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Abstract: I discuss the possibility that inflation is driven by supersymmetry breaking, with the
superpartner of the goldstino (sgoldstino) playing the role of the inflaton. Imposing an R-symmetry to
satisfy the slow-roll conditions, avoiding the so-called η-problem, leads to an interesting class of small
field inflation models, characterised by an inflationary plateau around the maximum of scalar potential
near the origin, where R-symmetry is restored with the inflaton rolling down to a minimum, describing
the present phase of the Universe. Inflation can be driven by either an F- or a D-term, while the minimum
has a positive tuneable vacuum energy. The models agree with cosmological observations and, in the
simplest case, predict a rather small tensor-to-scalar ratio of primordial perturbations. This talk is an
extended version of an earlier review (Antoniadis, 2018).

Keywords: supersymmetry; inflation; R-symmetry

1. Introduction

In a recent work [1,2], we studied a simple N = 1 supergravity model having the property of relating
the scales of supersymmetry (SUSY) breaking and inflation, partly motivated by string theory. Besides
the gravity multiplet, the minimal field content consists of a chiral multiplet with a shift symmetry
promoted to a gauged R-symmetry using a vector multiplet. In the string theory context, the chiral
multiplet can be identified with the string dilaton (or an appropriate compactification modulus) and the
shift symmetry associated to the gauge invariance of a two-index antisymmetric tensor field, dual to
a (pseudo)scalar. The shift symmetry fixes the form of the superpotential and gauging allows for the
presence of a Fayet-Iliopoulos (FI) term [3,4], leading to a supergravity action with two independent
parameters, which can be tuned so that the scalar potential possesses a metastable de Sitter minimum
with a tiny vacuum energy (essentially the relative strength between the F- and D-term contributions).
A third parameter fixes the Vacuum Expectation Value (VEV) of the string dilaton at the desired
(phenomenologically) weak coupling regime. An important consistency constraint of the model is anomaly
cancellation, which has been studied in [5] and implies the existence of additional charged fields under the
gauged R-symmetry.

In a subsequent work [6], we analysed a small variation of this model which is manifestly anomaly-free
without additional charged fields and allows coupling in a straightforward way of a visible sector
containing the minimal supersymmetric extension of the Standard Model (MSSM), and studied the
mediation of supersymmetry breaking and its phenomenological consequences. This model has the
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necessary ingredients to be obtained as a remnant of moduli stabilisation within the framework of internal
magnetic fluxes in type I string theory, turned on along the compact directions for several abelian factors of
the gauge group. All geometric moduli can, in principle, be fixed in a supersymmetric way, while the shift
symmetry is associated to the 4d axion and its gauging is a consequence of anomaly cancellation [7–9].

We then made an attempt to connect the scale of inflation with the electroweak and supersymmetry
breaking scales within the same effective field theory, that at the same time allows the existence of
an infinitesimally small (tuneable) positive cosmological constant, describing the present dark energy of
the universe. We thus addressed the question whether the same scalar potential can provide inflation with
dilaton playing also the role of inflaton at an earlier stage of universe evolution [10]. We showed that this
is possible if one modifies the Kähler potential by a correction that plays no role around the minimum,
but creates an appropriate plateau around the maximum. In general, the Kähler potential receives
perturbative and non-perturbative corrections that vanish in the weak coupling limit. After analysing all
such corrections, we find that only those that have the form of (Neveu-Schwarz) NS5-brane instantons
can lead to an inflationary period compatible with cosmological observations. The scale of inflation turns
out, then, to be of the order of low energy supersymmetry breaking, in the TeV region. On the other hand,
the predicted tensor-to-scalar ratio is too small to be observed.

Inflationary models [11–13] in supergravity 1 suffer, in general, from several problems, such as
fine-tuning to satisfy the slow-roll conditions, large field initial conditions that break the validity of the
effective field theory, and stabilisation of the (pseudo) scalar companion of the inflaton arising from
the fact that the bosonic components of superfields are always even. The simplest argument to see the
fine tuning of the potential is that a canonically normalised kinetic term of a complex scalar field X
corresponds to a quadratic Kähler potential K = XX̄ which brings one unit contribution to the slow-roll
parameter η = V′′/V, arising from the eK proportionality factor in the expression of the scalar potential V.
This problem can be avoided in models with no-scale structure, where cancellations arise naturally due
to non-canonical kinetic terms leading to potentials with flat directions (at the classical level). However,
such models require often trans-Planckian initial conditions that invalidate the effective supergravity
description during inflation. A concrete example where all these problems appear is the Starobinsky model
of inflation [16], despite its phenomenological success.

All three problems above are solved when the inflaton is identified with the scalar component of the
goldstino superfield 2, in the presence of a gauged R-symmetry [21]. Indeed, the superpotential is, in that
case, linear and the big contribution to η described above cancels exactly. Since inflation arises at a plateau
around the maximum of the scalar potential (hill-top), no large field initial conditions are needed, while the
pseudo-scalar companion of the inflaton is absorbed into the R-gauge field which becomes massive,
leading the inflaton as a single scalar field present in the low-energy spectrum. This model therefore
provides a minimal realisation of natural small-field inflation in supergravity, compatible with present
observations, as we show below. Moreover, it allows the presence of a realistic minimum describing our
present Universe with an infinitesimal positive vacuum energy, arising due to a cancellation between an
F- and D-term contributions to the scalar potential, without affecting the properties of the inflationary
plateau along the lines of Refs. [1,2,10,22].

In the above models, the D-term has a constant FI contribution but plays no role during inflation
and can be neglected, while the pseudoscalar partner of the inflaton is absorbed by the U(1)R gauge
field which becomes massive away from the origin. Recently, a new FI term was proposed [23] that has
three important properties: (1) It is manifestly gauge invariant already at the Lagrangian level; (2) it is

1 For reviews on supersymmetric models of inflation, see, for example, [14,15]
2 See [17–20] for earlier work relating to supersymmetry and inflation.



Universe 2019, 5, 30 3 of 20

associated to a U(1) that should not gauge an R-symmetry; and (3) supersymmetry is broken by (at least)
a D-auxiliary expectation value, and the extra bosonic part of the action is reduced in the unitary gauge to
a constant FI contribution, leading to a positive shift of the scalar potential in the absence of matter fields.
In the presence of matter fields, the FI contribution to the D-term acquires a special field dependence e2K/3

that violates invariance under Kähler transformations.
In a recent work [24], we studied the properties of the new FI term and explored its consequences

on the class of inflation models we introduced in [21]. 3 We first showed that matter fields charged
under the U(1) gauge symmetry can consistently be added in the presence of the new FI term, as well as
a non-trivial gauge kinetic function. We then observed that the new FI term is not invariant under Kähler
transformations. On the other hand, a gauged R-symmetry in ordinary Kähler invariant supergravity can
always be reduced to an ordinary (non-R) U(1) by a Kähler transformation. By then going to such a frame,
we find that the two FI contributions to the U(1) D-term can coexist, leading to a novel contribution to the
scalar potential.

The resulting D-term scalar potential provides an alternative realisation of inflation from
supersymmetry breaking, driven by a D-instead of an F-term. The inflaton is still a superpartner of
the goldstino, which is now a gaugino within a massive vector multiplet, where again the pseudoscalar
partner is absorbed by the gauge field away from the origin. For a particular choice of inflaton charge,
the scalar potential has a maximum at the origin where inflation occurs and a supersymmetric minimum
at zero energy, in the limit of negligible F-term contribution (such as in the absence of superpotential).
The slow roll conditions are automatically satisfied near the point where the new FI term cancels the charge
of the inflaton, leading to higher than quadratic contributions due to its non trivial field dependence.

The Kähler potential can be canonical, modulo the Kähler transformation that takes it to the non
R-symmetry frame. In the presence of a small superpotential, the inflation is practically unchanged and
driven by the D-term, as before. However, the maximum is now slightly shifted away from the origin
and the minimum has a small non-vanishing positive vacuum energy, where supersymmetry is broken
by both F- and D-auxiliary expectation values of similar magnitude. The model predicts, in general,
small primordial gravitational waves with a tensor-to-scalar ration r well below the observability limit.
However, when higher order terms are included in the Kähler potential, one finds that r can increase to
large values r ' 0.015.

An interesting point on these models of inflation by supersymmetry breaking concerns the general
problem of the fine-tuning of initial conditions (see, e.g., [26]). Here, the initial point of inflation is special
since it corresponds to a restoration of the R-symmetry.

In the following, we will present the main features of these models, where inflation occurs near the
maximum of the scalar potential where R-symmetry is restored and supersymmetry breaking is driven
predominantly either by an F-term or by a D-term. The first part describing the F-term is a short summary
of an earlier review [27] which was added for self consistency and convenience of the reader.

2. Conventions and Preliminaries

Throughout this paper, we use the conventions of [28]. A supergravity theory is specified
(up to Chern-Simons terms) by a Kähler potential K, a superpotential W, and the gauge kinetic functions

3 This new FI term was also studied in [25] to remove an instability from inflation in Polonyi-Starobinsky supergravity.
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fAB(z). The chiral multiplets zα, χα are enumerated by the index α and the indices A, B indicate the
different gauge groups. Classically, a supergravity theory is invariant under Kähler tranformations, viz.

K(z, z̄) −→ K(z, z̄) + J(z) + J̄(z̄),

W(z) −→ e−κ2 J(z)W(z), (1)

where κ is the inverse of the reduced Planck mass, MPl = κ−1 = 2.4× 1015 TeV. The gauge transformations
of chiral multiplet scalars are given by holomorphic Killing vectors, that is, δzα = θAkα

A(z), where θA is
the gauge parameter of the gauge group A. The Kähler potential and superpotential need not be invariant
under this gauge transformation, but can change by a Kähler transformation

δK = θA [rA(z) + r̄A(z̄)] , (2)

provided that the gauge transformation of the superpotential satisfies δW = −θAκ2rA(z)W. One then has,
from δW = Wαδzα

Wαkα
A = −κ2rAW, (3)

where Wα = ∂αW and α labels the chiral multiplets.
The scalar potential is given by

V = VF + VD

VF = eκ2K
(
−3κ2WW̄ +∇αWgαβ̄∇̄β̄W̄

)
VD =

1
2
(Re f )−1 AB PAPB, (4)

where W appears with its Kähler covariant derivative

∇αW = ∂αW(z) + κ2(∂αK)W(z). (5)

The moment maps PA are given by

PA = i(kα
A∂αK− rA). (6)

Here, we are concerned with theories having a gauged R-symmetry, for which rA(z) is given by an
imaginary constant rA(z) = iκ−2ξ. In this case, κ−2ξ is a Fayet-Iliopoulos [3,4] constant parameter.

We consider a class of inflationary models in supergravity containing a single chiral multiplet
transforming under a gauged R-symmetry with a corresponding abelian vector multiplet [21]. We assume
that the chiral multiplet X (with scalar component X) transforms as:

X −→ Xe−iqω, (7)

where q is its charge and ω is the gauge parameter.
The Kähler potential is therefore a function of XX̄, while the superpotential is constrained to be of the

form Xb:

K = K(XX̄),

W = κ−3 f Xb, (8)
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where X is a dimensionless field. For b 6= 0, the gauge symmetry Equation (7) becomes a gauged
R-symmetry. The gauge kinetic function can have a constant contribution, as well as a contribution
proportional to ln X

f (X) = γ + β ln X. (9)

The latter contribution proportional to β is not gauge invariant, and can be used as a Green-Schwarz
counter term to cancel possible anomalies. It turns out, however, that the constant β is very small by
anomaly cancellation conditions and does not change our results [21]. We will therefore omit this term in
our analysis below.

Before performing our analysis, a distinction should be made concerning the initial point where
slow-roll inflation starts. The inflaton field (which will turn out to be ρ, where X = ρeiθ) can either have
its initial value close to the symmetric point where X = 0, or at a generic point X 6= 0. The minimum
of the potential, however, is always at a nonzero point X 6= 0. This is because, at X = 0, the negative
contribution to the scalar potential vanishes and no cancellation between F-term and D-term is possible.
The supersymmetry breaking scale is related to the cosmological constant as κ−2m2

3/2 ≈ Λ. We will
therefore assume that inflation starts near X = 0, and the inflaton field rolls towards a minimum of the
potential at X 6= 0.

3. Inflation Near the R-Symmetric Point

Slow-Roll Parameters

In this section, we derive the conditions that lead to slow-roll inflation. Since the superpotential has
charge 2 under R-symmetry, one has 〈W〉 = 0 as long as R-symmetry is preserved. Therefore, 〈W〉 can
be regarded as the order parameter of R-symmetry breaking. On the other hand, the minimum of the
potential requires 〈W〉 6= 0 and broken R-symmetry. It is therefore attractive to assume that, at earlier
times, R-symmetry was a good symmetry, switching off dangerous corrections to the potential. A similar
approach was followed in [29], where a discrete R-symmetry was assumed. Instead, we assume a gauged
R-symmetry which is spontaneously broken at the minimum of the potential.

We expand the Kähler potential as follows

K(X, X̄) = κ−2XX̄ + κ−2 A(XX̄)2,

W(X) = κ−3 f Xb,

f (X) = 1, (10)

where A and f are constants. The coefficient γ of the gauge kinetic function (9) can be absorbed in other
parameters of the theory in the scalar potential, and we therefore take γ = 1.

The scalar potential is given by

V = VF + VD, (11)

where

VF = κ−4 f 2(XX̄)b−1 eXX̄(1+AXX̄)

[
−3XX̄ +

(b + XX̄(1 + 2AXX̄))
2

1 + 4AXX̄

]
(12)
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and

VD = κ−4 q2

2
[b + XX̄(1 + 2AXX̄)]

2 . (13)

The superpotential transforms under the U(1) gauge symmetry as

W →We−iqbw . (14)

Therefore, the U(1) is a gauged R-symmetry, which we will further denote as U(1)R. From WXkX
R =

−rRκ2W, where kX
R = −iqX is the Killing vector for the field X under the R-symmetry, rR = iκ−2ξR with

κ−2ξR the Fayet-Iliopoulos contribution to the scalar potential, and WX is short-hand for ∂W/∂X, we find

rR = iκ−2qb. (15)

A consequence of the gauged R-symmetry is that the superpotential coupling b enters the D-term
contribution of the scalar potential as a constant Fayet-Iliopoulos contribution. 4

Note that the scalar potential is only a function of the modulus of X—its phase is ‘eaten’ by the U(1)
gauge boson upon a field redefinition of the gauge potential, similar to the standard Higgs mechanism.
After performing a change of field variables

X = ρeiθ , X̄ = ρe−iθ , (ρ ≥ 0) (16)

the scalar potential is a function of ρ,

κ4V = f 2ρ2(b−1)eρ2+Aρ4

(
−3ρ2 +

(
b + ρ2 + 2Aρ4)2

1 + 4Aρ2

)
+

q2

2

(
b + ρ2 + 2Aρ4

)2
. (17)

Since we assume that inflation starts near ρ = 0, we require that the potential Equation (17) has a local
maximum at this point. It turns out that the potential only allows for a local maximum at ρ = 0 when
b = 1. For b < 1 the potential diverges when ρ goes to zero. For 1 < b < 1.5 the first derivative of the
potential diverges, while for b = 1.5, one has V′(0) = 9

4 f 2 + 3
2 q2 > 0, and for b > 1.5, on has V′′(0) > 0.

We thus take b = 1 and the scalar potential reduces to

κ4V = f 2eρ2+Aρ4

(
−3ρ2 +

(
1 + ρ2 + 2Aρ4)2

1 + 4Aρ2

)
+

q2

2

(
1 + ρ2 + 2Aρ4

)2
. (18)

A plot of the potential for A = 1/2, q = 1, and f tuned so that the minimum has zero energy is given
in Figure 1.

4 For other studies of inflation involving Fayet-Iliopoulos terms see, for example, [30], or [31,32] for more recent work. Moreover,
our motivations have some overlap with [29], where inflation is also assumed to start near an R-symmetric point at X = 0.
However, this work uses a discrete R-symmetry which does not lead to Fayet-Iliopoulos terms.
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Figure 1. Plot of the scalar potential (18) for A = 1/2, q = 1, and f tuned so that the minimum has zero
energy.

Note that, in this case, the superpotential is linear W = f X, describing the sgoldstino [33–38]. Indeed,
modulo a D-term contribution, the inflaton in this model is the superpartner of the goldstino. In fact,
for q = 0 the inflaton reduces to the partner of the goldstino, as in Minimal Inflation models [39–41].
The important difference, however, is that this is a microscopic realisation of the identification of the
inflaton with the sgoldstino, and the so-called η-problem is avoided (see discussion below).

The kinetic terms for the scalars can be written as 5

Lkin = −gXX̄ ∂̂µX∂̂µX

= −gXX̄

[
∂µρ∂µρ + ρ2 (∂µθ + qAµ

)
(∂µθ + qAµ)

]
. (19)

It was already anticipated above that the phase θ plays the role of the longitudinal component of the
gauge field Aµ, which acquires a mass by a Brout-Englert-Higgs mechanism.

We now interpret the field ρ as the inflaton. It is important to emphasise that, in contrast with usual
supersymmetric theories of inflation where one necessarily has two scalar degrees of freedom resulting in
multifield inflation [42], our class of models contains only one scalar field ρ as the inflaton. In order to
calculate the slow-roll parameters, one needs to work with the canonically normalised field χ satisfying

dχ

dρ
=
√

2gXX̄ . (20)

The slow-roll parameters are given in terms of the canonical field χ by

ε =
1

2κ2

(
dV/dχ

V

)2
, η =

1
κ2

d2V/dχ2

V
. (21)

5 The covariant derivative is defined as ∂̂µX = ∂µX− AµkX
R , where kX

R = −iqX is the Killing vector for the U(1) transformation
Equation (7).
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Since we assume inflation to start near ρ = 0, we expand

ε = 4
(
−4A+x2

2+x2

)2
ρ2 +O(ρ4),

η = 2
(
−4A+x2

2+x2

)
+O(ρ2), (22)

where we defined q = f x. Notice that, for ρ� 1, the ε parameter is very small, while the η parameter can
be made small by carefully tuning the parameter A. Any higher-order corrections to the Kähler potential
do not contribute to the leading contributions in the expansion near ρ = 0 for η and ε. Such corrections
can therefore be used to alter the potential near its minimum, at some point X 6= 0 without influencing the
slow-roll parameters.

Note that there are two ways to evade the η-problem:

• First, one can obtain small η by having a small q� f , while A should be of order O(10−1). In this
case, the role of the gauge symmetry is merely to constrain the form of the Kähler potential and the
superpotential, and to provide a Higgs mechanism which eliminates the extra scalar (phase) degree
of freedom.

• Alternatively, there could be a cancellation between q2 and 4A f 2.

Since A is the second term in the expansion of the Kähler potential Equation (10), it is natural to be of
order O(10−1) and therefore provides a solution to the η-problem.

4. On the New FI Term

4.1. Review

In [23], the authors proposed a new contribution to the supergravity Lagrangian of the form 6

LFI = ξ2

[
S0S̄0

w2w̄2

T̄(w2)T(w̄2)
(V)D

]
D

. (23)

The chiral compensator field S0, with Weyl and chiral weights (Weyl, Chiral) = (1, 1), has components
S0 = (s0, PLΩ0, F0) . The vector multiplet has vanishing Weyl and chiral weights, and its components
are given by V =

(
v, ζ,H, vµ, λ, D

)
. In the Wess-Zumino gauge, the first components are put to zero

v = ζ = H = 0. The multiplet w2 is of weights (1, 1), and given by

w2 =
λ̄PLλ

S2
0

, w̄2 =
λPRλ̄

S̄2
0

. (24)

The components of λ̄PLλ are given by

λ̄PLλ =
(

λ̄PLλ ;
√

2PL
(
− 1

2
γ · F̂ + iD

)
λ ; 2λ̄PL /Dλ + F̂− · F̂− − D2

)
. (25)

The kinetic terms for the gauge multiplet are given by

Lkin = −1
4
[
λ̄PLλ

]
F + h.c. . (26)

6 A similar, but not identical term was studied in [43].
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The operator T (T̄) is defined in [44,45], and leads to a chiral (antichiral) multiplet. For example,
the chiral multiplet T(w̄2) has weights (2, 2). In global supersymmetry the operator T corresponds to the
usual chiral projection operator D̄2. 7

From now on, we will drop the notation of h.c., and implicitly assume its presence for every [ ]F term
in the Lagrangian. Finally, the multiplet (V)D is a linear multiplet with weights (2, 0), given by

(V)D =
(

D, /Dλ, 0,Db F̂ab,−/D/Dλ,−�CD
)

. (27)

The definitions of /Dλ and the covariant field strength F̂ab can be found in Equation (17.1) of [28],
which reduce, for an abelian gauge field, to

F̂ab = e µ
a e ν

b

(
2∂[µ Aν] + ψ̄[µγν]λ

)
Dµλ =

(
∂µ −

3
2

bµ +
1
4

wab
µ γab −

3
2

iγ∗Aµ

)
λ−

(
1
4

γab F̂ab +
1
2

iγ∗D
)

ψµ. (28)

Here, e µ
a is the vierbein, with frame indices a, b and coordinate indices µ, ν. The fields wab

µ , bµ,
and Aµ are the gauge fields corresponding to Lorentz transformations, dilatations, and TR symmetry of
the conformal algebra respectively, while ψµ is the gravitino. The conformal d’Alembertian is given by
�C = ηabDaDb.

It is important to note that the FI term given by Equation (23) does not require the gauging of
an R-symmetry, but breaks invariance under Kähler transformations. In fact, a gauged R-symmetry would
forbid such a term LFI [23]. 8

The resulting Lagrangian, after integrating out the auxiliary field D, contains a term

LFI,new = −
ξ2

2
2
(s0 s̄0)

2 . (29)

In the absence of additional matter fields, one can use the Poincaré gauge s0 = s̄0 = 1, resulting in
a constant D-term contribution to the scalar potential. This prefactor, however, is relevant when matter
couplings are included in the next section.

4.2. Adding (Charged) Matter Fields

In this section, we couple the term LFI given by Equation (23) to additional matter fields charged
under the U(1). For simplicity, we focus on a single chiral multiplet X; the extension to more chiral
multiplets is trivial. The Lagrangian is given by

L = −3
[
S0S̄0e−

1
3 K(X,X̄)

]
D
+
[
S3

0W(X)
]

F
− 1

4
[

f (X)λ̄PLλ
]

F + LFI, (30)

7 The operator T indeed has the property that T(Z) = 0 for a chiral multiplet Z. Moreover, for a vector multiplet V, we have
T(ZC) = ZT(C) and [C]D = 1

2 [T(C)]F .
8 We kept the notation of [23]. Note that, in this notation, the field strength superfieldWα is given byW2 = λ̄PLλ, and (V)D

corresponds to D�W�.
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with a Kähler potential K(X, X̄), a superpotential W(X), and a gauge kinetic function f (X). The first
three terms in Equation (30) give the usual supergravity Lagrangian [28]. We assume that the multiplet X
transforms under the U(1),

V → V + Λ + Λ̄,

X → Xe−qΛ, (31)

with gauge multiplet parameter Λ. We assume that the U(1) is not an R-symmetry. In other words,
we assume that the superpotential does not transform under the gauge symmetry. For a model with
a single chiral multiplet, this implies that the superpotential is constant

W(X) = F. (32)

Gauge invariance fixes the Kähler potential to be a function of XeqV X̄ (for notational simplicity, in the
following we omit the eqV factors).

Indeed, in this case, the term LFI can be consistently added to the theory, similar to [23], and the
resulting D-term contribution to the scalar potential acquires an extra term proportional to ξ2

VD =
1
2

Re ( f (X))−1
(

ikX∂XK + ξ2e
2
3 K
)2

, (33)

where the Killing vector is kX = −iqX and f (X) is the gauge kinetic function. The F-term contribution to
the scalar potential remains the usual

VF = eK(X,X̄)
(
−3WW̄ + gXX̄∇XW∇̄X̄W̄

)
. (34)

For a constant superpotential (32), this reduces to

VF = |F|2eK(X,X̄)
(
−3 + gXX̄∂XK∂X̄K

)
. (35)

From Equation (33) it can be seen that, if the Kähler potential includes a term proportional to
ξ1 log(XX̄), the D-term contribution to the scalar potential acquires another constant contribution.
For example, if

K(X, X̄) = XX̄ + ξ1 ln(XX̄), (36)

the D-term contribution to the scalar potential becomes

VD =
1
2

Re ( f (X))−1
(

qXX̄ + qξ1 + ξ2e
2
3 K
)2

. (37)

In fact, the contribution proportional to ξ1 is the usual FI term in a non R-symmetric Kähler frame,
which can be consistently added to the model including the new FI term proportional to ξ2.

In the absence of the extra term, a Kähler transformation

K(X, X̄)→ K(X, X̄) + J(X) + J̄(X̄),

W(X)→W(X)e−J(X), (38)
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with J(X) = −ξ1 ln X allows one to recast the model in the form

K(X, X̄) = XX̄,

W(X) = m3/2X. (39)

The two models result in the same Lagrangian, at least classically 9. However, in the Kähler frame of
Equations (39), the superpotential transforms nontrivially under the gauge symmetry. As a consequence,
the gauge symmetry becomes an R-symmetry. Note that [24]:

1. The extra term (23) violates the Kähler invariance of the theory, and the two models related by
a Kähler transformation are no longer equivalent.

2. The model written in the Kähler frame where the gauge symmetry becomes an R-symmetry in
Equations (39) can not be consistently coupled to LFI.

5. The Scalar Potential in a Non R-Symmetry Frame

In this section, we work in the Kähler frame where the superpotential does not transform, and take
into account the two types of FI terms which were discussed in the last section. For convenience, we repeat
here the Kähler potential in Equation (36) and restore the inverse reduced Planck mass κ = M−1

Pl =

(2.4× 1018 GeV)−1:
K = κ−2(XX̄ + ξ1 ln XX̄). (40)

The superpotential and the gauge kinetic function are set to be constant 10:

W = κ−3F, f (X) = 1. (41)

After performing a change of the field variable X = ρeiθ , where ρ ≥ 0 and setting ξ1 = b, the full
scalar potential V = VF + VD is a function of ρ. The F-term contribution to the scalar potential is given by

VF =
1
κ4 F2eρ2

ρ2b

[(
b + ρ2)2

ρ2 − 3

]
, (42)

and the D-term contribution is

VD =
q2

2κ4

(
b + ρ2 + ξρ

4b
3 e

2
3 ρ2
)2

. (43)

Note that we rescaled the second FI parameter by ξ = ξ2/q. We consider the case with ξ 6= 0, as we
are interested in the role of the new FI-term in inflationary models driven by supersymmetry breaking.
Moreover, the limit ξ → 0 is ill-defined [23].

9 At the quantum level, a Kähler transformation also introduces a change in the gauge kinetic function f , see, for example, [46].
10 Strictly speaking, the gauge kinetic function gets a field-dependent correction proportional to q2 ln ρ, in order to cancel the chiral

anomalies [10]. However, the correction turns out to be very small and can be neglected below, since the charge q is chosen to be
of order of 10−5 or smaller.
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The first FI parameter b was introduced as a free parameter. We now proceed to narrowing the value
of b by the following physical requirements. We first consider the behaviour of the potential around ρ = 0,

VD =
q2

2κ4

[(
b2 + 2bρ2 + O(ρ4)

)
+ 2bξρ

4b
3
(
1 + O(ρ2)

)
+ ξ2ρ

8b
3
(
1 + O(ρ2)

)]
, (44)

VF =
F2

κ4 ρ2b
[
b2ρ−2 + (2b− 3) + O(ρ2)

]
. (45)

Here we are interested in small-field inflation models, in which the inflation starts in the
neighbourhood of a local maximum at ρ = 0. In [21], we considered models of this type with ξ = 0
(which were called Case 1 models), and found that the choice b = 1 is forced by the requirement that the
potential takes a finite value at the local maximum ρ = 0. Now, we will investigate the effect of the new FI
parameter ξ on the choice of b under the same requirement.

First, in order for V(0) to be finite, we need b ≥ 0. We first consider the case b > 0. We next investigate
the condition that the potential at ρ = 0 has a local maximum. For clarity, we discuss below the cases of
F = 0 and F 6= 0 separately. The b = 0 case will be treated at the end of this section.

5.1. Case F = 0

In this case, VF = 0 and the scalar potential is given by only the D-term contribution V = VD. Let us
first discuss the first derivative of the potential:

V ′D =
q2

2κ4

[
4bρ
(
1 + O(ρ2)

)
+

8b2

3
ξρ

4b
3 −1(1 + O(ρ2)

)
+

8b
3

ξ2ρ
8b
3 −1(1 + O(ρ2)

)]
. (46)

For V ′D(0) to be convergent, we need b ≥ 3/4 (note that ξ 6= 0). When b = 3/4, we have V ′D(0) =
8b2ξ/3, which does not give an extremum as we chose ξ 6= 0. On the other hand, when b > 3/4, we have
V ′D(0) = 0. To narrow the allowed value of b further, let us turn to the second derivative,

V ′′D =
q2

2κ4

[
4b
(
1 + O(ρ2)

)
+

8b2

3

(4b
3
− 1
)

ξρ
4b
3 −2(1 + O(ρ2)

)
+

8b
3

(8b
3
− 1
)

ξ2ρ
8b
3 −2(1 + O(ρ2)

)]
. (47)

When 3/4 < b < 3/2, the second derivative V ′′D(0) diverges. When b > 3/2, the second derivative
becomes V ′′D(0) = 2κ−4q2b > 0, which gives a minimum.

We therefore conclude that to have a local maximum at ρ = 0, we need to choose b = 3/2, for which
we have

V ′′D(0) = 3κ−4q2(ξ + 1). (48)

The condition that ρ = 0 is a local maximum requires ξ < −1.
Let us next discuss the global minimum of the potential with b = 3/2 and ξ < −1. The first derivative

of the potential without approximation reads

V ′D ∝ ρ(3 + 3ξe
2
3 ρ2

+ 2ξρ2e
2
3 ρ2

)(3 + 2ρ2 + 2ξρ2e
2
3 ρ2

). (49)
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Since 3 + 3ξe
2
3 ρ2

+ 2ξρ2e
2
3 ρ2

< 0 for ρ ≥ 0 and ξ < −1, the extremum away from ρ = 0 is located at
ρv satisfying the condition

3 + 2ρ2
v + 2ξρ2

ve
2
3 ρ2

v = 0. (50)

Substituting this condition into the potential VD gives VD(ρv) = 0.
We conclude that, for ξ < −1 and b = 3/2, the potential has a maximum at ρ = 0,

and a supersymmetric minimum at ρv. We postpone the analysis of inflation near the maximum of
the potential to Section 6, and the discussion of the uplifting of the minimum, in order to obtain a small
but positive cosmological constant below. In the next subsection, we investigate the case F 6= 0.

We finally comment on supersymmetry breaking in the scalar potential. Since the superpotential
is zero, the SUSY breaking is measured by the D-term order parameter, namely the Killing potential
associated with the gauged U(1), which is defined by

D = iκ−2−iqX
W

(
∂W
∂X

+ κ2 ∂K
∂X

W
)

. (51)

This enters the scalar potential as VD = D2/2. So, at the local maximum and during inflation, D is of
order q and supersymmetry is broken. On the other hand, at the global minimum, supersymmetry is
preserved and the potential vanishes.

5.2. Case F 6= 0

In this section, we take into account the effect of VF; its first derivative reads:

V ′F = κ−4F2
[

b2(2b− 2)ρ2b−3 + 2b(2b− 3)ρ2b−1(1 + O(ρ2)
)]

. (52)

For V ′(0) to be convergent, we need b ≥ 3/2, for which V ′D(0) = 0 holds. For b = 3/2, we have
V ′F(0) = (9/4)κ−4F2 > 0, which does not give an extremum. For b > 3/2, we have V ′F(0) = 0. To narrow
the allowed values of b further, let us turn to the second derivative:

V ′′F = κ−4F2
[

b2(2b− 2)(2b− 3)ρ2b−4 + 2b(2b− 3)(2b− 1)ρ2b−2(1 + O(ρ2)
)]

. (53)

For 3/2 < b < 2, the second derivative V ′′F (0) diverges. For b ≥ 2, the second derivative is positive
V ′′(0) > 0, which gives a minimum (note that V′′D(0) > 0 as well in this range).

We conclude that the potential cannot have a local maximum at ρ = 0 for any choice of b. Nevertheless,
as we will show below, the potential can have a local maximum in the neighbourhood of ρ = 0 if we
choose b = 3/2 and ξ < −1. For this choice, the derivatives of the potential have the following properties:

V ′(0) < 0, V ′′(0) = 3κ−4q2(ξ + 1). (54)

The extremisation condition around ρ = 0 becomes

3κ−4q2(ξ + 1)ρ +
9
4

κ−4F2 ' 0. (55)
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So, the extremum is at

ρ ' − 3F2

4q2(ξ + 1)
. (56)

Note that the extremum is in the neighbourhood of ρ = 0, as long as we keep the F-contribution to
the scalar potential small by taking F2 � q2|ξ + 1|, which guarantees the approximation-ignoring higher
order terms in ρ. We now choose ξ < −1, so that ρ for this extremum is positive. The second derivative at
the extremum reads

V ′′ ' 3κ−4q2(ξ + 1), (57)

as long as we ignore the higher order terms in F2/(q2|ξ + 1|). By our choice ξ < −1, the extremum is
a local maximum, as desired.

Let us comment on the global minimum after turning on the F-term contribution. As long as we
choose the parameters so that F2/q2 � 1, the change in the global minimum ρv is very small (of order
O(F2/q2)), because the extremisation condition depends only on the ratio F2/q2. So, the change in the
value of the global minimum is of order O(F2). The plot of this change is given in Figure 2.

Figure 2. This plot shows the scalar potentials in the F = 0 and F 6= 0 cases. When F = 0, we have
a local maximum at ρmax = 0 and a global minimum with zero cosmological constant. For F 6= 0, the local
maximum is shifted by a small positive value to ρmax 6= 0. The global minimum now has a positive
cosmological constant.

In the present case F 6= 0, the order parameters of SUSY breaking are both the Killing potential D and
the F-term contribution FX , which read

D ∝ q( 3
2 + ρ2), FX ∝ Fρ1/2eρ2/2, (58)

where the F-term order parameter FX is defined by

FX = − 1√
2

eκ2K/2
(

∂2K
∂X∂X̄

)−1(
∂W̄
∂X̄

+ κ2 ∂K
∂X̄

W̄
)

. (59)

Therefore, at the local maximum, FX/D is of order O((ξ + 1)−1/2F2/q2) because ρ at that point is of
order O((ξ + 1)−1F2/q2). On the other hand, at the global minimum, both D and FX are of order O(F),
assuming that ρ at the minimum is of order O(1), which is true in our models below. This makes tuning of
the vacuum energy between the F- and D-contribution, in principle, possible, along the lines of [10,21].
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A comment must be made here on the action in the presence of non-vanishing F and ξ. As mentioned
above, the supersymmetry is broken both by the gauge sector and by the matter sector. The associated
goldstino therefore consists of a linear combination of the U(1) gaugino and the fermion in the matter chiral
multiplet X. In the unitary gauge the goldstino is set to zero, so the gaugino is not vanishing and the action
does not simplify as in Ref. [23]. This, however, only affects the part of the action with fermions, while the
scalar potential does not change. This is why we nevertheless used the scalar potential (42) and (43).

Let us consider the case b = 0, where only the new FI parameter ξ contributes to the potential.
In this case, the condition for the local maximum of the scalar potential at ρ = 0 can be satisfied for
− 3

2 < ξ < 0. When F is set to zero, the scalar potential (43) has a minimum at ρ2
min = 3

2 ln
(
− 3

2ξ

)
.

In order to have Vmin = 0, we can choose ξ = − 3
2e . However, we find that this choice of parameter ξ does

not allow slow-roll inflation near the maximum of the scalar potential. Similar to the previous model
of Section 3, it may be possible to achieve both the scalar potential satisfying slow-roll conditions and
a small cosmological constant at the minimum, by adding correction terms to the Kähler potential and
turning on a parameter F. However, here, we will focus on the b = 3/2 case where, as we will see shortly,
less parameters are required to satisfy the observational constraints.

6. Application in Inflation

We recall that in the models we described in Section 3, the inflaton is identified with the sgoldstino,
carrying a U(1) charge under a gauged R-symmetry and inflation occurs around the maximum of the scalar
potential, where the U(1) symmetry is restored, with the inflaton rolling down towards the electroweak
minimum. These models avoid the so-called η-problem in supergravity by taking a linear superpotential,
W ∝ X. In contrast, here we will consider models with two FI parameters b, ξ in the Kähler frame,
where the U(1) gauge symmetry is not an R-symmetry. If the new FI term ξ is zero, these models are
Kähler equivalent to those with a linear superpotential (Case 1 models with b = 1). The presence of
non-vanishing ξ, however, breaks the Kähler invariance (as discussed above). Moreover, the FI parameter
b cannot be 1, but is forced to be b = 3/2, according to the argument in Section 5. So, the new models do
not seem to avoid the η-problem. Nevertheless, we will show below that this is not the case, and the new
models with b = 3/2 avoid the η-problem thanks to the other FI parameter ξ—which is chosen near the
value at which the effective charge of X vanishes between the two FI-terms. Inflation is again driven from
supersymmetry breaking, but from a D-term rather than an F-term as we had before.

6.1. Example for Slow-Roll D-Term Inflation

In this section, we focus on the case where b = 3/2 and derive the condition that leads to slow-roll
inflation scenarios, where the start of inflation (or, horizon crossing) is near the maximum of the potential,
at ρ = 0. We also assume that the scalar potential is D-term dominated by choosing F = 0, for which the
model has only two parameters, namely q and ξ. The parameter q controls the overall scale of the potential,
and will be fixed by the amplitude As of the CMB data. The only free parameter left over is ξ, which can
be tuned to satisfy the slow-roll condition.
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In order to calculate the slow-roll parameters, we need to work with the canonically normalised
field χ defined by Equations (20) and (21). Since we assume inflation to start near ρ = 0, the slow-roll
parameters for small ρ can be expanded as

ε =
F4

q4 +
4F2 (2(ξ + 1)q4 − 3F4)

3q6 ρ

+

(
16
9
(ξ + 1)2 +

2F4 (18F4 − q4(20ξ + 11)
)

3q8

)
ρ2 +O(ρ3),

η =
4(1 + ξ)

3
+O(ρ). (60)

Note that η is negative when ξ < −1. We can, therefore, tune the parameter ξ to avoid the
η-problem. The observation is that at ξ = −1, the effective charge of X vanishes and thus the ρ-dependence
in the D-term contribution (43) becomes of quartic order.

For our present choice F = 0, the potential and the slow-roll parameters become functions of ρ2 and
the slow-roll parameters for small ρ2 read

η =
4(1 + ξ)

3
+O(ρ2) ,

ε =
16
9
(ξ + 1)2ρ2 +O(ρ4) ' η(0)2ρ2 . (61)

Note that we obtain the same relation between ε and η as in the model of inflation from supersymmetry
breaking, driven by an F-term from a linear superpotential and b = 1 (see Equation (22)). Thus, there is a
possibility to have a flat plateau near the maximum that satisfies the slow-roll condition and at the same
time a small cosmological constant at the minimum nearby.

The number of e-folds N during inflation is determined by

N = κ2
∫ χend

χ∗

V
∂χV

dχ = κ2
∫ ρend

ρ∗

V
∂ρV

(
dχ

dρ

)2
dρ, (62)

where we choose |ε(χend)| = 1. Notice that the slow-roll parameters for small ρ2 satisfy the simple
relation ε = η(0)2ρ2 + O(ρ4) by Equation (61). Therefore, the number of e-folds between ρ = ρ1 and ρ2

(ρ1 < ρ2) takes the following simple approximate form, exactly as in the previous model of F-term inflation
described in Section 3.

N ' 1
|η(0)| ln

(
ρ2

ρ1

)
=

3
4|ξ + 1| ln

(
ρ2

ρ1

)
, (63)

as long as the expansions in (61) are valid in the region ρ1 ≤ ρ ≤ ρ2. Here, we also used the approximation
η(0) ' η∗, which holds in this approximation.
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We can compare the theoretical predictions of our model to the observational data, via the power
spectrum of scalar perturbations of the CMB, namely the amplitude As, tilt ns, and the tensor-to-scalar
ratio of primordial fluctuations r. These are written in terms of the slow-roll parameters:

As =
κ4V∗

24π2ε∗
,

ns = 1 + 2η∗ − 6ε∗ ' 1 + 2η∗ ,

r = 16ε∗ , (64)

where all parameters are evaluated by the field value at horizon crossing χ∗. From the relation of the
spectral index above, one should have η∗ ' −0.02, and thus Equation (63) gives approximately the desired
number of e-folds when the logarithm is of order one. Actually, using this formula, we can estimate the
upper bound of the tensor-to-scalar ratio r and the Hubble scale H∗, following the same argument given
in Section 3; that is, the upper bounds are given by computing the parameters r, H∗ assuming that the
expansions (61) hold until the end of inflation. We then get the bound

r . 16(|η∗|ρende−|η∗ |N)2 ' 10−4, H∗ . 1012 GeV, (65)

where we used |η∗| = 0.02, N ' 50 − 60, and ρend . 0.5, which are consistent with our models. In the
next subsection, we will present a model which gives a tensor-to-scalar ratio bigger than the upper bound
above, by adding some perturbative corrections to the Kähler potential.

As an example, let us consider the case where

q = 4.544× 10−7, ξ = −1.005. (66)

By choosing the initial condition ρ∗ = 0.055 and ρend = 0.403, we obtain the results N = 58,
ns = 0.9542, r = 7.06 × 10−6, and As = 2.2 × 10−9, which are within the 2σ-region of the
Planck’15 data [24].

As was shown in Section 5.1, this model has a supersymmetric minimum with zero cosmological
constant as F was chosen to be zero. One possible way to generate a non-zero cosmological constant at
the minimum is to turn on the superpotential W = κ−3F 6= 0, as mentioned in Section 5.2. In this case,
the scale of the cosmological constant is of order O(F2). It would be interesting to find an inflationary
model which has a minimum at a tiny tuneable vacuum energy with a supersymmetry breaking scale
consistent with low energy particle physics.

6.2. A Small Field Inflation Model from Supergravity with Observable Tensor-To-Scalar Ratio

While the results in the previous example agree with the current limits on r set by Planck, supergravity
models with higher r are of particular interest. In this section we show that our model can attain large r,
at the price of introducing some additional terms in the Kähler potential. Let us consider the previous
model with additional quadratic and cubic terms in XX̄:

K = κ−2(XX̄ + A(XX̄)2 + B(XX̄)3 + b ln XX̄
)
, (67)

while the superpotential and the gauge kinetic function remain as in Equation (41). We now assume that
inflation is driven by the D-term, setting the parameter F = 0. In terms of the field variable ρ, we obtain
the scalar potential:

V = q2
(

b + ρ2 + 2Aρ4 + 3Bρ6 + ξρ
4b
3 e

2
3 (Aρ4+Bρ6+ρ2)

)2
. (68)
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We, thus, have two more parameters A and B. This does not affect the arguments of the choices of
b in the previous sections, because these parameters appear in higher orders in ρ in the scalar potential.
So, we consider the case b = 3/2. The simple formula (63) for the number of e-folds for small ρ2 also
holds, even when A, B are turned on, because the new parameters appear at order ρ4 and higher. To obtain
r ≈ 0.01, we can choose, for example,

q = 2.121× 10−5, ξ = −1.140, A = 0.545, B = 0.230. (69)

By choosing the initial condition ρ∗ = 0.240 and ρend = 0.720, we obtain the results N = 57,
ns = 0.9603, r = 0.015, and As = 2.2× 10−9, which agree with the Planck’15 data, as shown in Figure 3.

Figure 3. A plot of the predictions for the scalar potential with F = 0, b = 3/2, A = 0.545, B = 0.230,
ξ = −1.140, and q = 2.121× 10−5 in the ns - r plane, versus the Planck’15 results.

In summary, in contrast to the model in Section 3, where the F-term contribution is dominant during
inflation, here inflation is driven purely by a D-term. Moreover, a canonical Kähler potential (40) together
with two FI-parameters (q and ξ) is enough to satisfy the Planck’15 constraints, and no higher-order
correction to the Kähler potential is needed. However, to obtain a larger tensor-to-scalar ratio, we have to
introduce perturbative corrections to the Kähler potential, up to cubic order in XX̄ (i.e., up to order ρ6).
This model provides a supersymmetric extension of the model [47] , which realises large r at small field
inflation, without referring to supersymmetry.
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