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Abstract: We study the dynamics of electromagnetic fields of regular rotating electrically charged
black holes and solitons replacing naked singularities in nonlinear electrodynamics minimally
coupled to gravity (NED-GR). They are related by electromagnetic and gravitational interactions and
described by the axially symmetric NED-GR solutions asymptotically Kerr-Newman for a distant
observer. Geometry is described by the metrics of the Kerr-Schild class specified by Tt

t = Tr
r (pr = −ρ)

in the co-rotating frame. All regular axially symmetric solutions obtained from spherical solutions
with the Newman-Janis algorithm belong to this class. The basic generic feature of all regular objects
of this class, both electrically charged and electrically neutral, is the existence of two kinds of de Sitter
vacuum interiors. We analyze the regular solutions to dynamical equations for electromagnetic fields
and show which kind of a regular interior is favored by electromagnetic dynamics for NED-GR objects.

Keywords: regular black holes; nonlinear electrodynamics; de Sitter vacuum

1. Introduction

The question of existence of astrophysical electrically charged black holes remains open and
is actively studied in the literature. As early as in 1974 it was shown [1] that a black hole with the
angular momentum J in an external magnetic field B captures charged particles up to acquiring the
charge q = 2BJ. Detailed investigation of mechanisms of charging a black hole in its interaction
with a surrounding ionized cosmic plasma in the presence of a magnetic field has been done in the
paper [2]. Self-consistent analysis in the frame of linear electrodynamics of accretions of collisionless
charged fluid on a neutral black hole has shown that an acquired charge depends on the accretion
velocity and is estimated within the range 0 < q/m < 0.99 [3]. In Reference [4] the method has been
proposed for establishing the fact that a black hole is charged, with using the process of reflection of an
electromagnetic wave.

For electrically charged black holes a substantial enhancement of efficiency of extraction of
a rotational energy was predicted for particles collisions near their event horizons [5–8] and in
vicinities of naked singularities without horizons [9], for powering outflows from accretion disk-fed
black holes [10–13] and for accelerating ultra-high energy cosmic rays [14]. Detailed calculations of
gravitational radiation generated in direct collisions of black holes revealed also more substantial
increasing energy output with increasing their charges than with increasing their angular momenta [15].
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Electrically charged black holes can arise also in collisions of high energy particles [16,17],
including the mass range where this process is dominated by the classical General Relativity [16,18–20].

In the linear electrodynamics coupled to gravity the fields of rotating electrically charged bodies
are described by the Kerr-Newman solution to the source-free Einstein-Maxwell equations [21]

ds2 = −dt2 +
Σ
∆

dr2 + Σdθ2 +
(2mr− q2)

Σ
(dt− a sin2 θdφ)2 + (r2 + a2) sin2 θdφ2 (1)

where
Σ = r2 + a2 cos2 θ; ∆ = r2 − 2mr + a2 + q2, (2)

and associated electromagnetic potential is Ai = −(qr)/Σ[1; 0, 0,−a sin2 θ].
Detailed analysis of this solution has been presented by Carter who found that the parameter a

coupled with the mass m gives the angular momentum J = ma and coupled with the charge q gives an
asymptotic magnetic momentum µ = qa, so that the gyromagnetic ratio q/m is the same as predicted
for a spinning particle by the Dirac equation [22]. This suggested the classical image of the spinning
electron visualized as a massive charged source of the Kerr-Newman fields [23–25] and motivated
further studies towards a search for models of material sources for the Kerr-Newman fields.

Carter has also revealed the global causality violation in the Kerr-Newman geometry for the case
of a charged spinning object without horizon, a2 + q2 > m2. In this case there exist closed time-like
curves which originate in the deep interior region where the vector ∂/∂φ is time-like but can extend
over the whole manifold and cannot be removed by taking a covering space [22].

The source models involving screening or covering of the causally dangerous region can
be classified as disk-like [23,26,27], shell-like [25,28], bag-like [24,29–34] and string-like [35,36].
The problem of matching the Kerr-Newman exterior to a rotating material source does not have
a unique solution, since one is free to choose the boundary between the exterior and the interior [23].

The Kerr-Newman solution has been obtained from the spherical Reissner-Nordström solution
with using the Newman-Janis algorithm [37]. As it was shown by Gürses and Gürsey [38],
this algorithm belongs to the Trautman-Newman complex coordinate translations and works for
the algebraically special metrics of the Kerr-Schild class [39] (written here in the units c = G = 1)

ds2 = g(r)dt2 − dr2

g(r)
− r2dΩ2; g(r) = 1− 2M(r)

r
; M(r) = 4π

∫ r

0
ρ̃(x)x2dx (3)

which present the algebraically degenerated solutions to the Einstein equations [38,39]1

Most of presented in the literature regular charged black hole solutions [40–50] belong to the
Kerr-Schild class (for a review see Reference [51]).

For the metrics (3) the source terms have the algebraic structure such that [52]

Tt
t = Tr

r (pr = −ρ). (4)

Regular spherical solutions with stress-energy tensors from the class (4) satisfying the weak energy
condition (WEC), which requires non-negative density as measured by any observer on a time-like
curve, have obligatory de Sitter center p = −ρ [52–54]. Regular solutions which describe electrically
charged objects belong to this class automatically since for any gauge-invariant Lagrangian L(F) a
stress-energy tensor of an electromagnetic field has the algebraic structure specified by (4) [47,55].

1 More general approach using the basic properties of metrics from the Kerr-Schild class, has been applied for obtaining the
axially symmetric solutions in the non-commutative geometry [40].
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In the Boyer-Lindquist coordinates the regular axially symmetric metric reads [38]

ds2 =
2 f − Σ

Σ
dt2 +

Σ
∆

dr2 + Σdθ2 − 4a f sin2 θ

Σ
dtdφ +

(
r2 + a2 +

2 f a2 sin2 θ

Σ

)
sin2 θdφ2. (5)

Here a is the specific angular momentum, the Lorentz signature is [- + + +], and

f (r) = rM(r); ∆ = r2 + a2 − 2 f (r). (6)

The Boyer-Lindquist coordinates r, θ, φ are related with the Cartesian coordinates x, y, z by
x2 + y2 = (r2 + a2) sin2 θ; z = r cos θ. The surfaces of constant r are the oblate confocal ellipsoids
r4 − (x2 + y2 + z2 − a2)r2 − a2z2 = 0 which degenerate, for r = 0, to the equatorial disk [56]

x2 + y2 ≤ a2, z = 0, (7)

centered on the symmetry axis and bounded by the ring x2 + y2 = a2, z = 0.
In the Kerr-Newman geometry 2 f (r) = 2mr− q2 and spacetime is singular on the ring. In regular

geometries 2 f (r) = 2M(r)r, at approaching the disk M(r) → 4πρ0r3/3 and 2 f (r) → 8πρ0r4/3
where ρ0 = ρ̃(r = 0) and tilde refers to a related spherical solution.. In the metric (5) (2 f (r)/Σ)− 1→
8πρ0r2/3− 1 since r2/Σ → 1 in this limit [55]. In the dimensional units 2 f (r)/Σ− 1 → Λr2/3− 1
where Λ = 8πGρ0/c2 and the metric (5) represents the maximally symmetric de Sitter spacetime
with the constant curvature, of the 1-st kind for Λ > 0 and of the 2-nd kind for Λ < 0 [57], the latter
is frequently referred to as anti-de Sitter ([58] and references therein). In both cases on the disk the
metric (5) reduces to ds2 = −dt2 + (Σ/(r2 + a2))dr2 + Σdθ2 + (r2 + a2) sin2 θdφ2 and represents the
Minkowski metric in the ellipsoidal coordinates. It follows that the disk is intrinsically flat together
with the ring and totally regular (for more details see Reference [55]). The de Sitter asymptotic with
the positive density (Λ > 0) for the considered class of regular metrics is fixed by imposing the weak
energy condition on related spherical solutions. In this case the totally regular disk r = 0 is filled with
the de Sitter vacuum with the positive density ρ̃(r = 0).

The energy density component of a stress-energy tensor responsible for the metric (5) achieves
the value ρ = ρ̃(r = 0) at approaching the disk in full consistency with the asymptotical behavior of
the metric.

The anisotropic stress-energy tensors responsible for geometries with the Kerr-Schild metrics (5)
can be written in the form [38]

Tµν = (ρ + p⊥)(uµuν − lµlν) + p⊥gµν (8)

in the orthonormal tetrad

uµ =
1√
±∆Σ

[(r2 + a2)δ
µ
0 + aδ

µ
3 ], lµ =

√
±∆
Σ

δ
µ
1 , nµ =

1√
Σ

δ
µ
2 , mµ =

−1√
Σ sin θ

[a sin2 θδ
µ
0 + δ

µ
3 ]. (9)

The sign plus refers to the R-regions outside the event horizon r+ and inside the internal horizon
r− (shown in Figure 1 Left) where the vector uµ is time-like. The vectors mµ and nµ are space-like in all
regions. The eigenvalues of the stress-energy tensor (8), calculated in the co-rotating references frame
with the angular velocity ω(r) = uφ/ut = a/(r2 + a2), are defined by

Tµνuµuν = ρ(r, θ); Tµνlµlν = pr = −ρ; Tµνnµnν = Tµνmµmν = p⊥(r, θ). (10)

This gives [38]

ρ(r, θ) =
2( f ′r− f )

Σ2 =
r4

Σ2 ρ̃(r); p⊥(r, θ) =
2( f ′r− f )− f ′′Σ

Σ2 =

(
r4

Σ2 −
2r2

Σ

)
ρ̃(r)− r3

2Σ
ρ̃′(r). (11)
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The density and pressures are related by [59]

pr(r, θ) = −ρ; p⊥ + ρ =
r|ρ̃′|
2Σ2 S(r, z); S(r, z) = r4 − z2 2a2

r|ρ̃′| (ρ̃− p̃⊥). (12)

The prime denotes the derivative with respect to r. r2/Σ→ 1 as z→ 0 and (p⊥+ ρ)→ −rρ̃′(r)/2.
For regular spherical solutions satisfying WEC regularity requires ρ̃′ ≤ 0 and rρ̃′(r)→ 0 as r → 0 [54].
Equation of state on the disk reads thus p = −ρ = −ρ̃(r = 0) and describes the rotating de Sitter
vacuum in the co-rotating frame [55].

The basic generic feature of all regular rotating compact objects of the Kerr-Schild class is the
interior de Sitter vacuum disk (7) of the radius a [55,59]. The mass parameter m appearing in the
Kerr-Newman limit is the finite positive mass, m =M(r → ∞), generically related to the interior de
Sitter vacuum and to breaking of the spacetime symmetry from the de Sitter group [54].

Spacetime of regular rotating objects of this class can have at most two horizons defined by
∆(r) = 0, and at most two ergospheres which are surfaces of a static limit gtt = 0 [59]. Extraction
of a rotational energy is possible in ergoregions where gtt < 0 (see References [50,60,61] and
references therein).

The basic relation for p⊥ + ρ ≥ 0 in (12) implies a possibility of generic violation of the weak
energy condition which is valid if and only if ρ ≥ 0 and pk + ρ ≥ 0 [57]. The first of these two
conditions is satisfied according to (4), so that satisfaction of WEC requires p⊥ + ρ ≥ 0. As a result
regular rotating compact objects can have two different kinds of interiors [51,59,62].

If a related spherical solution violates the dominant energy condition (DEC, which requires ρ ≥ pk
for any principal pressure [57]), the function S(r, z) in Equation (12) vanishes only at approaching the
disk (7). In this (first) type of interior p⊥ + ρ ≥ 0, WEC is satisfied for a rotating object and its interior
is presented by the de Sitter vacuum disk r = 0.

If a related spherical solution satisfies the dominant energy condition, ρ̃ ≥ p̃k in (12), then there
can exist an additional surface of the de Sitter vacuum, S-surface defined by p⊥ + ρ = 0, which
contains the de Sitter disk as a bridge and represents the second type of interior [59,62]. In this case
WEC is violated in the internal cavities between the S-surface and the disk, which are filled thus with
an anisotropic phantom fluid, p⊥ = w⊥ρ with w⊥ < −1 [62].

Two types of interior are shown in Figure 1 [62], where rv is a regularity parameter for the cases
admitting the second type interior.
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Figure 1. (Left: Horizons), ergosphere and the de Sitter vacuum disk for the first type of interior.
(Right): Vacuum S-surface p⊥ + ρ = 0 for the second type of interior.

The first type interior is shown in Figure 1 Left [62], where we plotted also horizons, the event
horizon r = r+ and the internal horizon r = r− and the ergosphere defined by gtt = 0 in (5) which
results in r2 + a2 cos2 θ − 2 f (r) = 0. The second type interior is shown in Figure 1 Right [62].

The main question addressed in the present paper is which of geometrically possible types of a
regular interior is preferred by the electromagnetic fields dynamics.



Universe 2019, 5, 205 5 of 14

Electrically charged regular objects related by electromagnetic and gravitational interactions are
described in general setting by nonlinear electrodynamics coupled to gravity (NED-GR).

Nonlinear electrodynamics (NED) was proposed by Born and Infeld as intended to consider
electromagnetic field and particles in the unique common framework of electromagnetic field and to
obtain finite values for physical quantities [63].

NED theories appear as low-energy effective limits in certain models of string/M-theories [64–66].
The NED theories are nonlinear theories in the Minkowski spacetime, the NED Lagrangians are gauge
and Lorentz invariant and depend on the scalar invariant F of the electromagnetic field with the
potential Aµ, F = FµνFµν, Fµν = ∂µ Aν − ∂ν Aµ and in the more general case depend also on the
pseudoscalar invariant G =? FµνFµν, ?Fµν = ηµναβFαβ/2; η0123 = −1/

√−g. The Maxwell equations
in the flat spacetime of NED theories are the same for L(F, G) and L(F) frames (see Reference [67]
and references therein). In NED-GR theories geometry and dynamical equations for electromagnetic
fields are also the same for both NED frames [45]. Therefore here we present the results obtained in
the NED-GR Lagrange dynamics with the L(F) frame for electromagnetic fields (detailed analysis
in Section 3).

Two basic points underlying the Born-Infeld program can be realized in NED-GR due to the
crucial role of gravity for a compact object with a regular interior where fields tensions and energy
are particularly high (a regular interior must somehow replace a singularity specified by the infinite
curvature invariants). Source-free NED-GR equations admit the class of regular causally safe axially
symmetric solutions asymptotically Kerr-Newman for a distant observer [55,59], which describe
regular black holes and electromagnetic solitons - compact objects without horizons replacing naked
singularities, representing spinning particles and defined as physical solitons in the spirit of the
Coleman lumps [68] as non-singular non-dissipative objects keeping themselves together by their
self-interaction.

For NED-GR regular electrically charged objects interior de Sitter vacuum provides a finite
value for the self-interaction divergent for a point charge [47,55]. For spinning NED-GR objects
regularity requires LF → ∞ at approaching the disk and LF determines the basic properties of
nonlinear electromagnetic field as anisotropic (pr 6= p⊥) medium. On the disk this medium becomes
isotropic (pr = p⊥ = −ρ = −ρ̃(r = 0)) and the de Sitter vacuum distributed on the disk has the
properties of a perfect conductor and ideal diamagnetic due to LF → ∞ [55] (detailed presentation in
Section 2). The ring singularity is replaced with the superconducting ring current, which presents the
electromagnetic non-dissipative source for a compact regular spinning electrically charged NED-GR
object described by a regular asymptotically Kerr-Newman geometry [69] as well as an intrinsic source
of its magnetic momentum [70].

In this paper we present the analysis of electromagnetic fields of regular spinning NED-GR objects.
In Section 2 we analyze the solutions to the dynamical equations for electromagnetic field and the
conditions of their existence. In Section 3 we show which type of a regular interior for NED-GR objects
is favored by the electromagnetic fields dynamics. In Section 4 we summarize and discuss the results.

2. Electromagnetic Fields of Regular Spinning NED-GR Objects

Nonlinear electrodynamics minimally coupled to gravity is described by the action

I =
1

16π

∫
(R−L(F))

√
−gd4x (13)

where R is the scalar curvature, and F is the scalar invariant of the electromagnetic field, F = FµνFµν,
where Fµν = ∂µ Aν − ∂ν Aµ is the electromagnetic field.

The gauge-invariant electromagnetic Lagrangian L(F) should have the Maxwell limit,
L → F, LF → 1, where LF = dL/dF, in the weak field regime as r → ∞.
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Variation with respect to Aµ and gµν yields the dynamical field equations

∇µ(LFFµν) = 0; (14)

∇µ
∗Fµν = 0; ?Fµν =

1
2

ηµναβFαβ; η0123 = − 1√−g
, (15)

and the Einstein equations Gµν = −8πGTµν where the stress-energy tensor of an electromagnetic field
is defined by Reference ([47] and references therein)

Tµ
ν = −2LFFναFµα +

1
2

δ
µ
νL (16)

In terms of the 3-vectors defined as [55,71]

Ej = {Fj0}; Dj = {LFF0j}; Bj = {∗Fj0}; Hj = {LF
∗F0j}; j = 1, 2, 3 (17)

the field Equations (14) and (15) take the form of the source-free Maxwell equations

∇ ·D = 0; ∇×H =
∂D
∂t

; ∇ · B = 0; ∇× E = −∂B
∂t

. (18)

The electric induction D and the magnetic induction B are related with the electric and magnetic
field intensities by

Dj = ε
j
kEk; Bj = µ

j
k Hk, (19)

where εk
j and µk

j are the tensors of the electric and magnetic permeability given by [55]

εr
r =

(r2 + a2)

∆
LF; εθ

θ = LF; µr
r =

(r2 + a2)

∆LF
; µθ

θ =
1
LF

. (20)

Non-zero field components compatible with the axial symmetry are F01, F02, F13, F23. Standard
formulae for 2-rank tensors Fαβ = gαµgβνFµν and Fαβ = gαµgβνFµν give in geometry with the metric (5)
the relations

F31 = a sin2 θF10; aF23 = (r2 + a2)F02. (21)

The field invariant reads

F = 2

(
F2

20

a2 sin2 θ
− F2

10

)
. (22)

The relations of density and pressures with the electromagnetic field are given by [55]

ρ =
1
2
L+ 2LFF2

10; pr = −ρ; p⊥ = −1
2
L+ 2LF

F2
20

a2 sin2 θ
(23)

and provide the tool for investigation of the weak energy condition

p⊥ + ρ = 2LF

(
F2

10 +
F2

20

a2 sin2 θ

)
. (24)

Equations (14) and (15) form the system of 4 equations for 2 independent field components

∂

∂r
[(r2 + a2) sin θLFF10] +

∂

∂θ
[sin θLFF20] = 0; (25)

∂

∂r

[
1

sin θ
LFF31

]
+

∂

∂θ

[
1

(r2 + a2) sin θ
LFF32

]
= 0; (26)
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∂F23

∂r
+

∂F31

∂θ
= 0;

∂F01

∂θ
+

∂F20

∂r
= 0. (27)

Dynamical equations (14) are satisfied by the field functions [55,59]

Σ2(LFF01) = −q(r2 − a2 cos2 θ); Σ2(LFF02) = qa2r sin 2θ; (28)

Σ2(LFF31) = aq sin2 θ(r2 − a2 cos2 θ); Σ2(LFF23) = aqr(r2 + a2) sin 2θ. (29)

In the case LF = 1, these functions satisfy also the dynamical Equations (15) and asymptotically
coincide with the solutions to the Maxwell equations in the Kerr-Newman geometry [22,24].

The question is when the field components (28) and (29) are the solutions to the whole system of
the dynamical Equations (14) and (15).

The functions (28) and (29) satisfy the equations

∂(LFF23)

∂r
+

∂(LFF31)

∂θ
= 0;

∂(LFF01)

∂θ
+

∂(LFF20)

∂r
= 0. (30)

It follows
∂F23

∂r
+

∂F31

∂θ
= −LFF

LF

[
F31

∂F
∂θ

+ F23
∂F
∂r

]
(31)

∂F01

∂θ
+

∂F20

∂r
= −LFF

LF

[
F01

∂F
∂θ

+ F20
∂F
∂r

]
. (32)

Left sides vanish identically when right sides are zero. This defines the following cases when the
functions (29) and (28) satisfy the whole dynamical system (25) and (27):

(A) LFF = 0,LF 6= 0, the Maxwell limit with LF = const;
(B) LF = ∞,LFF 6= 0, strongly nonlinear regime, which can be expected in a deep interior.

According to (12), on the S-surface including the disk p⊥ + ρ = 0. From (24) it follows that
F2

10 = F2
20/a2 sin2 θ = 0 since LF cannot be zero. As a result the Equation (23) gives

F2
10 =

2ρ−L
4LF

= 0 (33)

on the S-surface uncluding the disk, which is possible (for regular solutions with an arbitrary
Lagrangian L) only if LF → ∞ there. The case (B) represents thus the natural realization of the
underlying hypothesis of non-linearity replacing a singularity.

Another possibility is vanishing of the expression in the square brackets in Equations (31) and (32)

F31
∂F
∂θ

+ F23
∂F
∂r

= 0; F01
∂F
∂θ

+ F20
∂F
∂r

= 0. (34)

Taking into account (21), we reduce this system to

a2 sin2 θF01
∂F
∂θ

+ (r2 + a2)F20
∂F
∂r

= 0; F01
∂F
∂θ

+ F20
∂F
∂r

= 0. (35)

It is the system of two algebraic equations for F01(∂F/∂θ) and F20(∂F/∂r) with the determinant
Det = −Σ. The solutions for Σ 6= 0 read F01(∂F/∂θ) = 0, F20(∂F/∂r) = 0, and include two cases:

(C) F10 = F20 = 0, zero fields regime.
(D) ∂F/∂r = 0 and ∂F/∂θ = 0. This case needs detailed investigation of extrema of the field

invariant F and will be presented in the next Section.

3. Electromagnetic Dynamics

Presented in the frame of the Lagrange dynamics regular spherically symmetric solutions with the
non-zero electric charge [41–44,47] are typically found with using the alternative P-form of nonlinear
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electrodynamics obtained from the standard Lagrangian F-form by the Legendre transformation [72].
The F-P duality turns into the electric-magnetic duality in the Maxwell limit but in general case it
connects different theories [45] which is manifested by branching of a Lagrangian in the F frame.

In the spherically symmetric case F = −2q2/L2
Fr4 [45], which results in FL2

F → −∞ as r → 0.
The structure of stress-energy tensor implies p⊥ + ρ = FLF, regular solutions have obligatory de Sitter
center where p⊥ + ρ = 0 and hence FLF = 0 [47]. Requirement of regularity demands thus LF → ∞
and F → −0 when r → 0. The Maxwell limit implies F → −0 as r → ∞. Non-monotonic behavior of
the invariant F leads inevitably to branching of a Lagrangian L(F) in the point where the invariant F
achieves its minimum [45,47]. This problem requires the correct description of the Lagrange dynamics
for regular electrically charged structures by the non-uniform variational problem with the action [73]

I = Iint + Iext =
1

16π

[∫
Ωint

(R−Lint(F))
√
−gd4x +

∫
Ωext

(R−Lext(F))
√
−gd4x

]
. (36)

Each part of the manifold, Ωint and Ωext, is confined by the space-like hypersurfaces t = tin and
t = t f in and by the time-like 3-surface at infinity, where electromagnetic fields vanish in the Maxwell
limit. Internal boundary between Ωint and Ωext is defined as a time-like hypersurface Σc at which
the field invariant F achieves its extremum [73]. In the case of the minimal coupling variation in the
action (36) results in the dynamical Equations (14) and (15) in both Ωint and Ωext and in the standard
boundary conditions on the surface Σc [73]

∫
Σc

(
LF(int)Fµν(int) −LF(ext)Fµν(ext)

)√
−gδAµdσν = 0; Lint− 2LF(int)Fint = Lext− 2LF(ext)Fext (37)

In the axially symmetric case solutions (29) and (28) applied in (24) give on the S-surface

(p⊥ + ρ) =
2q2

LFΣ2 ; L2
FF = −2q2

Σ2 +
16q2a2r2 cos2 θ

Σ4 . (38)

It follows that LFΣ2 → ∞ and F → −0 over the whole S-surface. On the disk [55]

LF =
2q2

Σ2(p⊥ + ρ)
; F = −Σ2(p⊥ + ρ)2

2q2 . (39)

We see that F → −0 and, by virtue of (24) and (23), L → 2ρ̃(0) as r → 0. In the Maxwell weak
field limit, LF = 1, the above relations give F → −0 and L → 0 as r → ∞ with taking into account
in (23) that ρ→ 0 for compact objects with the finite mass.

The de Sitter disk exists in all regular axially symmetric configurations. Two different kinds of a
regular interior involve the existence or absence of the S-surface. To investigate these cases we need
information on behavior of electromagnetic field in the extrema of the invariant F.

Analysis of conditions for the extrema of the invariant F —According to the condition D from
the previous Section, the dynamical Equations (14) and (15) are satisfied by the field functions (29)
and (28). The field invariant (22) can be written thus as

F =
2q2

L2
F

Φ(r, θ); Φ(r, θ) =
8a2r2 cos2 θ − Σ2

Σ4 , (40)

which gives

∇F = 2q2 LF

L3
F + 4q2LFFΦ

∇Φ. (41)

It follows that ∇F = 0 when
(1) LF = ∞; (2) LFF = ∞ and Φ 6= 0; (3) Φ→ ∞; (4) ∇Φ = 0.
The case (3) corresponds to the disk where LF → ∞ and F → −0.
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In the case (4), ∇Φ = 0, derivatives are given by

∂Φ
∂r

=
4r
Σ5

(
Σ2 − 4a2 cos2 θ(4r2 − Σ)

)
, (42)

∂Φ
∂θ

= −4a2 sin θ cos θ

Σ5

(
Σ2 − 4r2(4a2 cos2 θ − Σ)

)
. (43)

The system of two equations

4r
Σ5

(
Σ2 − 4a2 cos2 θ(4r2 − Σ)

)
= 0;

4a2 sin θ cos θ

Σ5

(
Σ2 − 4r2(4a2 cos2 θ − Σ)

)
= 0. (44)

in the case Σ 6= 0 transforms to

Σ2 − 4a2 cos2 θ(4r2 − Σ) = 0; Σ2 − 4r2(4a2 cos2 θ − Σ) = 0. (45)

Subtracting and summing these equations we obtain the equations

(r2 − a2 cos2 θ)Σ = 0; 3Σ2 − 16a2r2 cos2 θ = 0 (46)

which show that the only solution to the system (44) is r = 0, θ = π/2, that is it does not have solutions
in the case Σ 6= 0. The only case when ∇Φ = 0 takes place on the disk.

The cases with the WEC violation—WEC can be violated when DEC is satisfied for a related
spherical solution and the S-surface can exist.

At approaching the disk (7), F < 0, since the invariant F goes to −0 as r → 0, and its first
extremum is the minimum located somewhere between the disk and S-surface where F → −0 again.
The field invariant is negative in this region, the derivative LF should have to be negative too, by
virtue of (24), and the Lagrangian, given by (23) as

L = 2ρ− 4LFF2
10 (47)

takes some positive value at the surface where a Lagrangian branches for the first time.
After the first minimum the invariant F achieves its second zero value, F → −0 at the S-surface

where it has the maximum in accordance with the condition (1) for the existence of the extremum; the
Lagrangian takes the value L = 2ρ and branches for the second time. From the maximum at F = −0
the field invariant F goes to the minimum at a certain negative value where the Lagrangian takes some
negative value and branches for the third time.

Another case concerns the possible vanishing of the invariant F suggested by its form (22),
somewhere except the disk and S-surface. At any other surface F = 0 cannot be an extremum. Indeed,
when F = 0, the relation (24) takes the form p⊥ + ρ = 4LFF2

10, WEC is satisfied and LF is finite, and
none of the conditions (1)–(4) for the existence of extremum is fulfilled. It follows that an extremum in
this case would have to exist at a certain positive value of the invariant F which should have to increase
from the first minimum at F1 < 0 to a maximum F3 > 0 crossing F2 = 0. At the point F2 = 0, we have
F2

10 = F2
20/(a2 sin2 θ) = 0, the Lagrangian takes the value L2 = 2ρ according to (47). Equation (23)

gives the relation
ρ− p⊥ = L−LFF. (48)

For F = 0 we have ρ− p⊥ = 2ρ, DEC is satisfied, an S-surface could exist and WEC violated.
Both above cases should have to be excluded because, according to (20) and (24), violation of the

weak energy condition leads to negative values of the electric and magnetic permeability. For objects
satisfying the basic requirement of electrodynamics of continued media (positivity of the electric
permeability) [74], the cases of WEC violation rather can not be admitted.



Universe 2019, 5, 205 10 of 14

The case when WEC is satisfied—In the case when a S-surface does not exist, the field invariant
vanishes only on the disk r = 0 and at infinity as r → ∞. In this case the Lagrangian branches only in
the minimum of the invariant F, where F 6= 0 and LFF breaks and changes the sign. Characteristic
behavior in the Lagrange dynamics is shown in Figure 2.

 

 

L

0
F

L F

 

 0
1F  

 

0
F

L
FF

Figure 2. (Left): Typical behavior of the Lagrangian. (Middle): Behavior of the Lagrangian derivative
LF. (Right): Characteristic behavior of the Lagrangian derivative LFF.

Let us note that in this case also DEC is satisfied for the regular rotating NED-GR objects since an
S-surface does not exist and p⊥ + ρ = 0 only on the disk. The general relation, following from (12)

ρ− p⊥ =
r2

Σ
(ρ̃− p̃⊥) (49)

gives on the disk ρ− p⊥ = 2ρ̃(r = 0) since p⊥ = −ρ and r2/Σ = 1 there.
The cases when DEC is satisfied also for a related spherical solution but not enough to lead to

appearance of S-surface, so that WEC is satisfied, put certain constraints on behavior of a spherical
density profile. This question should be studied carefully for each particular case.

The structure of the electrically charged regular rotating black hole looks like it is shown in Figure 1
Left. The interior of the electromagnetic soliton looks similar but soliton does not have horizons. Its
structure can include two or less ergospheres [59].

4. Summary and Discussion

Regular rotating electrically charged compact objects are described by regular axially symmetric
solutions to the source-free NED-GR equations which for a distant observer asymptotically coincide
with the Kerr-Newman solution. The source of their gravitational field is the stress-energy tensor of
the nonlinear electromagnetic field itself. Geometry is described by the metrics of the Kerr-Schild
class specified by Tt

t = Tr
r (pr = −ρ) in the co-rotating frame.

Axially symmetric metrics describing rotating objects originate from spherical metrics of the
Kerr-Schild class generated by stress-energy tensors with the algebraic structure Tt

t = Tr
r (pr = −ρ).

In most cases they are obtained with using the Newman-Janis algorithm which belongs to the
Trautman-Newman complex coordinate translations and works for all spherical Kerr-Schild metrics.
Rotating metrics can be obtained also in more general approach using the basic properties of the
Kerr-Schild metrics [40].

The common generic feature of all regular rotating objects is the interior de Sitter vacuum disk
r = 0. Geometry allows also for the existence of an additional surface of the de Sitter vacuum,
S-surface, which includes the de Sitter disk as the bridge. In cavities between the S-surface and the
disk both WEC and DEC are violated (for a review see Reference [51]).
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Dynamical equations for electromagnetic fields ∇µ(LFFµν) = 0; ∇µ
∗Fµν = 0 have the form of

the source-free Maxwell equations

∇ ·D = 0; ∇×H =
∂D
∂t

; ∇ · B = 0; ∇× E = −∂B
∂t

where the electric and magnetic inductions and the field intensities Ej = {Fj0}; Dj = {LFF0j};
Bj = {∗Fj0}; Hj = {LF

∗F0j}; j = 1, 2, 3, are related by the tensors of the electric and magnetic
permeability [55]

εr
r =

(r2 + a2)

∆
LF; εθ

θ = LF; µr
r =

(r2 + a2)

∆LF
; µθ

θ =
1
LF

.

Permeability tensors depend essentially on the Lagrangian derivative LF. Regularity requires
LF → ∞ at the S-surface including the disk. As a result these surfaces have the properties of a perfect
conductor and ideal diamagnetic.

For regular solutions the field invariant evolves from F = −0 as r = 0 to F = −0 as r → ∞. Its
non-monotonic behavior results in inevitable branching of a Lagrangian. The number of branches
depends on satisfaction or violation of energy conditions which require p⊥ + ρ ≥ 0 (WEC) and
ρ− p⊥ ≥ 0 (DEC) where

p⊥ + ρ = 2LF

(
F2

10 +
F2

20

a2 sin2 θ

)
; ρ− p⊥ = L−LFF; F = 2

(
F2

20

a2 sin2 θ
− F2

10

)
.

Analysis of the regular solutions to the dynamical equations [55,59]

Σ2(LFF01) = −q(r2 − a2 cos2 θ); Σ2(LFF02) = qa2r sin 2θ; F31 = a sin2 θF10; aF23 = (r2 + a2)F02

distinguishes the first type of interior which contains the de Sitter vacuum disk without S-surface as
the only type of interior compatible with the standard requirement of electrodynamics of continued
media (positivity of the electric permeability). In this case WEC and DEC are satisfied everywhere and
the Lagrangian is branching only in the single minimum of the field invariant F. Typical behavior of a
Lagrangian and its derivatives is shown in Figure 2. The source of the de Sitter vacuum on the disk
is the nonlinear electromagnetic field in the vacuum state characterized by pr = p⊥ = −ρ. The ring
singularity of the Kerr-Newman geometry is replaced with the superconduction ring current which
serves as the non-dissipative source of the external fields, Kerr-Newman for a distant observer [69]
and of the intrinsic magnetic momentum for all regular electrically charged NED-GR objects described
by the metrics of the Kerr-Schild class [70].

Electromagnetic dynamics distinguishes also the disk-like source models for the Kerr-Newman
fields among all source models presented in the literature.

An open question concerns propagation of light in a nonlinear electromagnetic field. For NED
theories in the Minkowski spacetime it has been shown that photons propagate along geodesics of the
optical metrics on the background of electromagnetic fields; the proper character of these geodesics
with respect to spacetime metric is ensured by imposing the causality conditions (see Reference [67]
and references therein) obtained in the L(F, G) frame and violated in L(F) frame for some allowed
background electromagnetic fields [67]. This point requires further careful investigation, especially in
the NED-GR context involving strong gravitational fields.

Another open question concerns efficiency of energy extraction in physical processes involving
NED-GR solitons with the de Sitter interiors which is highly facilitated by the absence of the
event horizons. It is expected that NED-GR solitons (as well as neutral spinning solitons) can
originate physical effects similar to those recently discovered for the Kerr-Newman braneworld naked
singularities [9,12] where a special regime with the very large efficiency of accretion was revealed
related to occurrence of an infinitely deep gravitational potential for circular geodesics governing the
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Keplerian accretion [12]. In this case the ultrahigh center-of-mass energy can be obtained in collisions
of particles not only in the near-extreme spacetimes but also in spacetimes without event horizons; in
addition, observers on the stable circular geodesics would register extremely blue-shifted radiation
so that their ultrarelativistic orbiting motion in this special regime would provide an additional and
substantial energy supply from the CMB radiation due to extremely large blue-shifting [9].

In the case of spinning solitons with the de Sitter interiors their observational signatures related
to the eventual effects of this type will carry the information on the scale of the internal de Sitter
vacuum. Currently we are working on geodesics around NED-GR and neutral spinning black holes
and solitons and see promising possibilities related to behavior of potentials in the case of a soliton.
In the case of a spherical soliton we found the existence of the special class of the isotropic geodesics
corresponding to the stable photon circular orbits; the stable isotropic and time-like geodesics exist in
the deep interiors of solitons, are specified by the critical values that depend on the basic parameters
including those characterizing the interior de Sitter vacuum and can serve as a diagnostic tool in
research of the spacetime structure in the interiors of the regular black holes and solitons [75].
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