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Abstract: In this article we calculate the total angular momentum for Kerr space-time for slow rotations
in the context of teleparallel gravity. In order to analyze the role of such a quantity, we apply Weyl
quantization method to obtain a quantum equation for the z-component of the angular momentum density,
and for the squared angular momentum density as well. We present an approximate solution using the
Adomian decomposition method (AM), which reveals a discrete characteristic for angular momentum.
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1. Introduction

In the old quantum theory, the discrete nature of physical systems played an important role. Such a
feature evolved, giving rise to the so called quantum mechanics. In this process, the passage from classical
theory to its quantum counterpart was developed by quantization techniques. Perhaps one of the first of
such rules was the Bohr-Sommerfeld quantization [1–5].∮

pµdxµ = nh̄ .

In fact, such a quantization rule was applied to the Hydrogen spectral lines to obtain an atomic model.
Hence, the quantization of angular momentum in Bohr’s model was fundamental to the establishment of
the whole quantum mechanics. Quantum theory has reached enormous acceptance in Physics because it is
in agreement with the experimental data of the microscopic world. On the other hand, general relativity is
equally successful in explaining macroscopic phenomena, especially those on a large scale. These two
fundamental branches of physics have not yet been unified because of mutually exclusive approximations,
such that in the microscopic world the gravitational force is negligible and in the macroscopic world the
quantum phenomena have no effect. Thus, the quest for a quantum theory of gravitation becomes natural
and extremely desirable. From the point of view of this unification, general relativity has proved flawed,
at least refractory to the applications of quantization techniques. The root of this behavior lies in the old
problem of gravitational energy. Since the birth of general relativity we have sought an energy-momentum
tensor associated only with the gravitational field. Although there are several proposals with interesting
characteristics, there is no gravitational energy expression in the scope of the metric formulation that

Universe 2019, 5, 29; doi:10.3390/universe5010029 www.mdpi.com/journal/universe

http://www.mdpi.com/journal/universe
http://www.mdpi.com
https://orcid.org/0000-0001-9994-958X
http://dx.doi.org/10.3390/universe5010029
http://www.mdpi.com/journal/universe


Universe 2019, 5, 29 2 of 10

brings together the invariance with respect to the coordinate transformations and the dependence with the
choice of the reference system.

Teleparallel gravity is an alternative theory to general relativity that predicts the same experimental
results of the former. It is a theory dynamically equivalent to general relativity which has been introduced
by Einstein as an attempt to construct an unified field theory [6]. In the framework of teleparallel gravity
there is a well defined expression for a gravitational energy-momentum tensor [7–9], which also defines
a gravitational angular momentum [10,11]. However, such an expression is not defined in phase space,
which demands a great effort to apply the canonical quantization rules. This forces one to use alternative
methods such as Dirac method or Weyl’s quantization [12,13]. Particularly, the Weyl’s method was used to
obtain a discrete spectrum of mass for Schwarzschild space-time using teleparallel energy [14]. However,
a quantization of gravitational angular momentum is still lacking. In this article we want to explore such a
calculation for a slowly rotating Kerr space-time.

This article is divided as follows. In Section 2 the teleparallel gravity is described, the gravitational
energy-momentum is introduced as well as the gravitational angular momentum. In Section 3 we apply
a quantization technique to gravitational angular momentum density to obtain an eigenvalue equation
for the respective operator and its square. We then give an approximated solution using the Adomian
method. Finally, in the last section we present our last comments. In this article we use natural unities
unless otherwise stated.

2. Teleparallel Gravity

Teleparallel gravity is an alternative theory of gravitation dynamically equivalent to general relativity.
It is constructed out of tetrad field rather than metric tensor. The tetrad field relates two symmetries
in space-time, Lorentz transformations, and passive coordinate transformations. In order to tell them
apart we use latin indices a = (0), (i) to designate SO(3,1) symmetry and greek indices to diffeomorphism,
µ = 0, i. Thus

gµν = eaµea
ν ;

ηab = eaµeb
µ , (1)

where ηab = diag(−+++) is the metric tensor of Minkowski space-time. This means that for every metric
tensor there are infinity tetrads, each of them is adapted to a specific reference frame. It should be noted
that the tetrad field has 16 independent components and the metric only 10. These six components are
totally arbitrary and they define the kinematical state of the observer once the components e(0)

µ are
associated to the 4-velocity of the observer Uµ. Such an association is possible because the components
e(0)

µ remain tangent along the trajectory in a given world-line. Teleparallel gravity is not only formulated
in terms of tetrad fields but it is also defined in a Weitzenböck geometry. Let us see how the equivalence to
general relativity is obtained.

A Weitzenböckian manifold is endowed with the Cartan connection [15], Γµλν = ea
µ∂λeaν, which has

a vanishing curvature tensor. This feature allows one to compare vectors at different points in space-time,
hence it is possible to have parallelism at distance also known as teleparallelism. On the other hand,
the torsion associated to such a connection is

Ta
λν = ∂λea

ν − ∂νea
λ . (2)
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The Christoffel symbols 0Γµλν are torsion free and exist in a Riemannian geometry, thus the curvature
tensor plays all dynamical roles for metric theories of gravitation such as general relativity. It is interesting
to note that Christoffel symbols are related to Cartan connection by the following mathematical identity

Γµλν = 0Γµλν + Kµλν , (3)

where Kµλν is given by

Kµλν =
1
2
(Tλµν + Tνλµ + Tµλν) , (4)

with Tµλν = eaµTa
λν, the quantity Kµλν is the contortion tensor.

The curvature tensor obtained from Γµλν is identically zero which, using (3), leads to

eR(e) ≡ −e(
1
4

TabcTabc +
1
2

TabcTbac − TaTa) + 2∂µ(eTµ) , (5)

where R(e) is the scalar curvature of a Riemannian manifold and Tµ = Tb
b
µ. Since the divergence term

in Equation (5) does not contribute with the field equations, hence the Teleparallel Lagrangian density
equivalent to Hilbert-Einstein Lagrangian density is

L(eaµ) = −κ e (
1
4

TabcTabc +
1
2

TabcTbac − TaTa) − LM

≡ −κ eΣabcTabc − LM , (6)

where κ = 1/(16π), LM is the Lagrangian density of matter fields and Σabc is given by

Σabc =
1
4
(Tabc + Tbac

− Tcab) +
1
2
(ηacTb

− ηabTc) , (7)

with Ta = ea
µTµ. The field equations obtained from such a Lagrangian read

∂ν
(
eΣaλν

)
=

1
4κ

e ea
µ(tλµ + Tλµ) , (8)

where Tλµ is the energy-momentum of matter fields while tλµ which is defined by

tλµ = κ
[
4 ΣbcλTbc

µ
− gλµ ΣabcTabc

]
, (9)

represents the gravitational energy-momentum [16]. It should be noted that Σaλν is skew-symmetric in the
last two indices, that leads to

∂λ∂ν
(
eΣaλν

)
≡ 0 . (10)

Therefore the total energy-momentum contained in a three-dimensional volume V of space is

Pa =

∫
V

d3x e ea
µ(t0µ + T0µ) , (11)

or using the field equations we have

Pa = 4k
∫

V
d3x ∂ν

(
e Σa0ν

)
. (12)
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It is worth mentioning that the above expression is independent of coordinate transformations, which
is expected from a reliable definition of energy and momentum. On the other hand, it is a vector under
Lorentz transformations, which is a feature of special relativity and there is no good reason to abandon
such an attribute in gravitational theory.

We stress the fact that the tetrad field is the dynamical variable of teleparallel gravity, then the usual
definition of angular momentum in terms of the energy-momentum vector yields

Lab = 4k
∫

V
d3x e

(
Σa0b
− Σb0a

)
, (13)

this expression is the total angular momentum. Both Lab and Pa obey a Poincaré algebra [17], which is a
very good indication of the consistency of the definition (13).

3. Angular Momentum Quantization

The most general form of the line element that exhibits axial symmetry is given by

ds2 = g00dt2 + 2g03dφ dt + g11dr2 + g22dθ2 + g33dφ2 . (14)

That yields the following contravariant metric tensor

gµν =



−
g33

δ
0 0

g03

δ

0
1

g11
0 0

0 0
1

g22
0

g03

δ
0 0 −

g00

δ


(15)

where δ = g03g03 − g00g33. it should be noted that the components of the metric tensor are function of r e θ.
In order to calculate the angular momentum we have to choose a referencial frame. As stated before,

the kinematical state of the observer can be defined by its field velocity. For a stationary observer it is
enough to chose e(0)

i = Ui = 0, which is also known as Schwinger gauge. In fact, the most general way of
establishing the reference frame is through the acceleration tensor first introduced by Mashhoon [18,19].
Thus, a tetrad field adapted to a stationary reference frame is given by

eaµ =


−A 0 0 −B
0

√
g11 sinθ cosφ

√
g22 cosθ cosφ −C sinθ sinφ

0
√

g11 sinθ sinφ
√

g22 cosθ sinφ C sinθ cosφ
0

√
g11 cosθ −

√
g22 sinθ 0

 , (16)

with
A =

√
(−g00) ,

AB = −g03 ,

C sinθ =
δ1/2√
(−g00)

(17)
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Then the non-vanishing components of the torsion tensor are

T013 = −A∂1B ,
T023 = −A∂2B ,

T001 =
1
2
∂1(A2) ,

T002 =
1
2
∂2(A2) ,

T112 = −
1
2
∂2(g11) ,

T212 =
1
2
∂1(g22) −

√
g11g22 ,

T313 =
1
2
∂1(g33) −

√
g11C sin2 θ ,

T323 =
1
2
∂2(g33) −

√
g22C sinθ cosθ .

(18)

From expression (13) it is possible to define the angular momentum density Mab = 4ke
(
Σa0b
− Σb0a

)
,

then after some algebraic manipulations it yields

Mab = 2k∂i[e(eaieb0
− ebiea0)] , (19)

which is an incredible simple expression in terms of the tetrad field adapted to a stationary reference frame.
The most historical representative of axial symmetry is the Kerr solution. Perhaps it is a natural step

to investigate the quantization of angular momentum in such a system. This line element, in terms of the
Boyer-Lindquist coordinates, is given by

ds2 = −
ψ2

ρ2 dt2
−

2χ sin2 θ

ρ2 dφ dt +
ρ2

∆
dr2 + ρ2dθ2 +

Σ2 sin2 θ

ρ2 dφ2 , (20)

with
∆ = r2 + a2

− 2mr ,
ρ2 = r2 + a2 cos2 θ ,
Σ2 = (r2 + a2)2

− ∆a2 sin2 θ ,
ψ2 = ∆ − a2 sin2 θ ,
χ = 2amr .

(21)

This black hole has a fundamental singularity in the form of a ring in contrast with Schwarzschild

black hole whose singularity is a point. The Kerr black hole rotates with angular velocity ω =
2mar sin2 θ

Σ2

and has two event horizon given by r± = m±
√

m2 − a2. In addition, this black hole has two stationary

surfaces defined by rs± = m±
√

m2 − a2 cos2 θ. The region between the event horizon and the stationary
surface is called ergosphere, there it is impossible to have a reference frame at rest. In order to simplify our
analysis, let us take a slowly rotating Kerr space-time which is given by the following line element

ds2 = −
(
1−

2m
r

)
dt2 +

(
1−

2m
r

)−1
dr2 + r2dθ2 + r2 sin2 θdφ2

−
2ma

r
sin2 θdtdφ , (22)

which yields a tetrad field in agreement with reference [20], then the component of angular momentum
density in z-direction, Mz = M(1)(2), reads
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Mz =
ma sinθ

r2

(
1−

2m
r

)−3/2
−m sin2 θ+ r(3 cos2 θ− 1)

√
1−

2m
r

 . (23)

Similarly, the modulus of the angular momentum density, M2 = MabMab, is given by

M2 =
m2a2 sin2 θ

r(8m3 − r3 + 6mr2 − 12m2r)

[
r(2m− r)(4− 3 sin2 θ) −m(2r + m)

(
1−

2m
r

)1/2
sin2 θ

]
. (24)

Now we have to apply some quantization procedure to those expressions of angular momentum.
Thus, the Weyl quantization is a mapping that leads classical coordinates, zn, into operators ẑn. Such a
map is explicitly given by

W[ f (z1, z2, ..., zn)] :=
1

(2π)n

∫
dnkdnz f (z1, z2, ..., zn) exp

i
n∑

l=1

kl (̂zl − zl)

 , (25)

usually the operators ẑn obey a non-commutative relation as

[̂zi, ẑ j] = βi j .

It is worth mentioning that Weyl’s quantization method is suitable to quantize any particular function
of coordinates, which is an huge advantage over the canonical procedure that can be applied only in the
phase space. This sort of quantization arose in the very dawn of quantum mechanics when the opposite
question about the classical limit of a quantum structure was asked. Another interesting point about Weyl’s
prescription is the non-commutative relation between the operators ẑi, it allows any representation for
such operator as long as the non-commutative relation holds. Thus, it is a matter of convenience on how
representation should be used. For instance, in the phase space of quantum mechanics one can use the

momentum representation settled byW[x] = x̂ = ih̄
∂
∂p

andW[p] = p̂ = p, the coordinate representation,

which is given byW[p] = p̂ = −ih̄
∂
∂x

andW[x] = x̂ = x, or a mixture of both. It should be noted that

both Mz and M2 depend on the coordinates r and sinθ, hence we introduce the simpler representation

W[r] = r̂ = β
∂
∂x

and W[sinθ] = x̂ = x, with β12 = β. Therefore, applying the Weyl prescription to

W[Mz] = M̂z and requiring

M̂zψ = λψ ,

it yields
λ

ma

(
β2 d2

dx2 − 3mβ
d

dx

)
ψ = −mx3ψ+

1
2

(
2x− 3x3

) (
β

d
dx

+ 2m
)
ψ

+
1
2

(
β

d
dx

+ 2m
) (

2x− 3x3
)
ψ .

(26)

Then

j
d2ψ

dx2 + (3x3
− 2x− 3µ j)

dψ
dx

+ (
9
2

x2
− 2µx3 + 2µx− 1)ψ = 0 , (27)

where µ =
m
β

and j =
λ
µa

. It should be noted that β is the non-commutative parameter with dimension

of length hence µ and j are dimensionless. We also point out that a quantization process is essentially
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the introduction of a non-commutative structure. The Weyl’s prescription allows one to construct such
a structure including, but not restricted to, the phase space as in quantum mechanics. In addition,
the quantization process requires a function of coordinates in which a non-commutative parameter can be
introduced, that excludes Lab since it is independent on the coordinates. Although the angular momentum
density has no physical meaning under the classical viewpoint, it yields an observable in the realm of

quantum theory. For instance λ =

∫
d3xψ†M̂zψ which could be experimentally verified.

Analogously, the Weyl procedure applied to M2 together with an equation of eigenfunction and
eigenvalue as M̂2Ψ = α2Ψ yields

l2
∂4Ψ
∂x4

− 6µl2
∂3Ψ
∂x3 + (3x4

− 4x2 + 12µ2l2)
∂2Ψ
∂x2 + (8µx2

− 8l2µ3
− 8µx4

− 8x + 12x3)
∂Ψ
∂x

+ (µ2x4
− 16µx3 + 8µx + 18x− 4)Ψ = 0 ,

(28)

where µ =
m
β

and l =
α
µa

. It is worth pointing out that the densities associated to Pa and Lab were obtained

as constraints in the Hamiltonian formalism of teleparallel gravity. They satisfy the Poincaré algebra as
well, thus MabMab is the most suitable SO(3,1) invariant to apply the Weyl prescription since it is still
dependent on the coordinates. In order to present a solution for Equations (27) and (28), we will use the
Adomian Decomposition Method.

Adomian Decomposition Method (AM)

The Adomian Decomposition Method (AM) was developed in 1961 to solve frontier physical problems [21].
The method shows excellent results in the study of nonlinear ordinary differential, integro-differential,
and partial differential equations. It is based on the following steps: Consider an equation

Hy(x) = f (x), (29)

where H stands for a general nonlinear ordinary differential operator, with linear and nonlinear terms.
The linear part can be separated in two others, L and R, where L is easily inverted and R is the remainder
of the linear operator. In this sense, operator H can be written as

H = L + R + N,

where N is the nonlinear part. Then, Equation (29) becomes

Ly(x) + Ry(x) + Ny(x) = f (x). (30)

Equation (30) can be written as

L−1[Ly(x)] = −L−1[Ry(x)] − L−1[Ny(x)] + L−1[ f (x)], (31)

where L−1 is the inverse operator of L. If L is a second order operator, for example, we have
L−1[Ly(x)] = y(x) − y(0) − y′(0)x, and the solution of Equation (31) turns out to be

y(x) = y(0) + y′(0)x− L−1[Ry(x)] − L−1[Ny(x)] + L−1[ f (x)]. (32)
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The nonlinear term Ny(x) can be expanded as
∞∑

n=0

An, where An are the so called Adomian polynomials.

The remaining part y(x) will be decomposed into y(x) =
∞∑

n=0

yn, with y0 = y(0) + y′(0)x + L−1[ f (x)].

Consequently, we have

y(x) = y0 − L−1[R(
∞∑

n=0

yn)] − L−1[
∞∑

n=0

An]. (33)

The Adomian polynomials can be calculated using the relation

An =
1
n

 d
dλn [N(

∞∑
n=0

λiyi)]


λ=0

, (34)

n = 0, 1, 2, 3, .... An extensive use of such a method can be found in reference [21].
If we apply this method to Equation (27), then we obtain

ψ(x) = ψ(0) +
dψ(0)

dx
x−

1
j

{
L−1

[
(3x3

− 2x− 3µ j)
dψ(x)

dx

]
− L−1

[
(−2µx3 +

9
2

x2 + 2µx− 1)ψ(x)
]}

. (35)

Hence using ψ(x) =
∞∑

n=0

ψn, we have

ψ0(x) = ψ(0) +
dψ(0)

dx
x.

It should be pointed out that the boundary condition used has a clear meaning, it says that the
information about angular momentum is the same at the poles of Kerr ergosphere. The superior orders of
approximation in the solution can be found by an iterative procedure, it is given by

ψ1(x) = −
1
j

{
L−1

[
(3x3

− 2x− 3µ j)
dψ0(x)

dx

]
− L−1

[
(−2µx3 +

9
2

x2 + 2µx− 1)ψ0(x)
]}

,

ψ2(x) = −
1
j

{
L−1

[
(3x3

− 2x− 3µ j)
dψ1(x)

dx

]
− L−1

[
(−2µx3 +

9
2

x2 + 2µx− 1)ψ1(x)
]}

,

ψn+1(x) = −
1
j

{
L−1

[
(3x3

− 2x− 3µ j)
dψn(x)

dx

]
− L−1

[
(−2µx3 +

9
2

x2 + 2µx− 1)ψn(x)
]}

.

In this way, the solution of Equation (27) up to the second order approximation is

ψ(x) = ψ(0) +
dψ(0)

dx
x +

1
2

(
3µ
j

dψ(0)
dx

−
1
j
ψ(0)

)
x2

+
1
3

(
−

3
2 j2

dψ(0)
dx

−
2µ
j2
ψ(0)

)
x3 +

1
4

(
1
j2

dψ(0)
dx

−
4µ
3 j2

dψ(0)
dx

+
1
j2
ψ(0)

)
x4

+
1
5

(
3

4 j2
dψ(0)

dx
+

7µ
4 j2

ψ(0)
)

x5 +
7µ

30 j3
dψ(0)

dx
x6 + ...

(36)
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With the condition ψ(1) = ψ(−1), we estimate that the lower value for eigenvalue j is j1 =

√
3 + 4µ

6
.

In the second level, the value for eigenvalue j becomes j2 =

√
1 + 2µ

8
. It should be noted that j assumes

discrete values depending on the approximation order taken in AM.
Similarly, the solution obtained when AM is applied to (28), again up to the second order approximation, reads

Ψ(x) = Ψ(0) +
dΨ(0)

dx
x +

1
2

d2Ψ(0)
dx2 x2 +

1
6

d3Ψ(0)
dx3 x3

+
1
4

(
4
3

dΨ(0)
dx

µ3
− 2µ2 d3Ψ(0)

dx3 +
2
3

Ψ(0)
)

x4

+
1
5

(
1
3

d3Ψ(0)
dx3 µ3 +

1
5l2
−

2µ)
5l2

dΨ(0)
dx

+
1
30

d2Ψ(0)
dx2 −

1
60

(8µ+ 18)Ψ(0)
)

x5

+
1
6

(
µ3

15
d3Ψ(0)

dx3 −
1

5l2
d2Ψ(0)

dx2 −
2µ
5l2

dΨ(0)
dx

+
1
30

d2Ψ(0)
dx2 −

(18 + 8µ)
6

d3Ψ(0)
dx3

)
x6

+
1
7

(
1

180
d3Ψ(0)

dx3 +
1

15l2
d3Ψ(0)

dx3 −
1

10l2
dΨ(0)

dx
+

2µ
15

Ψ(0) −
(18 + 8µ)

240
d2Ψ(0)

dx2 −
µ

15l2
d2Ψ(0)

dx2

)
x7 + ...

(37)

This solution gives a discrete value of angular momentum as well as above. The lowest level of

eigenvalue l2 is given by l21 =
8µ3 + 12µ2

− 8µ− 14
24

. It is worth pointing out that ln and jn stand for
discrete dimensionless values for the total gravitational angular momentum and gravitational angular
momentum in z-direction respectively. It means that if the black hole mass can continuously grow then the
gravitational angular momentum assumes only allowed values.

4. Conclusions

In this article we have presented the quantization of angular momentum in a slowly rotating Kerr
space-time. The angular momentum was obtained in the realm of teleparallel gravity which separates
features of gravitational field from matter fields. A slowly rotating approximation was used to calculate
the angular momentum and the Weyl quantization procedure was used to obtain a quantum equation.
Such a prescription was applied to the z-direction of gravitational angular momentum and its squared.
The equations were established by an eigenvalue-eigenfunction equation. We used the Adomian method
to obtain an approximated solution and, using boundary conditions, we find out a discrete angular
momentum eigenvalue. Such a discrete feature can help us to look for experimental evidences of a
quantum theory of gravitation.
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