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Abstract: We review some current ideas of tripartite entanglement. In particular, we consider the
case representing the next level of complexity beyond the simplest (though far from trivial) one,
namely the bipartite case. This kind of entanglement plays an essential role in understanding the
foundations of quantum mechanics. It also allows for implementing several applications in the
fields of quantum information processing and quantum computing. In this paper, we review the
fundamental aspects of tripartite entanglement focusing on Greenberger–Horne–Zeilinger and W
states for discrete variables. We discuss the possibility of using it as a resource to execute quantum
protocols and present some examples in detail.

Keywords: quantum mechanics; quantum entanglement; tripartite entanglement; GHZ states;
W states

1. Introduction

Quantum entanglement is one of the most astonishing aspects of quantum mechanics, initially,
by virtue of its deep implications in the context of the theory itself and more recently due to the
large amount of applications within the emerging fields of quantum information processing [1] and
quantum computation1.

The most well-known type of entanglement involves two parts sharing a pair of qubits, the
so-called EPR (after Einstein Podolsky Rosen) or Bell states2 [3]. Nevertheless, note that two parts
may also share an entangled state in larger dimensions, such as qutrits [4] and/or subsystems in
continuous variables. Besides the relevance of bipartite entanglement in the understanding of quantum
foundations and quantum information science, the search of entangled states involving more than
two qubits is also desirable. After all, it may provide useful insights regarding fundamental aspects
of the theory itself, offering in this way new possibilities in the development of applications such as
protocols in quantum information [5]. Moreover, the usage of genuine multipartite entanglement often
displays several advantages in comparison to bipartite entanglement [6]. For instance, it is possible to
establish quantum networks with multi-users, execute quantum computation with cluster states [7,8]
and perform measurement-based quantum computing [9]. These kinds of entangled states can be used,
for instance, as a quantum channel to establish quantum communication between several separated

1 Note that entanglement is not the only nonclassical resource useful for computation, though.
2 It is important to keep in mind that bipartite entanglement does not necessarily imply two spatially separated parts. Instead,

it can be generated between different degrees of freedom in a single part [2].
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locations. An introduction to multipartite entanglement can be found in [10]. In [11], a study of
maximally multipartite entangled states was carried out. In [12], entanglement in many-body systems
is reviewed, including aspects of multipartite entanglement in that scenario. A general review about
multipartite entanglement can be found in [13].

The simplest case of multipartite entanglement is tripartite entanglement that involves three-parts.
This kind of entanglement play an essential role in the development of aspects such as quantum
nonlocality and has a large number of applications in quantum information protocols. In
this review, we explore the main features of tripartite entanglement focusing our attention on
Greenberger-Horne-Zeilinger (hereafter GHZ) and the so called W states. We discuss the most
fundamental aspects and applications.

The paper is organized in the following way: In Section 2, we give a brief overview of bipartite
entanglement. In Section 3, we discuss tripartite entanglement and define the corresponding classes
of entanglement for qubits. Then, we review some aspects of quantum nonlocality and tripartite
entanglement in Section 4. In Section 5, we provide several examples of quantum information protocols
employing tripartite entanglement. We review the main aspects of these applications, illustrating the
corresponding schemes. In Section 6, we list several proposals for how to experimentally produce
tripartite entanglement in the literature. Then, we devote time to briefly exploring some aspects related
to detection and characterization of tripartite entanglement in Section 7. In Section 8, we consider the
topic of remote preparation of quantum states. In Section 9, we examine some aspects of tripartite
entanglement involving continuous variables. The effects of noisy environments are considered in
Section 10. Finally, we emphasize the main conclusions in Section 11.

2. Overview of Bipartite Entanglement

For the sake of completeness, let us quickly review some important aspects of entanglement
between two parts. We start by describing the case of pure states and then we cite some of the most
important entangled mixed states.

2.1. Pure States

Due to the Schmidt decomposition, any quantum state shared between two parts, say Alice
and Bob as usual, may be written as |ψ〉 = ∑d−1

j=0

√
λj |φA〉j ⊗ |ϕB〉j = ∑d−1

j=0

√
λj |j, j〉, with Schmidt

coefficients λj ∈ R, satisfying ∑d−1
j=0 λj = 1 and d = min(dimHA, dimHB), where Hk is the Hilbert

space associated with the k-th part. In particular, it is possible to say that |ψ〉 is entangled whenever
there exists more than one nonzero Schmidt coefficient. Furthermore, we can define a basis for the
Hilbert space associated with both partsHAB = HA ⊗HB, composed by d2 elements given by:

∣∣∣φ(d)
mn

〉
=

d−1

∑
k=0

βkm |k, k⊕ n〉 , m, n = 0, . . . , d− 1, (1)

where the symbol “⊕” denotes a sum modulo d, the βkm coefficients control how entangled the basis is
and satisfy the relation ∑d−1

k=0 βkmβ∗km′ = δmm′ . In particular, for d = 2, the basis can be parametrized
as [14]: ∣∣∣φ(2)

00

〉
= cos θ |00〉+ sin θ |11〉 ,

∣∣∣φ(2)
10

〉
= sin θ |00〉 − cos θ |11〉 ,∣∣∣φ(2)

01

〉
= cos θ |01〉+ sin θ |10〉 ,

∣∣∣φ(2)
11

〉
= sin θ |01〉 − cos θ |10〉 ,
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with 0 ≤ θ ≤ π/2. Moreover, any element of the basis with βkm = ωk·m
d /
√

d, corresponds to a
maximally entangled state, where ωd = exp(2πi/d) is the primitive d-th root of unity. Explicitly, it is
known as the Bell or EPR3 basis for d = 2 and is written as:∣∣φ±〉 = 1√

2
(|00〉 ± |11〉) ,

∣∣ψ±〉 = 1√
2
[|01〉 ± |10〉] . (2)

Hereafter,
∣∣∣φ(d)

mn

〉
denotes a maximally entangled state, for the sake of simplicity.

An important feature is that any Bell state can be converted into another one by using local unitary
transformations and classical communication (hereafter LOCC) only. Moreover, it has been shown that
these states can be used to develop several informational tasks such as superdense coding [16] and
quantum teleportation [17] with the highest attainable performance [18,19]. They also represent a very
useful resource for testing fundamental aspects of the quantum world.

2.2. Some Special Families of Mixed States

Suppose Alice and Bob have a source of entangled qubits prepared in a state ρ̂. Then, Alice applies
a unitary operation Û chosen at random and informs Bob to carry out either Û or Û∗4 on his qubit.
Regardless of the initial state of the system, after many repetitions of the same procedure, the final
state shared by Alice and Bob reduces to a Werner or an isotropic state.

2.2.1. Werner States

When Alice and Bob apply local operations Û ⊗ Û, we have [20]:

ρ̂→
∫

Û ⊗ Û ρ̂ Û† ⊗ Û†dU = ρ̂W , (3)

where dU is the Haar measure of the unitary group U(d) and ρ̂W is the Werner state, given by:

ρ̂W = (1− p)
2

d2 + d
P̂(+) + p

2
d2 − d

P̂(−), (4)

with P̂(±) = 1
2
(
1̂± V̂

)
, where 1̂ is the identity: 1̂ = ∑d−1

jk=0 |jk〉〈jk| and V̂ is the flip operator: V̂ =

∑d−1
jk=0 |jk〉〈kj|. It is important to mention that the Werner state ρ̂W is invariant under Û ⊗ Û operations.

By using the following relations P̂(+)P̂(−) = 0, P̂(±)2 = P̂(±) and tr P̂(−) = 1
2 (tr 1̂− tr V̂) = 1

2 (d
2 − d),

it is easy to show that the operation-invariant p5 is equal to p = tr
(

P̂(−)ρ̂W

)
.

2.2.2. Isotropic States

In the case of local operations Û ⊗ Û∗, the state ρ̂ is transformed as [21]:

ρ̂→
∫

Û ⊗ Û∗ ρ̂
(
Û ⊗ Û∗

)† dU = ρ̂ f , (5)

where ρ̂ f is the isotropic state, given by:

ρ̂ f =
1− f
d2 − 1

1̂ +
f d2 − 1
d2 − 1

P̂+, (6)

3 EPR, after Einstein’s, Podolsky’s, and Rosen’s seminal paper [15].
4 The symbol “∗” indicates complex conjugation of the associated matrix elements.
5 In the case d = 2, in particular, p denotes the singlet fraction or, in other words, the degree of similarity of the state before (ρ̂)

and after (Ŵp) applying twirling operations to the singlet state
∣∣φ2

11
〉
, i.e., p = tr

(∣∣φ2
11
〉〈

φ2
11

∣∣ ρ̂
)
= tr

(∣∣φ2
11
〉〈

φ2
11

∣∣ Ŵp
)
.
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with P̂+ =
∣∣∣φ(d)

00

〉〈
φ
(d)
00

∣∣∣. Analogously to the Werner state, the isotropic state is invariant under Û ⊗ Û∗

operations.
By expanding the identity operator in the generalized Bell basis 1̂ = ∑d−1

µν=0

∣∣∣φ(d)
µν

〉〈
φ
(d)
µν

∣∣∣, the
isotropic state takes the following form:

ρ̂ f = f
∣∣∣φ(d)

00

〉〈
φ
(d)
00

∣∣∣+ 1− f
d2 − 1

d−1

∑
µν=0

(µ,ν) 6=(0,0)

∣∣∣φ(d)
µν

〉〈
φ
(d)
µν

∣∣∣ . (7)

In this expression, it is possible to see more clearly that the operation invariant f is equal to:
f = tr

(∣∣∣φ(d)
00

〉〈
φ
(d)
00

∣∣∣ ρ̂
)
= tr

(∣∣∣φ(d)
00

〉〈
φ
(d)
00

∣∣∣ ρ̂ f

)
. Due to their properties, these states have been very

useful to unveil the relation between the concepts of entanglement and Bell nonlocality [22,23]. Several
proposed generalizations to the multipartite case are presented later in this review.

3. Tripartite Entanglement

3.1. Genuine Tripartite Pure States

When dealing with tripartite quantum systems, it is possible to write the associated state |Ψ〉 in
one out of three ways: totally separable |Ψ〉 = |ψA〉 ⊗ |ψB〉 ⊗ |ψC〉, in terms of biseparable partitions
|Ψ〉 =

∣∣ψj
〉
⊗ |ψkl〉 ({j, k, l} = {A, B, C}) or genuinely entangled, which will be explained in the next

part. In [24], Zhao and collaborators provide a set of methods based on expectation values of Pauli
operators to identify the class of a given state. The possible configurations are presented in Figure 1.

A

B

C

BA C

A BC

AC B

BA C

Genuine 
Tripartite

Biseparable

Separable

Figure 1. Possible scenarios of three-qubit quantum states. From top to bottom: First, Genuine tripartite
entanglement, where all qubits are in an entangled state. Second, biseparable partitions, where only
two qubits are entangled. Third, full separable state.

It is a well-known fact that it is possible to transform any state from the Bell basis into another
one by using LOCC only, or to another arbitrary state of two qubits with nonzero probability [25,26].
However, a very interesting feature emerges when we deal with quantum systems involving more
than two qubits: different classes of entanglement arise. For the simplest instance, namely three qubits,
there are two nonequivalent classes of entanglement: GHZ states [27,28] and W states [29], defined as:

|GHZ〉 = 1√
2
(|000〉+ |111〉) , |W〉 = 1√

3
(|001〉+ |010〉+ |100〉) . (8)
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These two classes are totally nonequivalent under Stochastic Local Operations and Classical
Communication (hereafter SLOCC). It means that it is impossible to convert any state of a given class
into one of another class and vice versa. Thus, GHZ and W states constitute genuinely entangled states
for the case of three qubits.

The idea of GHZ entanglement by itself has its deep origins in the foundations of quantum
theory. In fact, this family of states was proposed to investigate quantum nonlocality beyond
Bell’s Theorem [28]. Furthermore, as shown in [30], the premises of the EPR argument about the
incompleteness of quantum theory are also inconsistent when applied to GHZ states. As discussed in
more detail in the next section, employing GHZ states enabled a demonstration of the incompatibility
between the predictions of local realism and quantum mechanics without demanding the usage of an
inequality [3].

As in the bipartite case, it is also possible to write a GHZ state with an arbitrary amount of
entanglement6. In this case, we start by defining the state:

|ψ000〉 = cos θ |000〉+ sin θ |111〉 , (9)

with θ = {0, π/2}. From local operations on |ψ000〉, we can construct a GHZ basis. These states are
given by: ∣∣ψµλω

〉
=

1

∑
j=0

(−1)µjbµ⊕j |j, j⊕ λ, j⊕ω〉 , (10)

where b0 = cos θ e b1 = sin θ. They can be written more explicitly as:

|ψ000〉 = cos θ |000〉+ sin θ |111〉 , |ψ001〉 = cos θ |001〉+ sin θ |110〉 , (11)

|ψ010〉 = cos θ |010〉+ sin θ |101〉 , |ψ011〉 = cos θ |011〉+ sin θ |100〉 , (12)

|ψ100〉 = sin θ |000〉 − cos θ |111〉 , |ψ101〉 = sin θ |001〉 − cos θ |110〉 , (13)

|ψ110〉 = sin θ |010〉 − cos θ |101〉 , |ψ111〉 = sin θ |011〉 − cos θ |100〉 . (14)

In the same way, we can also define a more general family of entangled W states, given by [32]:

|W1〉 = sin θ cos ϕ |001〉+ sin θ sin ϕ |010〉+ cos θ |100〉 , (15)

with θ, ϕ ∈ (0, π/2). The W state in Equation (8) corresponds to ϕ = π/4 and θ = cos−1(1/
√

3). By
using local unitary operations, we can generate the seven other states of the W basis as:

|W2〉 = + sin θ sin ϕ |001〉 − sin θ cos ϕ |010〉+ cos θ |111〉 , (16)

|W3〉 = − sin θ sin ϕ |100〉+ cos θ |010〉+ sin θ cos ϕ |111〉 , (17)

|W4〉 = + sin θ cos ϕ |100〉+ cos θ |001〉+ sin θ sin ϕ |111〉 , (18)

|W5〉 = + sin θ cos ϕ |110〉+ sin θ sin ϕ |101〉+ cos θ |011〉 , (19)

|W6〉 = + sin θ sin ϕ |110〉 − sin θ cos ϕ |101〉+ cos θ |000〉 , (20)

|W7〉 = − sin θ sin ϕ |011〉+ cos θ |101〉+ sin θ cos ϕ |000〉 , (21)

|W8〉 = + sin θ cos ϕ |011〉+ cos θ |110〉+ sin θ sin ϕ |000〉 . (22)

6 Nevertheless, note that in contrast to the bipartite case, there is no unique way of measuring entanglement in multipartite
quantum systems [31].
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The state given by Equation (15) can be converted to the maximally entangled W state
(Equation (8)) by the process known as entanglement concentration. In [33], efficient schemes for
entanglement concentration of an arbitrary W state into a maximally entangled one are presented.
In [34], a protocol for entanglement concentration of W states was proposed by using quantum-dot
and optical microcavities. A generalization of the protocol mapping arbitrary N-particle less-entangled
W states to maximally entangled W states has also been proposed [35]. For additional examples of
entanglement concentration protocols, see [36,37].

Now, let us consider the partial trace operation on the third qubit in |ψ000〉 and |W1〉 to examine
the differences between the GHZ and W classes. A simple calculation provides:

ρ̂12 = tr3 (|ψ000〉〈ψ000|) =
1
2
|00〉〈00|+ 1

2
|11〉〈11| , (23)

for the GHZ state. For the W state, we have:

ρ̂12 = tr3 (|W〉〈W|) =
2
3

∣∣∣φ(2)
01

〉〈
φ
(2)
01

∣∣∣+ 1
3
|00〉〈00| . (24)

Thus, in the case of a W state, the reduced density operator contains a residual EPR entanglement.
In contrast, the same operation on the GHZ state gives a completely disentangled state.

3.2. Other Instances of Tripartite Entanglement

In analogy with the bipartite case, Acín and collaborators, [38], defined a Schmidt-like
decomposition useful to classify pure three-qubit states [39]. Subsequently, these results were
generalized to include mixed states [40].

In addition to the cases mentioned above, there are several instances of tripartite entanglement.
For example, in [41], a procedure to generating a generalization of tripartite GHZ entangled states
is presented, using three-level particles instead. In [42], Siewer and Eltschka use the following
generalization of the Werner states:

$̂W = p |ψ000〉〈ψ000|+
1
8
(1− p)1̂8, (25)

to treat the problem of entanglement quantification.

3.3. Tripartite Entanglement in Other Areas

It is worth noting that there are several works exploring the idea of entanglement and its
classification in other fields in Physics and Mathematics. For instance, there are some works discussing
the relationship between entanglement and topology. A connection between Borromean rings and
GHZ states was established by Aravind in [43]. In [10], a schematic comparison between GHZ and W
tripartite states is presented by using knots. There have been efforts to unveil the relation between
quantum entanglement and topological entanglement [44,45]. A recent review on this topic can be
found in reference [46]. The idea of entanglement in networks has also been explored.

In [47], a strategy for percolation involving GHZ states was presented. In [48], it was verified
experimentally that three and four-party entanglement occurs in quantum networks.

In [49], a connection between black-hole physics and quantum entanglement was demonstrated
to exist. This finding shows that there is a match between the classification of tripartite entanglement
and black holes. A more recent work concerning this topic is given by reference [50].

In what follows, we present some aspects with regards to three-partite entanglement and
foundations of quantum theory. In particular, its relationship with the EPR paradox and Bell
inequalities will be described.
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4. Non-Locality, Bell’s Theorem and GHZ States

Besides the success of quantum theory describing systems in the microscopic world and all the
experimental tests in its favor, the foundations of the theory have been widely discussed since its
proposal. Albert Einstein, working with Boris Podolski and Nathan Rosen, for instance, questioned
whether quantum mechanics could give a complete description of the physical reality. In a paper
published in 1935, they established their famous EPR paradox [15]. In their work, EPR conceived
an experiment in which Alice and Bob share an ensemble of entangled pairs of qubits, and each of
them can perform local measurements. Under this scenario, the measurement events are separated
by space-like intervals. At each instant, Alice may choose one out of two incompatible observables
Â1 or Â2 (analogously for Bob, B̂1 or B̂2). Assuming that any local action on each particle cannot
influence its counterpart (locality) and that results of the measurement pre-exist for any observable
independent of the choice (realism)7, they were able to show that two local measurements (one in
Alice’s and the other in Bob’s location) allow for determining the values associated with the four
involved observables. This finding holds in special systems with a high degree of symmetry and
is in contradiction with Heisenberg’s uncertainty principle. EPR concluded that there is no way in
which QM satisfies the assumption of local realism and then there should exist a more general theory
possibly described by a set of hidden variables (not available to the experimenter). This situation is
in analogy with the relationship between thermodynamics and statistical mechanics, in which the
position of particles in the phase space play the role of hidden variables. Inspired by this, Bell derived
a set of conditions (Bell inequalities) satisfied by predictions from any theory based on local hidden
variables, which, as mentioned before, quantum mechanics violates in certain scenarios [51]. Since
then many efforts have been made to experimentally test quantum theory against the hypothesis of
local realism, with a vast majority in favor of the first one. An important contribution with regards to
these experimental tests was reported in 2014. A loophole-free Bell inequality violation was obtained
using electron spins separated by 1.3 kilometers [52]. For a recent revision on the subject, we refer the
reader to reference [22].

Now, let us analyze the conflict between local realism and the predictions of quantum mechanics
by employing a GHZ state. This analysis was initially proposed by Greenberger, Horne and Zeillinger.
Here, we present an alternative version by Mermin [53]. For an intuitive introduction, see also [3,54].
An interesting extension which covers W states is given in [55].

First, recall the following relations valid for a single qubit:

σ̂x |0〉 = |1〉 , σ̂x |1〉 = |0〉 , σ̂y |0〉 = i |1〉 , σ̂y |1〉 = −i |0〉 . (26)

Consider three parties, Alice, Bob and Charlie, sharing a state |ψ000〉 as illustrated in Figure 2. Let
us calculate (σ̂x ⊗ σ̂y ⊗ σ̂y) |ψ000〉. It means that Alice, Bob, and Charlie apply σ̂x, σ̂y, and σ̂y locally on
their qubits, respectively. This calculation gives:

σ̂x ⊗ σ̂y ⊗ σ̂y |ψ000〉 =
1√
2

σ̂x ⊗ σ̂y ⊗ σ̂y (|000〉+ |111〉) = −1 |ψ000〉 . (27)

Thus, the GHZ state is an eigenstate of σ̂x ⊗ σ̂y ⊗ σ̂y with eigenvalue −1. By using the notation
employed in [3], we can say that the product:

mA
x mB

y mC
y = −1, (28)

7 The union of both premises is known as the assumption of local realism.
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where mA
x = ±1 indicates the result of the operation σ̂x on Alice’s qubit, for example. We can also

calculate σ̂y ⊗ σ̂x ⊗ σ̂y |ψ000〉 and σ̂y ⊗ σ̂y ⊗ σ̂x |ψ000〉 obtaining the same result, −1. In this way, we can
also write the outcome products as:

mA
y mB

x mC
y = −1, mA

y mB
y mC

x = −1. (29)

The product of the three terms in Equations (28) and (29) gives

mA
x mB

y mC
y mA

y mB
x mC

y mA
y mB

y mC
x = mA

x mB
x mC

x = −1. (30)

Please note that in the latter calculations we used the fact that
(

mA
y

)2
=
(

mB
y

)2
=
(

mC
y

)2
= +1.

Moreover, the calculation of σ̂x ⊗ σ̂x ⊗ σ̂x |ψ000〉 leads to a quite different result: +1 |ψ000〉, which
implies that:

mA
x mB

x mC
x = +1. (31)

x

y

A

x

y

B

xy
C

S

Figure 2. Bell nonlocality in a tripartite scenario. The source S emits three spin-1/2 particles prepared
in a GHZ state, traveling to one out of three different detectors located in A, B and C. Each part, namely
Alice, Bob and Charlie possess a Stern-Gerlach magnet, and can choose to perform either a σ̂x or a σ̂y

measurement, obtaining the eigenvalues +1 or −1, corresponding to turn either green or red lights on.

Thus, there is a contradiction between Equations (30) and (31). It indicates the fundamental
impossibility of associating pre-determined outcomes with every local measurement performed on a
quantum entangled state. In fact, the so-called GHZ paradox constitutes the first proof of a possible
violation of local realism without using an inequality8. Furthermore, it is possible to find generalized
versions of Bell inequalities for the tripartite case. For instance, Mermin, Ardehali, Belinski, and
Klyshko (MABK) independently derived a set of inequalities capable of testing violation of local realism
for states of N spin-1/2 particles [57–59]. In addition, Svetlichny made an important contribution to
the understanding of genuine tripartite nonlocality [60]. In his work, an inequality that allows for the

8 An alternative interesting proof of the violation local realism without using Bell inequalities is given by the Hardy
paradox [56].
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detection of genuine nonlocality in scenarios involving three observers, each capable of performing
one out of two dichotomic measurements, was presented for the first time. In [61], the notion of
tripartite entanglement is discussed in contrast to that of nonlocality in the context of the Svetlichny
inequality. See also [62] for a definition of genuine multipartite nonlocality that serves as an alternative
to Svetlichny’s original proposal. A more recent discussion on tripartite genuine nonlocality can be
found in [63].

Tripartite entangled states have been widely used to test the previsions of quantum theory via
Models of Local Hidden Variables. For instance, in [64], an experimental test of quantum nonlocality
using GHZ states was reported. An experimental setup to generate GHZ states and to test the
Svetlichny inequality was also reported [65]. An experimental verification of violations of Mermin’s
inequality by distributing tripartite GHZ states between independent observers was achieved [66],
closing locality and freedom-of-choice loopholes for three particles. Experimental investigations of
nonlocality dealing with W states have also been considered [67]. In [68], an analysis of nonlocality
robustness of GHZ and W states under noisy conditions and weak measurements was made. An
experimental demonstration of Mermin’s and Svetlichny’s inequalities for GHZ and W states was
discussed in [69]. The violation of Svetlichny inequality in the presence of several kinds of noise
for the case of GHZ states was studied in [70]. More recently Chaves, Cavalcanti, and Aolita have
found new different expressions of nonlocality on tripartite states by using the formalism of Bayesian
networks [71].

Several works have been published focusing on the use of both GHZ and W classes as quantum
resources to develop quantum protocols, such as quantum teleportation and superdense coding. In
fact, as we will see, both classes work in a different way depending on the specific task.

5. Quantum Information Protocols Using Three-Partite Entanglement

Tripartite entanglement can be widely used to execute tasks in the field of quantum information.
In this section, we give examples of applicability of this type of entanglement in some protocols.

5.1. Teleportation of a Single-Qubit State by Using a GHZ Channel and EPR Measurements

A scheme to perform quantum teleportation of a qubit state by using a GHZ state as the channel
was developed in [72]. In this scheme there are three users, namely Alice, Bob, and Charlie, as shown
in Figure 3. They share a GHZ state. Let Alice possess an additional qubit whose state she wants to
teleport, |φ〉 = α0 |0〉1 + α1 |1〉1. The state of the system is:

|Ψ〉 = (α0 |0〉+ α1 |1〉)1 ⊗
1√
2
(|000〉+ |111〉)234 . (32)

We can write this state in a more compact form as |Ψ〉 = ∑1
i=0 αi |i〉1⊗∑1

j=0
1√
2
|jjj〉234. In this case,

Alice makes a Bell-measurement on qubits 1 and 2. Let us separate the qubits in the following way:

|Ψ〉 = 1√
2

∑
i,j

αi |ij〉12 |jj〉34 . (33)

Let us calculate the projection of |Ψ〉 into the m, n element of the EPR basis on qubits 1 and 2,〈
φ
(2)
mn

∣∣∣
12

. It holds:

〈φmn|12 |Ψ〉 = |ηmn〉34 =
1
2 ∑

ijk
αi(−1)mk 〈k, k⊕ n|i, j〉12 ⊗ |j, j〉34 =

1

∑
k=0

(−1)mkαk |k, k⊕ n〉34 . (34)
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Figure 3. A possible scheme to perform quantum teleportation of a qubit state by using a three-particle
entangled state as the quantum channel.

Thus, the state Charlie and Bob share is one out of the four states of the EPR basis (Equation (1),
for d = 2) and depends on Alice’s measurement result. It is important to note that the new state shared
by Charlie and Bob is not a perfect EPR state because the coefficients of this state are α0 and α1. If Alice
obtains the state |ψ00〉, for instance, Bob and Charlie share the state:

|η00〉34 = ∑
k

αk |k, k〉 = α0 |00〉+ α1 |11〉 . (35)

Table 1 exhibits the states that can be shared by Bob and Charlie after Alice’s measurement. Let
us explore in more detail the case |η00〉 . As shown in [72], to proceed with the protocol, either Bob or
Charlie should carry out a measurement on a single qubit. Let us suppose that Alice wants to teleport
the state of her input qubit to Charlie. Then, she asks Bob to make a measurement on his part by using
the following basis:

|0〉3 = sin ϑ |x0〉3 + cos ϑ |x1〉3 , |1〉3 = cos ϑ |x0〉3 − sin ϑ |x1〉3 . (36)

Table 1. Results after Alice’s measurement, labeled by the indexes (m, n), and corresponding states
shared by Bob and Charlie.

Alice’s Result State Shared by Bob and Charlie

m n state
0 0 |η00〉 = α0 |00〉+ α1 |11〉
0 1 |η01〉 = α0 |01〉+ α1 |10〉
1 0 |η10〉 = α0 |00〉 − α1 |11〉
1 1 |η11〉 = α0 |01〉 − α1 |10〉

After carrying out proper substitutions in Equation (35), we have:

|η00〉34 = α0(sin ϑ |x1〉3 + cos ϑ |x2〉3) |0〉4 + α1(cos ϑ |x1〉3 − sin ϑ |x2〉3) |0〉4 . (37)

We can reorganize this expression as:

|η00〉34 = |x1〉3 (α0 sin ϑ |0〉4 + α1 cos ϑ |1〉4) + |x2〉3 (α0 cos ϑ |0〉4 − α1 sin ϑ |1〉4). (38)
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Thus, if Bob’s measurement outcome is |x1〉 , then the state of Charlie’s qubit (up to normalization)
is projected onto α0 sin ϑ |0〉4 + α1 cos ϑ |1〉4. Table 1 shows all possibilities after subsequent
measurements by Alice and Bob.

Let us come back to the general case by defining b0 ≡ sin ϑ and b1 ≡ cos ϑ. We can then write
Bob’s measurement basis as:

|k〉3 =
1

∑
j=0

(−1)jkbj⊕k
∣∣xj
〉

3 . (39)

In this way we have:

|ηmn〉34 =
1

∑
k=0

(−1)mkαk

(
1

∑
j=0

(−1)jkbj⊕k
∣∣xj
〉

3

)
|k⊕ n〉4 . (40)

To obtain the final state of Charlie’s qubit, we can calculate the projection of the above state on∣∣xj
〉
, where j = 0, 1.

∣∣χmnj
〉

4 =
〈

xj
∣∣
3 |ηmn〉34 =

1

∑
k=0

(−1)(m⊕j)kαkbk⊕j |k⊕ n〉 . (41)

The indexes (m, n, j) are related to the measurement outcomes on Alice and Bob parts. A complete
list of the correspondence between outcomes and final states for Charlie is presented in Table 2. To
recover the desired state, Charlie needs to apply a unitary transformation on his qubit. Which unitary
transformation he will choose depends on Alice’s and Bob’s measurement outcomes. Table 3 shows a
list of operations for all results. For instance, for the case (0, 0, 0), the state (up to normalization) is:

|χ000〉 = α0 sin ϑ |0〉4 + α1 cos ϑ |1〉4 . (42)

Table 2. Alice’s and Bob’s measurement outcomes and corresponding projected states in
Charlie’s location.

Alice’s Result Bob’s Result Charlie’s Unnormalized State

m n |xi〉 State
0 0 |x0〉 α0 sin ϑ |0〉+ α1 cos ϑ |1〉
0 0 |x1〉 α0 cos ϑ |0〉 − α1 sin ϑ |1〉
0 1 |x0〉 α0 sin ϑ |1〉+ α1 cos ϑ |0〉
0 1 |x1〉 α0 cos ϑ |1〉 − α1 sin ϑ |0〉
1 0 |x0〉 α0 sin ϑ |0〉 − α1 cos ϑ |1〉
1 0 |x1〉 α0 cos ϑ |0〉+ α1 sin ϑ |1〉
1 1 |x0〉 α0 sin ϑ |1〉 − α1 cos ϑ |0〉
1 1 |x1〉 α0 cos ϑ |1〉+ α1 sin ϑ |0〉

In this case, the required operation is the identity. The normalized state reads:

|ζ000〉 f =
α0 sin ϑ |0〉4 + α1 cos ϑ |1〉4√
|α0|2 sin2 ϑ + |α1|2 cos2 ϑ

. (43)

Let us see what happens when the result is (0, 0, 1). In this case, the state, up to normalization, is:

|χ001〉 = α0 cos ϑ |0〉4 − α1 sin ϑ |1〉4 ; (44)
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now, Charlie must apply the σ̂z operation on his qubit to recover the desired state. After normalization,
we have:

|ζ001〉 f =
α0 cos ϑ |0〉4 + α1 sin ϑ |1〉4√
|α0|2 cos2 ϑ + |α1|2 sin2 ϑ

. (45)

Explicitly, the unitary transformation is given by:

Û = (σ̂z)
m⊕j(σ̂x)

n. (46)

Thus, the final state is:
Û
∣∣χmnj

〉
=
∣∣ζmnj

〉
= ∑

k
αkbk⊕j |k〉 . (47)

Then, Charlie’s qubit holds in the same state as the initial one whenever θ = π/4, i.e., Bob’s
measurement is carried out in the |±〉 basis. Another work dealing with GHZ states as the quantum
channel can be found in [73].

Table 3. Alice’s and Bob’s results; and the corresponding operations needed to recover the desired state.

Result: (m, n, i) Operation

(0, 0, 0) Î
(0, 0, 1) σ̂z
(0, 1, 0) σ̂x
(0, 1, 1) σ̂zσ̂x
(1, 0, 0) σ̂z
(1, 0, 1) Î
(1, 1, 0) σ̂zσ̂x
(1, 1, 1) σ̂x

5.2. Teleportation of a Single-Qubit State: GHZ Channel and Measurement

Another possibility of using GHZ states in quantum teleportation is by employing a GHZ channel
and making a GHZ measurement on Alice’s side. An example of a protocol dealing with GHZ
measurements can be viewed in [74]. Let us suppose that now Alice wants to teleport a single qubit
and shares a GHZ entangled state with Bob. We want to consider the situation that Alice shares two
qubits of the shared GHZ state and that Bob has another one. Thus, now Alice has three qubits and Bob
has one. To diversify the mathematical approach used here, we intend to write the states by using the
formalism of the density matrix. This problem has been discussed in [75] where a maximally balanced
state as the channel and measurements was considered. This procedure was shown to help to improve
the quality of the protocol under the occurrence of bit-flip errors. Here, let us consider non-maximally
entangled GHZ states. It is interesting to take into account such states, because we can study how the
quality of the entanglement affects the final results. The effect of dealing with non-maximally GHZ
entangled states can also be examined in other scenarios. In [76], for instance, the problem of sharing a
multiqubit state by employing non-maximally GHZ entangled states is addressed.

Consider the scheme of Figure 4. Alice wants to teleport the state of qubit 1:

|φ〉1 = α0 |0〉1 + α1 |1〉1 =
1

∑
i=0

αi |i〉1 . (48)

The corresponding density operator is given by:

ρ̂1 = ∑
ij

αiα
∗
j |i〉 〈j| . (49)
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The channel is a GHZ-type state of the qubits 2, 3, 4, expressed in the form |ψ001〉 = β0 |000〉+
β1 |111〉 , where β0 = cos θ and β1 = sin θ. We can write this state as |ψ001〉ghz = ∑1

k=0 βk |kkk〉 .

Figure 4. Scheme to teleport a single-qubit state by using a GHZ state as the quantum channel. A GHZ
measurement is carried out on qubits 1, 2, 3.

The corresponding density operator of the whole system is:

ρ̂234 = ∑
k`

βkβ` |kkk〉 〈```| . (50)

The state of the whole system reads:

ρ̂ = ρ̂1 ⊗ ρ̂234 = ∑
ijk`

αiα
∗
j βkβ` |ikkk〉1234 〈j```|1234 . (51)

Let us separate the qubits that will be part of the GHZ measurement:

ρ̂ = ρ̂1 ⊗ ρ̂234 = ∑
ijk`

αiα
∗
j βkβ` |ikk〉123 〈j``|123 ⊗ |k〉4 〈`|4 . (52)

To perform the measurement, we will consider the basis introduced in Equation (10). After the
measurement, the unnormalized state is given by:

ρ̃I(µ, λ, ω) = ∑
j′k′

(−1)µj′(−1)µk′bµ⊕j′bµ⊕k′βk′⊕λβ j′⊕λδλ,ωαk′α
∗
j′
∣∣k′ ⊕ λ

〉
4

〈
j′ ⊕ λ

∣∣
4 . (53)

This state depends on the parameters related to the measurement, (µ, λ, ω). For the case where,
for example, (µ, λ, ω) = (0, 0, 0) we have:

ρ̃I(0, 0, 0) = ∑
j′k′

(bj′bk′β j′βk′δλ,ω)αk′α
∗
j′
∣∣k′〉 〈j′

∣∣ . (54)

More explicitly:

ρ̃I(0, 0, 0) = b2
0β2

0|α0|2 |0〉 〈0|+ b2
1β2

1|α1|2 |1〉 〈1|+ b0b1β0β1(α0α∗1 |0〉 〈1|+ α1α∗0 |1〉 〈0|). (55)

On the other hand:

ρ̃I(1, 1, 1) = ∑
j′k′

(−1)j′(−1)k′bj′⊕1bk′⊕1βk′⊕1β j′⊕1δλ,ωαk′α
∗
j′
∣∣k′ ⊕ 1

〉
4

〈
j′ ⊕ 1

∣∣
4 , (56)

or:
ρ̃I(1, 1, 1) = b2

1β2
1|α0|2 |1〉 〈1|+ b2

0β2
0|α1|2 |0〉 〈0| − b0b1β0β1(α1α∗0 |0〉 〈1|+ α0α∗1 |1〉 〈0|). (57)

The normalized state after the measurement is given by:

ρ̂I = ρ̂I(µ, λ, ω) =
P̂ρ̂0P̂†

P
=

ρ̃I
P

, (58)
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where:
P̂ = P̂µλω =

∣∣∣Φµ
λ

〉 〈
Φµ

λω

∣∣∣
123

(59)

is the projector associated with the GHZ measurement and:

P = Pµλδω = Tr(P̂ρ̂0) (60)

corresponds to probability of each outcome.
Each outcome (µ, λ, ω) requires a unitary transformation to recover the desired state. In the case

(0, 0, 0), the operation is just the identity. In the case (1, 1, 1), Bob needs to apply σ̂zσ̂x. Looking at the
expression of ρ̃I , it is possible to suggest that the general form of the operation needed is given by:

Û = Ûµλω = (σ̂z)
µ(σ̂x)

λ. (61)

After the measurement, by using a classical channel, Alice informs Bob which µ and λ are needed
to recover the desired state. We can check if this operation works by calculating Ûρ̃IÛ†.

ρ̃ f = Ûρ̃IÛ† = ∑
j′k′

bµ⊕j′bµ⊕k′βk′⊕λβ j′⊕λδλ,ωαk′α
∗
j′
∣∣k′〉 〈j′

∣∣ . (62)

In this way, the unitary transformation corrects the factor k′ ⊕ λ on the ket as well as the factor
(−1)µk′ . However, it is impossible to correct the factors involving b and β. The fidelity corresponding
to a specific outcome is:

Fµλω = Tr(ρ̂inρ̃ f ). (63)

The average fidelity reads:

F = ∑
µλω

Pµλω Fµλω = ∑
µλω

PµλωTr[ρ̂inρ̂ f ]. (64)

Here, ρ f is the final state after the unitary transformation. When we deal with GHZ maximally
entangled states, we know that the probability of obtaining a specific outcome is the same of the others
(the probability is the same for all outcomes). It is not true in more general cases. Then, this average
fidelity takes into account that when we deal with non-maximally entangled states, the probability of
obtaining an outcome depends on the amount of entanglement. Also, each outcome has a different
probability. In this case, we need to sum all the contributions of each outcome times the corresponding
statistical weight Pµλω. But:

ρ̂ f =
Û ˜̂ρIÛ†

Pµλω
=

ρ̃ f

Pµλω
. (65)

Thus:
F = ∑

µλω

Tr[ρ̂inρ̃ f ], (66)

or:
F = ∑

k`µνλω

|αk|2|α`|2b∗µ⊕kbµ⊕`βk⊕λβ`⊕λ. (67)

Performing all the sums, we have:

F = |α0|4 + |α1|4 + 2|α0|2|α1|2 (b0b1β0β1) . (68)

The expression above depends on the initial state. To obtain a quantity independent of the
parameters of the initial state, let us consider that the initial state can be parametrized as:

|Ψ〉in = |α0| |000〉+ |α1| eiϕ |111〉 . (69)



Universe 2019, 5, 209 15 of 33

In such a way, we can now calculate an average of all possible input states:

〈F〉 = 1
2π

∫ 2π

0

∫ 1

0
F(|α0|2, ϕ)d|α0|2dϕ. (70)

Evaluating the integral, we obtain:

〈F〉 = 2
3
+

1
3

sin(2θ) sin(2φ). (71)

In this expression, the first term corresponds to the classical contribution, and the second one
depends on the entanglement of the channel and measurement basis. Essentially, it has the same form
as the fidelity for the standard teleportation protocol, using EPR channel and measurements. However,
as pointed out in [75], in the presence of bit-flip noise, GHZ states allow for corrections of this kind of
errors. In this way, it is possible to improve fidelity.

In Figure 5, we plot the fidelity as a function of θ and φ. When the states on the channel and in
the measurement basis are maximally entanglement, the maximum fidelity is reached, corresponding
to 〈F〉 = 1, which is the ideal case.

Figure 5. Fidelity of teleportation corresponding to the case of a single-qubit state by using a GHZ
channel as a function of the entanglement parameters in the channel and measurement basis. Please
note that the maximum fidelity is obtained whenever θ = φ = π/4, i.e., for maximum entanglement.

5.3. Teleportation of a Two-Qubit State

A very interesting proposal involves the teleportation of a two-qubit entangled state [77]. An
EPR-like state, for example, can be teleported by using GHZ states as the channel [78]. Other schemes
have also been proposed [79,80]. Recently, a scheme to teleport an arbitrary two-qubit state by using
two GHZ states [81] was presented. In [82], a protocol to teleport a two-qubit state by using both GHZ
and W states simultaneously as the quantum channel was developed. Teleportation of an EPR state by
a non-maximally entangled GHZ quantum channel is also possible [83]. In [84], a scheme to perform
bidirectional teleportation of an EPR state by employing GHZ states was shown. In [85], a protocol
dealing with a composite channel using EPR and GHZ states to execute a multihop teleportation of a
two-qubit state is presented. In reference [86], a scheme is introduced to teleport an arbitrary two-qubit
state based on a channel consisting of a tripartite entangled state (GHZ or W) and an EPR state.

Figure 6 shows a possible scheme to teleport an EPR state. A GHZ state can be used as the
quantum channel, and a measurement in a GHZ basis on the qubits 1, 2, and 3 is performed. The state
of the system is:

(α0 |00〉+ α1 |11〉)12 ⊗
1√
2
(|000〉+ |111〉)345. (72)
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Figure 6. An EPR state can be teleported by using a GHZ state as the quantum channel. In this case, a
measurement in the GHZ basis is also necessary.

5.4. Teleportation of a GHZ State

Another possibility of a quantum teleportation protocol is the teleportation of a GHZ state. This
is an interesting aspect, because besides performing teleportation of information itself, the protocol
also provides a way of delivering quantum entanglement to initially distant locations. It is relevant in
the sense that the distribution of entanglement could be used, in principle, to connect several distant
users in a quantum network, for example. Several works have addressed this problem. In [87], the
teleportation of a GHZ state with N photons by using a two-photon entangled state as the quantum
channel was investigated. A scheme to teleport a GHZ state via entanglement-swapping is shown
in [88]. The teleportation of a GHZ state by using two W entangled states as the quantum channel was
considered in [89]. GHZ states can also be transmitted through a multihop teleportation scheme by
using Bell’s states as intermediate quantum channels [90]. In [91], a scheme to teleport a GHZ-like state
by employing three pairs of non-maximally entangled states as the quantum channel was proposed.
The configuration to make the protocol is illustrated in Figure 7. In [92], a similar protocol to the latter
was presented, but this time it was designed to teleport an arbitrary tripartite state.

11 4

6

8

Figure 7. Scheme to teleport a GHZ state. In this scheme, three EPR states are used as the quantum
channel and EPR measurements are taken on qubits 1, 4 and 2, 6 and 3, 8, respectively. At the end, the
qubits 5, 7, 9 hold in a GHZ state.

Figure 7 shows a possible scheme to develop a teleportation protocol of a GHZ state by using
three EPR states as the quantum channel. The state of the system is given by:

|Ψ〉 = |φ〉123 ⊗ |η〉45 ⊗ |χ〉67 ⊗ |ζ〉89 , (73)

where:
|φ〉123 = α0 |000〉123 + α1 |111〉123 , (74)

|η〉45 = ∑
j

bj |jj〉45 , |χ〉67 = ∑
k

ck |kk〉67 , |ζ〉89 = ∑
`

x` |``〉89 . (75)
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In this scheme, Alice makes three EPR measurements on her side. The measurements are taken
on particles (1, 4), (2, 6) and (3, 8). Reference [91] shows the procedure in detail to finish the protocol.

5.5. Teleportation of a Single-Qubit State Using a W Channel

In [93], a possible scheme to deal with a single-qubit state teleportation by employing a W state as
the channel and an EPR measurement was reported, showing that W states are suitable to make the
protocol in a probabilistic manner. In that work, some calculations of probabilities were erroneous.
Subsequently, the errors were corrected by [94] and [95]. However, although the conclusion presented
in [93] is correct, the calculations for the case of a W state with the generic state is not quite precise. As
follows, we explicitly perform the calculations for the teleportation of a qubit state by using a generic
W state. The state to be teleported is:

|φ〉1 = α0 |0〉1 + α1 |1〉1 . (76)

The channel is given by:

|W〉234 = a |100〉234 + b |010〉234 + c |001〉234 . (77)

The general state of the system reads:

|Ψ〉 = [α0 |0〉+ α1 |1〉]1 ⊗ [a |100〉+ b |010〉+ c |001〉]234 . (78)

More explicitly, we have:

|Ψ〉 = α0a |0100〉1234 + α0b |0010〉1234 + α0c |0001〉1234

+ α1a |1100〉1234 + α1b |1010〉1234 + α1c |1001〉1234 . (79)

Now, we can write the states of qubits 1 and 2 in terms of the EPR basis.

|Ψ〉 = α0a√
2

(∣∣ψ+
〉
+
∣∣ψ−〉)12 |00〉34 +

α0b√
2

(∣∣Φ+
〉
+
∣∣Φ−〉)12 |10〉34

+
α0c√

2

(∣∣Φ+
〉
+
∣∣Φ−〉)12 |01〉34 +

α1a√
2

(∣∣Φ+
〉
−
∣∣Φ−〉)12 |00〉34

+
α1b√

2

(∣∣ψ+
〉
−
∣∣ψ−〉)12 |10〉34 +

α1c√
2

(∣∣ψ+
〉
−
∣∣ψ−〉)12 |01〉34 ; (80)

We can write this expression in the following way:

|Ψ〉 = |
Φ+〉12√

2
[α0b |10〉+ α0c |01〉+ α1a |00〉]34 +

|Φ−〉12√
2

[α0b |10〉+ α0c |01〉 − α1a |00〉]34

+
|ψ+〉12√

2
[α0a |00〉+ α1b |10〉+ α1c |01〉]34 +

|ψ−〉12√
2

[α0a |00〉 − α1b |10〉 − α1c |01〉]34. (81)
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Separating the qubits 3 and 4 results in:

|Ψ〉 = |
Φ+〉12√

2

[(
α0b |1〉3 + α1a |0〉3

)
|0〉4 + α0c |0〉3 |1〉4

]

+
|Φ−〉12√

2

[(
α0b |1〉3 − α1a |0〉3

)
|0〉4 + α0c |0〉3 |1〉4

]

+
|ψ+〉12√

2

[(
α0a |0〉3 + α1b |1〉3

)
|0〉4 + α1c |0〉3 |1〉4

]

+
|ψ−〉12√

2

[(
α0a |0〉3 − α1b |1〉3

)
|0〉4 − α1c |0〉3 |1〉4

]
. (82)

Let us suppose that after a measurement on qubits 1 and 2 in the EPR basis, Alice obtains |ψ+〉. In
this case, the unnormalized state of qubits 3 and 4 is given by:

1√
2

[(
α0a |0〉3 + α1b |1〉3

)
|0〉4 + α1c |0〉3 |1〉4

]
. (83)

It is worth noting that the joint state of the qubits 3 and 4 also contains EPR entanglement. In this
way, after a single-qubit measurement, it is possible to complete the protocol. If the qubit 4 is projected
on the |0〉 state, then the state of qubit 3 (up to normalization) will be |η〉3 = α0a |0〉3 + α1b |1〉3 . This
state looks like the initial state |φ〉1. However, there is an imperfection due the coefficients a and b. We
can say that the initial state was teleported, but contained an imperfection. On the other hand, if the
qubit 4 is projected on the state |1〉, teleportation does not occur. In this way, we can conclude that
the protocol works probabilistically. A further paper on the use of W states as the quantum channel
is stated in [96]. In [97], the teleportation of a single-qubit state was also analyzed. After that, an
important contribution was provided by [98] where it was shown that there is a type of W state that can
be used for perfect teleportation and superdense coding. This work was generalized in [99]. In [100], a
composite W-Bell channel is used to execute quantum teleportation and superdense coding protocols.

5.6. Teleportation of a W State

A quantum teleportation scheme of a tripartite W state was presented in [101]. In that scheme,
shown in Figure 8, Alice wants to teleport the state,

|φ〉123 = α0 |001〉123 + α1 |010〉123 + α2 |100〉123 , (84)

on particles 1, 2, 3. She shares two entangled states with Bob, a GHZ state, and an EPR state, which
will be used as the quantum channels. The EPR state is given by:

|ψ〉45 = a0 |00〉45 + a1 |11〉45 , (85)

and the GHZ state is:
|η〉678 = β0 |000〉678 + β1 |111〉678 . (86)

The state of the whole system reads:

|Ψ〉 = |φ〉123 ⊗ |ψ〉45 ⊗ |η〉678 . (87)
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Figure 8. A possible way of teleporting a W state is illustrated. A GHZ state and an EPR channel are
used as the quantum channel.

Particles 1, 2, 3, 4, and 6 are on Alice’s side, while particles 5, 7, and 8 are on Bob’s side. To execute
the teleportation, two EPR measurements are taken on particles 1, 6 and 3, 4. After the measurements,
the resultant state involves particles 2, 5, 7, and 8. Thus, it is necessary to trace out particle 2. Here,
the protocol is more complicated than that discussed previously. Now, it is necessary to employ
combinations of a Hadamard gate and a CNOT gate as well as to introduce an auxiliary particle. All
procedures to carry out are presented in reference [101]. More recently, another scheme to teleport a W
state was provided by reference [102] where two W states are used as the quantum channel.

5.7. Dense Coding

The original Dense Coding was presented by using a two-entangled state as the resource, but
tripartite entanglement is also suitable to make the protocol work [103]. Several schemes have been
proposed to do so. Two examples of controlled dense coding dealing with GHZ states can be accessed
in [104,105]. The W state is also suitable to make a controlled dense coding protocol [106]. Super Dense
Coding with W states was studied recently in [107]. In [108], a scheme was proposed to implement a
dense coding protocol by employing tripartite entanglement in cavity QED. In [109] the use of GHZ
and W states to make Deterministic Dense Coding was analyzed.

5.8. Quantum Cryptography and Quantum Secure Communication

Quantum Mechanics can also be used to perform cryptographic protocols. The base of this
field was founded by Wiensner [110]. Subsequently, other fundamental steps were due to C. Bennet
and G. Brassard (scheme known as BB84 protocol) [111], and A. Ekert [112]. After these initial
developments, the use of multipartite entanglement has been considered. In [113], it was shown that
a GHZ state can be used to make the quantum secret sharing protocol. In [114], some variants of
protocols of quantum secure communication dealing with W states were presented.

Schemes to establish a three-party quantum secure communication using GHZ states are provided
in [115,116]. In [117], a protocol is proposed for quantum secure direct communication using W
states. Secure quantum protocols also have been studied in the framework of Measurement Device
Independence (MDI). In [118], for instance, a MDI Quantum Key Distribution (QKD) scheme was
developed that can work by using standard optical components with low detection efficiency and
highly lossy channels. The technology employed in MDI-QKD can be used to perform long-distance
MDI multiparty communication. In [119], this idea was employed to propose a feasible scheme for
distributing post-selected GHZ entanglement over a distance of more than 100 km in an experimentally
relevant parameter regime.
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5.9. Other Developments

In [120], a quantum protocol to send and receive messages anonymously was presented where
n players have access to a shared n-qubit GHZ entangled state. Recently, a scheme to transmit an
anonymous message in a network employing W-type states with N qubits [121] was developed.
In [122], quantum algorithms to the generation of GHZ and W states of n qubits are proposed to be
used on quantum networks. In [123], tripartite entanglement in a non-inertial frame with one of the
parties subject to a uniform acceleration is examined. Tripartite entanglement also has been studied in
the context of distillation of entanglement.

Methods of distillation of GHZ states can be accessed in [124,125]. Protocols for the optimal
distillation of W states were given in [126]. In [127], a method for entanglement purification of
three-qubit states by using weak measurements is presented. In [128], a distillation of GHZ-type states
from two copies of a mixed state in a single step was shown.

The relationship between tripartite entanglement and quantum computing can also be explored.
In [129], it was demonstrated that a GHZ state can be used as an ingredient in the construction of a
universal quantum computer. The relationship between state complexity and quantum computing is
discussed in [130], including GHZ and W states in the analysis. A discussion on the computational
power of GHZ and W states is provided in [131]. In [132], a conceptual design for a quantum
block-chain by using a temporal entangled GHZ state was proposed.

6. Production of Three-Partite Entanglement

The production of multipartite entanglement has attracted much attention. An experimental
demonstration of five-qubit entanglement was realized by Zhao and collaborators [133] in
2004. In 2011, Huang and colleagues reported an experimental realization of an eight-photon
Greenberger—Horne—Zeilinger state. In the same year, the creation of an entangled state of 14 qubits
was also presented [134]. The first experimental production of a three-photon GHZ state was reported
in 1999 [135]. Since then, several works have been proposed, employing different frameworks. Recently,
the deterministic generation of an 18-qubit entangled GHZ state was achieved. An experimental
realization of a W state was reported in [136]. In [137], a pioneer scheme for generating three-particle
entanglement was introduzed by using just two pairs of entangled particles from independent
emissions. Another pioneer work involving GHZ states is by Bouwmeester and colleagues [135],
observing the GHZ entanglement for three qubits in the polarization degree of freedom of photons.
The creation of maximally entangled GHZ states by using Nuclear Magnetic Resonance (NMR) is also
possible [138]. A proposal for a creation of GHZ and W states via quantum walks can be accessed
in [139]. Multipartite entanglement can also be generated by using a single-neutron interferometer [140].
In [141], a scheme was proposed to prepare a W state using parametric down-conversion. Schemes to
prepare GHZ and W states of three distant atoms were provided in [142]. A method to generate
an n-qubit W state in cavity QED was reported in [143]. In [144], a scheme to generating W
states from atomic ensembles is presented. The creation of GHZ and W states with a trapped-ion
quantum computer was reported in [145]. The preparation of spin-qubit GHZ and W states in a
quantum-dot-microcavity system was discussed in [146]. It is also possible to generate W states
of three superconducting qubits [147]. A scheme to generate entanglement between three atoms
trapped in cavities via quantum Zeno dynamics was proposed in [148]. In [149], we can encounter a
scheme to generate GHZ and W states from cavities with Jaynes–Cummings Hamiltonians. In [150], a
procedure to creating three-photon polarization entanglement was shown and the characterization of
the produced states was made. Such states are used to test local realism. Recently, a scheme to generate
GHZ states encoded in the path degree of freedom of three photons was presented in [151]. Another
recent proposal for the generation of tripartite entanglement can be accessed in [152] where the creation
of W states employing cross-Kerr nonlinearity and quantum dots is addressed. The production of
larger states involving multi-qubits is desirable to make protocols involving quantum networks [48].
Several steps have been achieved in this direction. For example, A scalable scheme to create W states
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was presented in 2017 [153]. In [154], a deterministic scheme for preparing W states of size of any
power of 2 was presented. Recently, a scheme to prepare an N-qubit GHZ state in a chain of four-level
Rydberg atoms was proposed in [155]. In [156], the creation of entangled states with up to 20 qubits
was demonstrated.

7. Detection and Characterization of Tripartite Entanglement

The detection of multipartite entanglement is a hard task [157]. Several efforts, both theoretical and
experimental ones, have been made to improve the methods to do so. The detection of entanglement
involves a key ingredient: the construction of Entanglement Witness [158,159]. In several practical
situations, it is possible to certify entanglement through the violation of some inequality that indicates
nonlocality. However, the number of inequalities increases when the number of qubits increases.
While a measurement of nonlocality depends on correlations, an Entanglement Witness is an operator
corresponding to a physical observable. The first GHZ state-analyzer was proposed in [160] where
two of the eight GHZ states can be distinguished by using linear optical elements. After this first
step, several contributions were reported. In the [161], a scheme for a universal tripartite GHZ state
analyzer using two-photon polarization QND is presented9 employing parity detectors based on weak
nonlinearity. The method allows for discrimination of all eight states with a probability near 1.

In [163], a method to construct a nondestructive n-qubit GHZ state analyzer is presented.
The proposal of a GHZ state analyzer using only linear-optics elements through hyperentangled
states10 with polarization and momentum degrees of freedom can be found in [166]. Another
scheme involving GHZ hyperentangled states was proposed recently [167]. In [168], the existence
of tripartite entanglement in a noninteracting Fermi gas was investigated and some Entanglement
Witnesses were introduced in that scenario. A recent study on separability criteria of three-qubit
GHZ states can be accessed in [169]. In [170], sufficient conditions for detecting genuine tripartite
entanglement are established that provide an operational point of view to measure and detect this type
of entanglement. Experimental schemes to identify the entanglement classes of tripartite states can be
accessed in [171,172]. A powerful tool to describe a density matrix of a system is the method known
as quantum state tomography, which allows for the characterization of a quantum state [173]. These
methods have been employed in the study of tripartite entangled states. In [174], an experimental
tomographic reconstruction of a three-photon polarization GHZ state was realized. The more recent
work [175] uses the method for GHZ states. In [176], a scheme for the experimental generation of a W
state was introduced alongside its full characterization by using a quantum state tomography method.

8. Remote Preparation

Besides the quantum teleportation protocol, an additional type of protocol dealing with the
quantum state transfer is the remote preparation protocol (RSP) [177]. There are several possibilities
of implementing RSP involving different kinds of channels. It is possible to use RSP to prepare
single-qubit states and states with two or more qubits [178]. Currently, this topic is studied by
considering the preparation of multipartite entangled states. It is an interesting task since the remote
production of entanglement can help to use this resource to establish quantum communication
between distant multi-users and establish quantum distributed computation [179]. For instance,
two non-maximally entangled three-qubit GHZ states can be used to prepare a four-qubit GHZ
state [180] remotely. The remote preparation of a three-qubit state by using GHZ states was considered
in [181]. GHZ states can also be used as the quantum channel for the remote preparation of arbitrary
states of one and two qubits [182]. In [183], two maximally entangled GHZ states are employed as

9 Here, QND means Quantum Non-demolition related to the idea of a QND measurement [162].
10 Hyperentanglement is a type of entanglement dealing with multiple different degrees of freedom of a system. More details

can be found in [164,165].
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the quantum channel for the remote preparation of an arbitrary equatorial two-qubit state. A scheme
for preparing atomic states remotely by using GHZ states is also possible [184]. In [185], W states are
used for the remote preparation of single and two-qubit states. A scheme for the remote preparation of
a two-qubit state by using two W-type states as the quantum channel was developed, as well [186].
The remote preparation of m-qubit states by using non-maximally GHZ entangled states was studied
in [187]. In [188], an experimental demonstration of remote preparation of three-photon entangled
states by using a single photon measurement was reported on. In [189], a scheme of joint remote
preparation of an m-qubit state by using a d-dimensional GHZ state was presented. In [190], EPR pairs
are used as the quantum channel to preparing an arbitrary three-qubit state. Tripartite entangled states
can not only be employed to remotely prepare single and two-qubit states, but they can also be remotely
prepared themselves. In [191], a scheme for preparing W states remotely by using two four-particle
GHZ states as the quantum channel was presented. A proposal to remotely preparing a three-particle
state by employing a three-particle orthonormal basis projective measurement can be accessed in [192].
An idea for remotely preparing W states of three and four qubits using tripartite GHZ states was
presented in [193]. In [194], an efficient scheme for the remote preparation of a 2n-qubit W state via n
three-qubit GHZ states was provided. A scheme to prepare a tripartite equatorial state by using three
maximally entangled GHZ states was proposed in [195]. In [196], a protocol for remotely preparing a
tripartite W-type state by using an eight-qubit state as the quantum resource was presented.

9. Continuous-Variable Systems

To this point, we have explored several aspects involving tripartite entanglement of discrete
variables, which refers to qubit-based developments such as photon polarization or the spin of
the electron. It is worth noting that it is also possible to deal with multipartite entangled states
in the domain of continuous variables [197,198]. Several quantum information protocols have been
considered in this domain where the variables have a continuous spectrum of eigenvalues. For instance,
an analysis of quantum teleportation of quantum states with continuous variables was presented
in [199]. In [200], an experimental investigation of this subject was reported on. Entanglement
swapping that involves continuous variables was investigated in [201] and [202]. A study that develops
necessary conditions of separability of a multiparty continuous-variable state can be found in [203]. A
detailed discussion on quantum information and continuous variables is presented in [204]. In [205],
criteria were derived to detect genuine multipartite entanglement by using continuous-variable
measurements including the continuous-variable GHZ state. A complete analysis of three-mode
Gaussian entangled states is shown in [206]. In that work, the counterparts of GHZ and W states in
the continuous-variable scenario are presented. Experimentally, the creation of a tripartite entangled
state in continuous variables was realized [207]. In [208], the generation of entanglement among
three beams of light with different wavelengths was demonstrated. Reference [209] reports on
the experimental demonstration of tripartite entanglement where correlations involving energies
and emission times of photons occur. In [210], hierarchies of separability criteria of multipartite
entanglement for continuous-variable states are discussed. Recently, the development of a full quantum
description of triple-photon states in the continuous-variable domain was presented in [211].

10. Noisy Environments

If we desire to consider more realistic scenarios of generation and detection as well as more realistic
designs of protocols involving entanglement, we need to include some effects of the environment. Due
to the interaction between the system of interest and the environment, several errors can affect the
quality of the quantum protocols. The effect of decoherence, for example, can degrade the entanglement
of quantum channels. Thus, several works have analyzed the noise effect in the execution of quantum
protocols. Examples of noisy quantum teleportation protocols can be accessed in [212,213]. The effect
of noise in tasks dealing with tripartite entanglement has also been attracting attention. For example,
the influence of bit-flip noise in the entanglement and nonlocality of GHZ states was investigated in a
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recent work [214]. In [215], the decay of entanglement of N-particle GHZ states due the interaction
with the environment was considered. The impact of a decoherence process on the entanglement of
GHZ and W states was analyzed in [216]. In [217], the quantum discord of a W state in the presence
of noise was studied. The evolution of the quantum discord under noisy effects to GHZ and W
states is analyzed in [218]. In [219], some properties of GHZ and W states under a depolarizing
noise are discussed. In [220], noise effects on the quantum correlations of a three-qubit system was
studied. A comparison between GHZ and W noisy channels that execute the quantum teleportation
of a single-qubit state can be accessed in references [221,222]. In [223], the effect of the generalized
amplitude damping channel on GHZ states was investigated. In [224], the problem of teleporting an
unknown atomic state through a noisy GHZ channel was addressed. The entanglement of GHZ states
with decoherence in non-inertial frames is discussed in [225]. In [226], the quantum teleportation by
using noisy bipartite and tripartite entangled states was studied where one of the users experiments
with a uniform acceleration.

In [227], schemes based on GHZ states are presented to make quantum secret sharing protocols
immune to some kinds of collective noise. Effects of a particular type of noise in GHZ channels
on remote preparation of states has also been investigated for a single-qubit state [228,229] and
a two-qubit state [230,231]. In [232], GHZ states are considered for remote state preparation of
quantum states in noisy environments. The relationship between weak measurements and GHZ
entanglement distribution in the presence of noise was also investigated [233]. The robustness of
GHZ and W states against decoherence was studied experimentally in [234]. In [235], a scheme for
quantum communication in noisy environments by using a hybrid channel Bell-GHZ was presented.
Teleportation of a GHZ state in the presence of noisy channels was analyzed in [236]. Finally, the
robustness of cat-like states under Pauli noises was explored in [237].

11. Conclusions

In this work, we have addressed several aspects of tripartite entanglement with a special focus on
discrete systems. We have started revisiting the main properties of this type of entanglement. We have
also made some remarks on bipartite entanglement to clarify our discussion on tripartite entanglement.
Subsequently, we have explored in more detail the two inequivalent classes of tripartite entanglement,
namely GHZ and W, and defined the corresponding basis. We proceeded by reviewing the relationship
between Bell’s Theorem and the GHZ states. After that, we stated some examples of quantum
information protocols working with tripartite entanglement. We gave special attention to quantum
teleportation protocols, performing some calculations and exhibiting several possible schemes. After
this, we listed the main contributions to the literature relevant to the production and detection of
tripartite entanglement. Then, we explored some aspects important to remote preparation protocols
and reviewed several characteristics of tripartite entanglement in the continuous-variable regime.
Finally, we discussed the study of tripartite entanglement in the presence of a noisy environment in
several scenarios.
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