG̃ ≈
M2

P
m3

3/2
≈ 1014 s

(
1 GeV
m3/2

)3
. (183)

An important question is, of course, can we ever hope to detect gravitinos? There are basically
two strategies; the first one is to use long-lived s-leptons produced at LHC trapping them into water
tanks and then wait their decay to gravitinos. The second one is to use neutrino telescopes to search
for neutrino-induced long lived s-leptons:

ν + q→ l̃ + q̃. (184)

4.2. WIMPzillas and Super-Heavy Dark Matter Candidates

This interesting class of models grounds on the presence of non-thermally produced super heavy
particles, the so-called WIMPzillas [69], with the following properties:

• The DM particle is never in thermal equilibrium;
• The particle mass is comparable to the inflaton mass say Mφ;
• The particle lifetime is much longer than the age of the universe.

The following generic expression gives us the density of such heavy particles produced by gravitational
interaction at the end of inflation [70,71]:

ΩXh2 = 10−3ΩR
8π

3

(
TRH
T0

)(
Mφ

MP

)2 (MX
Mφ

)5/2
e
−2MX

Mφ , (185)



Universe 2019, 5, 213 30 of 36

where ΩR is the radiation density and and TRH is the reheating temperature. Such kind of particles
could be detected in ultra high energy cosmic rays detectors.

Another interesting super heavy DM candidates are the strangelets [72], that is, macroscopic
clumps of quark matter, with radius between 10 mm to 10 cm and masses around 109–1018 g. They are
in principle detectable via cosmic rays collisions.

4.3. Self-Interacting Dark Matter

In order to have at least one interaction for particle during the age of the universe this class of
models must satisfy:

Γ
H0
≈ (σχχ/mχ) ρv

H0
≈ 1, (186)

which in turn implies a cross section of order:

σχχ

mχ
≈ 1.3

cm2

g

(
1 GeV/cm3

ρ

)(
10 km/s

v

)
. (187)

Events of this type could be object of study in DM halos, which can be considered as
non-relativistic colliders. For example, dwarfs galaxy are equivalent to the B-Factory collider, Milky
way-like galaxies reproduce events like in the LEP, while big clusters of galaxies show events that on
Earth are reproducible at the LHC.

Which model of particle physics model could work for self-interacting DM? We have a quite large
landscape; consider for example a kind of Dark QCD with glueballs DM [73]:

σ (gb + gb↔ gb + gb) ≈ 4π

Λ2
QCD

, (188)

ρgb ≈ 2(N2 − 1)s0Λ

(
Th
T

∣∣∣∣
T≈ΛQCD

)3

. (189)

Another possibility is given by dark atoms, whose relic density computation is still a work in
progress. Another one: light mediator [74] such that:

mXv� mφ, (190)

σ ≈ 5× 10−23 cm2
( αX

0.01

)2 ( mX
10 GeV

)2
(

10 MeV
mφ

)4
, (191)

σ ∼
α2

X
m2

Xv4

(
mXv� mφ

)
. (192)

Effects should turn off at large velocities but are significant at small scales or low velocities. We should
assume that the mediator has a small coupling ε to Standard Model fermions.

Another possibility is given by a model with a complex scalar field and potential [75]:

Φ = v +
s + ia√

2
V(Φ) = −µ2|Φ|2 + λ

4
|Φ|4, (193)

which gives us the following cross section:

σ (a + a↔ a + a) =
λ2m2

a
32πm4

s

(
1− 4m2

a
m2

s

)−2

, (194)
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from which, using ms = 1 MeV and λ ' 0.5 we get:

σ (a + a↔ a + a)
ma

∼ 1
cm2

g
. (195)

4.4. Asymmetric Dark Matter

The idea of asymmetric DM, formerly known as Technocosmology [76], is that there exists a new
dark baryon quantum number BD in addition to the standard baryon number BV , with DM being the
lightest charged particle under BD. We can define the following linear combination:

Bconserved = BV − BD; Bbroken = BV + BD, (196)

which are conserved or broken at some energy scale. If the universe have a generalised global baryon
symmetry the first combination is unbroken at all energy, while the second one is broken. At the
breaking scale we have a net production of ∆Bbroken such that:

∆BV = ∆BD = ∆Bbroken/2. (197)

If the universe does not have a generalised global baryon symmetry, instead some asymmetry is
generated either on BD or BV . The mass of such asymmetric DM candidate is [77]:

mDM = mp
ΩDM

Ωb

η (BV)

η (BD) /qDM
, (198)

where the ratios η in the right hand side of the above equation are the charge-to-entropy ratios. For a
baryon-symmetric universe we have:

mDM = qDM × (1.6− 5)GeV, (199)

η (BD) /η (BV) ∼ exp(−mDM/TD), (200)

if the chemical decoupling of the two sectors happens when DM is non-relativistic.

4.5. Minimality

With minimality we mean a theory which contains a minimal number of ingredients, for example
heavy neutrinos. SU(2) neutrinos are excluded by direct detection, unless we introduce a suppressed
coupling to the Z boson. Another possibility is to consider a minimal number of new fields, for example
a real scalar singlet. In this case [78] the Lagrangian becomes:

L = LSM +

(
∂µS

)2

2
− b2

2
S2 − a2

2
H†HS2 − b4

4
S4, (201)

and:

〈S〉 = 0, σSI =
a2

2M4
N f 2

πm2
s m4

h
. (202)

The “original” minimal DM model (MDM) is given by an SU(2)L multiplet with a given spin and
mass, see Reference [79]:

L = χ̄ (i /D + M) χ, fermion, (203)

L = |Dµχ|2 −M2|χ|2, scalar. (204)
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We have to require vanishing hypercharge and electric charge equal to:

Q = T3 + Y, (205)

This implies that no operators could mediate decay (i.e., terms of type χeH,→ χ = eH) and we
are left with a very constrained set of possibilities: n = 5 M = 9.4TeV spin 1/2 fermion. Such heavy
SU(2) particles have important Sommerfeld enhancement effects, affecting indirect DM constraints.

Other minimal possibility is to consider an inert doublet model; for example a new SU(2) Higgs
doublet with Z2 symmetry [80]. It turns out that lightest Z2-odd particle is stable and a good WIMP.

4.6. Dark Photons

Another interesting possibility is given by dark photons, see, for example, Reference [81]. Here we
have gauge bosons associated with a new U(1)′ symmetry, with a kinetic mixing term:

− ε

2 cos θW
BµνF

′µν, εeA′µ Jµ
EM, (206)

mA′ � 2me, can be long-lived enough (207)

These are produced in oscillation or processes like:

γ + e± → A′ + e± e+ + e− → A′ + γ, (208)

or from dark photon condensates, (similar to the axion misalignment mechanism):

ΩA′ ∼ 0.3
√

mA′

1 keV

( Hin f

1012 GeV

)
. (209)

If new dark photons are charged under a non-abelian symmetry group, kinetic mixing term is
automatically prohibited and the particle is stable; the Lagrangian is of type:

L = LSM −
1
4

F
′µνF

′
µν +

(
Dµφ

)†
(Dµφ)− λ|φ|2|H|2 − µ2

φ|φ|2 − λφ|φ|4, (210)

and has interesting phenomenology: for example for SU(3) we have semi-annihilation and bright
gamma ray lines (∼ α instead of ∼ α2, ψiψj → ψkγ).

5. Conclusions

The book of physics contains several blank pages when it comes to the fundamental nature of
DM as a particle. The discovery of the particle nature of DM will likely offer a portal on new physics
beyond the Standard Model and opportunities to understand how the universe on large scales is
shaped by the microscopic properties of DM. It is important for the scholar who embarks on the study
of particle DM to be keenly aware of the scope and nature of work that others have produced thus
far; it is especially useful to be familiar with the “bag of tricks” that scholars have accumulated so far
and to be able to master the key tools of this trade. These notes are meant to help with this critical and
exciting task.
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