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Abstract: We work with a symmetric scalar theory with quartic coupling in 4-dimensions. Using a 2PI
effective theory and working at 4 loop order, we renormalize with a renormalization group method.
All divergences are absorbed by one bare coupling constant and one bare mass which are introduced
at the level of the Lagrangian. The method is much simpler than counterterm renormalization,
and can be generalized to higher order nPI effective theories.

1. Introduction

There are many systems of physical interest that are strongly coupled and must be described with
non-perturbative methods. Schwinger-Dyson (SD) equations are often used, but one problem with this
approach is that the hierarchy of coupled SD equations needs to be truncated, and different truncations
have been proposed. The n-particle-irreducible effective action is an alternative non-perturbative
method. The action is written as a functional of dressed vertex functions, which are calculated self
consistently by applying the variational principle [1,2]. A fundamental advantage of nPI is that the
method provides a systematic expansion with the truncation occurring at the level of the action.
Gauge invariance may be violated by the truncation [3,4], and various proposals to minimize gauge
dependence have been discussed in [5–9]. We are primarily interested in the renormalization of
nPI theories. The 2PI effective theory can be renormalized using a counterterm approach [10–14],
but the method requires several sets of vertex counterterms and cannot be extended to the 4PI
theory. It is known that higher order nPI formulations (n > 2) are necessary in some situations.
Transport coefficients in gauge theories (even at leading order) cannot be calculated using a 2PI
formulation [15,16], and numerical calculations have shown that, for a symmetric scalar φ4 theory,
4PI vertex corrections are large in three dimensions [17], and for sufficiently large coupling the 2PI
approximation breaks down at the 4 loop level in four dimensions [18,19].

In this paper we work with a symmetric scalar theory, to avoid some of the complications of
gauge theories, and focus on the problem of renormalizability. We use the renormalization group
(RG) method that was introduced in [20]. Using this method, no counterterms are needed and the
divergences are absorbed into the bare parameters of the Lagrangian, the structure of which is fixed
and totally independent of the order of the approximation. In this sense, the RG method is designed to
be used at any order in the nPI approximation (and at any loop order).
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2. Notation

We introduce a notation that suppresses the arguments that give the space-time dependence of
functions. For example, the term in the action that is quadratic in the fields is written:

i
2 ∫

d4x d4y ϕ(x)G−1
no⋅int(x − y)ϕ(y) Ð→ i

2
ϕ G−1

no⋅int ϕ , (1)

where Gno⋅int is the bare propagator. The classical action is

S[ϕ] = i
2

ϕ G−1
no⋅int ϕ − i

4!
λϕ4 , iG−1

no⋅int = −(◻+m2) . (2)

For notational convenience we use a scaled coupling constant (λ phys = iλ), and the factor of i that
is introduced here will be removed when we rotate to Euclidean space for numerical calculations.

To use the functional renormalization group method, we add a non-local regulator function to the
action [21]

Sκ[ϕ] = S[ϕ] +∆Sκ[ϕ] , ∆Sκ[ϕ] = −1
2

ϕR̂κ ϕ . (3)

The scale denoted κ has dimensions of momentum. The regulator function satisfies
limQ≪κ R̂κ(Q) ∼ κ2 and limQ≥κ R̂κ(Q) → 0 so that for Q ≪ κ the regulator plays the role of a large mass
term which suppresses quantum fluctuations with wavelengths 1/Q ≫ 1/κ, while in the opposite limit
fluctuations with wavelengths 1/Q ≪ 1/κ are unaffected. The regulated action (3) can be used to obtain
the 2PI generating functionals:

Zκ[J, J2] = ∫ [dϕ] exp{i(Sκ[ϕ] + Jϕ + 1
2

ϕJ2 ϕ)} , Wκ[J, J2] = −i ln Zκ[J, J2] . (4)

To obtain the 2PI effective action, we take the double Legendre transform of the generating
functional Wκ[J, J2] with respect to the sources J and J2, with φ and G now taken as the independent
variables. The resulting effective action Γκ[φ, G] can be written

Γκ[φ, G] = Γno⋅int⋅κ[φ, G] + Γint[φ, G] −∆Sκ(φ) , (5)

Γno⋅int⋅κ[φ, G] = i
2

φ G−1
no⋅int⋅κφ + i

2
Tr ln G−1 + i

2
TrG−1

no⋅int⋅κG ,

Γint[φ, G] = − i
4!

λφ4 − i
4

λφGφ + Γ2[φ, G; λ] ,

where Γ2 means the set of all 2PI graphs with two and more loops and we have defined
iG−1

no⋅int⋅κ = iG−1
no⋅int − R̂κ = −◻−(m2 + R̂k). We have subtracted the regulator term so that the effective

action corresponds to the classical action at the ultraviolet scale µ. To simplify the notation we will
write Γ = −iΦ where both Γ and Φ have the same subscripts, and we define an imaginary regulator
function Rκ = −iR̂κ (the extra factor i will be removed when we change to Euclidean space variables).

The effective action is extremized by solving the variational equations of motion for the self
consistent 1 and 2 point functions. These self consistent κ dependent solutions are denoted φκ and
Gκ , but since we work with the symmetric theory we will set φκ = 0. We calculate n-point kernels by
functionally differentiating the effective action

Λ(m) = 2m δm

δGm Φint , Λ(m)κ = Λ(m)∣G=Gκ
. (6)

To simplify the notation we use special names for certain kernels: Λ(1) = Σ , Λ(2) = Λ , Λ(3) = Υ .
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3. Flow Equations

Φint and Λ(m) do not depend explicitly on κ and therefore we can use the chain rule to obtain

∂κΛ(m)κ = 1
2

∂κGκ Λ(m+1)
κ . (7)

In momentum space the equation becomes

∂κΛ(m)κ (P1, P2,⋯Pm) = 1
2 ∫

dQ ∂κGκ(Q)Λ(m+1)
κ (P1, P2,⋯Pm+1, Q) . (8)

We will show below that this infinite hierarchy of coupled integral equations for the n-point
kernels truncates at the level of the action. The flow equations can be rewritten in a more useful form
using the stationary condition

δΦκ[φ, G]
δG

∣
G=Gκ

= 0 (9)

which gives by a straightforward calculation

∂κGκ = −Gκ (∂κG−1
κ ) Gκ = Gκ (∂κ(Rκ +Σκ)) Gκ . (10)

The first two equations in the hierarchy (8) now take the form

∂κΣκ(P) = 1
2 ∫

dQ ∂κ[Σκ(Q) + Rκ(Q)] G2
κ(Q)Λκ(P, Q) , (11)

∂κΛκ(P, K) = 1
2 ∫

dQ ∂κ[Rκ(Q) +Σκ(Q)] G2
κ(Q)Υκ(P, K, Q) . (12)

By iterating Equation (11), we can reformulate the flow equation for the 2 point function Σ so that
the kernel contains a Bethe-Salpeter (BS) vertex:

∂κΣκ(P) = 1
2 ∫

dQ ∂κ Rκ(Q) G2
κ(Q) Mκ(P, Q) , (13)

with

Mκ(P, K) = Λκ(P, K) + 1
2 ∫

dQΛκ(P, Q) G2
κ(Q)Mκ(Q, K) . (14)

A different class of non-perturbative vertices can be defined by considering variations of the
effective action with respect to the field. The 4 point function that is obtained in this way is related to
the BS vertex as V = λ + 3(M −Λ) . The vertex V contains terms from all three (s, t and u) channels,
and the shorthand notation which suppresses indices combines the three channels to give the factor (3)
in Equation (3).

We rotate to Euclidean space for the numerical calculation, and to simplify the notation we
do not introduce subscripts to denote Euclidean space quantities. The flow Equations (11) and (12)
and the BS Equation (14) have the same form in Euclidean space. The Dyson equation has the
form G−1(P) = G−1

no⋅int(P) + Σ(P) , and the equation for the physical vertex in Euclidean space is
V = −λ + 3(M −Λ) . The regulator function becomes

Rκ(Q) = Q2

eQ2/κ2 − 1
. (15)

At the 4 loop level, the hierarchy of flow equations can be truncated at the level of the
second equation (this is explained below). The n-point functions for the quantum theory can be
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obtained by starting from initial conditions defined at κ = µ and solving the integro-differential flow
Equations (11) and (12). We choose the regulator function Rκ so that the theory is described by the
classical action at the ultraviolet scale κ = µ. The initial conditions are therefore obtained from the bare
masses and couplings of the Lagrangian. The values of the bare parameters are unknown, but the
values of the renormalized parameters are specified by the renormalization conditions

G−1
0 (0) = m2 , M0(0, 0) = −λ (16)

that are enforced by choice on the n-point functions that will be obtained at the quantum end of the flow.
The method is to start from an initial guess for the bare parameters, solve the flow equations, extract the
renormalized parameters, and then adjust the bare parameters (either up or down depending on
the result). We then resolve the flow equations and repeat the procedure, continuing until the
renormalization conditions are satisfied (to some numerically specified accuracy).

It can be shown [19] that consistency between the initial conditions and the renormalization
conditions requires

Z = lim
(P1, P2 ... )→0

(Λ̃(m)0 (P1, P2 . . . ) − Λ̃(m)0 (0, 0 . . . )) → 0 . (17)

If the hierarchy in (8) is truncated correctly, the condition (17) will be satisfied. This statement
is proved by showing that if a given kernel obtained from functional differentiation satisfies the
condition (17), it will also satisfy Λ(m)0 (0, 0⋯) = −λ and Λ(m)µ (0, 0⋯) = −λµ [19]. The result is that the
flow equation for this kernel does not have to be solved. We therefore need to find the smallest value
of m for which (17) is satisfied, and then solve self consistently the set of flow equations for the kernels
with 2× (1, 2, 3, . . . m − 1) legs.

It is straightforward to show that any kernel that contains a diagram with a loop that is not forced
by the structure of the diagram to carry one of the external momenta, will not satisfy (17), and the
flow equation for this kernel must be solved [19]. If the effective action is truncated at the 3 loop level,
the self energy will include the sunset diagram which will not satisfy (17). On the other hand, the kernel
Λ has the tree graph and two 1 loop contributions that always carry external momenta, which means
that Λ does not have to be flowed but can be simply substituted into the Σ flow equation. We have
only to replace the tree vertex with the bare vertex (−λµ) to satisfy the initial condition. At the 4 loop
level the kernel Λ does not satisfy (17), but the 6-leg kernel Υ does, and can be substituted directly
into the Λ flow equation. There is no bare 6-vertex in the Lagrangian and therefore the integration
constant is set to zero. The result is that at the 4 loop level we must solve the Σ and Λ flow equations
self consistently.

4. Numerical Method

We start the flow of the 2 and 4 kernels from the initial conditions

Σµ(P) = m2
µ −m2 , Λµ(P, K) = −λµ , (18)

and the propagator in the ultraviolet limit is G−1
µ (P) = P2 +m2

µ. We replace κ with the variable t = ln κ/µ

so that we approach the quantum theory more slowly. We use κmax = µ = 100, κmin = 10−2 and Nκ = 50
and we have tested the insensitivity of our results to these choices. We have also used a generalized
form of (15) to verify that our results are not dependent on the form of the regulator. The renormalized
mass and coupling are obtained from the quantum functions

m2
found = G−1

0 (0) = m2 +Σ0(0) , − λfound = M0(0, 0) , (19)

and are then compared with the values specified in the renormalization conditions, adjusted, and tuned,
by repeating the procedure until the renormalization conditions are satisfied to specified accuracy.
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The 4-dimensional momentum integrals are written

∫ dK f (k0, k⃗) = ∑
n
∫

d3k
(2π)3 f (mtn, k⃗) , (20)

with mt = 2πT. There are Nt terms in the summation with β = 1
T = Ntat and at is the lattice spacing

in the temporal direction. We use spherical coordinates and Gauss-Legendre integration to do the
integrals over the 3-momenta.

5. Results and Discussion

We use Nx = Nφ = 8 points for the integrations over the cosine of the polar angle and the azimuthal
angle, and we have checked that all results are stable when we increase the number of grid points
in these dimensions. The momentum space grid spacing is ∆p ∼ 1

as Ns
where as is the spatial lattice

spacing and Ns is the number of lattice points for the momentum magnitude. The UV momentum
cutoffs are (p0)max = π/at and pmax = π/as. We use at = as = 1/8 so that (p0)max = pmax = 8π ≪ µ = 100.
The numerics are stable if results are unchanged when ∆p decreases while pmax is held fixed, and we
have checked that this is true if Ns ≳ 14. To test the renormalization we increase pmax while holding
∆p ∼ 1/L fixed. In Figure 1 we show V(0) versus pmax. For purposes of comparison we also show
a calculation that is done incorrectly, by working at 3 loop level and replacing one of the vertices in
the 4 kernel with a bare vertex. We have checked that dependence on the renormalization scale is
very small.

●
●

●
●

●
●

●

■ ■ ■ ■ ■ ■ ■

14 16 18 20 22
pmax

1.840

1.842

1.844

1.846

1.848

-V(0)

■ RG-renormalised

● wrong

Figure 1. The physical vertex V(0) versus pmax with λ = 2, T = 2 and L = 4 at 4 loop level in the
skeleton expansion. To set the scale we also show the results of an incorrect calculation (see text for
more explanation).

To evaluate the 2, 3 and 4 loop approximations in the context of a physical quantity, we calculate
the pressure, which can be obtained from the effective action using P = T

V Φ where V is the 3-volume.
To 4 loop order, the contributions to the pressure are

P0 = −
1
2 ∫

dQ ln G−1
no⋅int(Q) →

π2T4

90
(21)

P1 = −
1
2 ∫

dQ ln [G−1
(Q)

1
Q2 +m2 ]

P2 = −
1
2 ∫

dQ [(Q2
+m2

b)G(Q) − 1]

P3 = −
1
8

λb ∫ dQ G(Q)∫ dL G(L)

P4 = −
1

48
λ(λ − 2λb)∫ dP∫ dK∫ dQ G(P)G(K)G(Q)G(P +K +Q)

P5 = −
1

48
λ3
∫ dQ[∫ dS G(S)G(S +Q) ∫ dL G(L)G(L +Q) ∫ dM G(M)G(M +Q)]

Psum = P0 + P1 + P2 + P3 + P4 + P5 . (22)
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There is a temperature independent divergence that can be subtracted off with a ‘cosmological
constant’ renormalization, by setting the vacuum pressure to zero: ∆P = Psum − Psum(T = 0). The arrow
on the right side of (21) indicates that we have dropped a temperature independent constant which
would have been removed by this shift. The term P0 is the non-interacting (λ = 0) pressure and since
we want to compare ∆P to the non-interacting expression, we define P = ∆P

P0
. In Figure 2 we show our

results for the pressure as a function of the coupling at the 2, 3 and 4 loop orders of approximation.
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Figure 2. The pressure as a function of coupling. The right panel shows a close up of the large coupling
region where the three approximations start to diverge from each other.

6. Conclusions

In this paper we present results from a 4 loop 2PI calculation in a symmetric φ4 theory with
the renormalization done using the RG method of [20]. No counterterms are introduced, and all
divergences are absorbed into the bare parameters of the Lagrangian, the structure of which is fixed
and independent of the order of the approximation. Our main goal is to use our method to do a
calculation with the 4PI effective theory. The basic method is the same, since the form of the flow and
Bethe-Salpeter equations are similar [22], but at the 4PI level we must introduce a flow equation for
the variational 4 vertex. This calculation is currently in progress.
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