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Abstract: In this paper, we want to study one loop corrections in Very Special Relativity Standard
Model(VSRSM). In order to satisfy the Ward identities and the Sim(2) symmetry of the model,
we have to specify the Feynman rules, including the infrared regulator. To do this, we adapt
the Mandelstam–Leibbrandt (ML) prescription to incorporate external momentum-dependent null
vectors. As an example, we use the new Sim(2) invariant dimensional regularization to compute one
loop corrections to the effective action in the subsector of the VSRSM that describe the interaction of
photons with charged leptons. New stringent bounds for the masses of νe and νµ are obtained.
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1. Introduction

The Weinberg–Salam model of weak and electromagnetic interactions (SM) is being verified at the
LHC: the discovery of the Higgs particle ratified the mechanism of spontaneous symmetry breaking
(SSB). However, the mark of new particles or new interactions do not appear at the LHC at present [1].
Nevertheless, some anomalies have been found in the lepton flavor universalities of the semileptonic
B decays, which could point to new physics [2–9].

However, we know that the SM is not adequate in the neutrino sector. In the SM, neutrinos are
massless, whereas in Nature, at least some of the species of neutrinos must be massive because they
exhibit neutrino oscillations [10].

To describe massive neutrinos in a Lorentz-invariant quantum field theory (QFT), a new kind of
particles must be postulated as in the seesaw mechanism [11].

If we want to keep the particles and symmetries of the SM and give masses to the neutrinos, one
possibility is very special relativity (VSR) [12]. VSR postulates that the true symmetry of Nature is
not the Lorentz group (six parameters), but a subgroup of it, Sim(2) (four parameters). Using this
subgroup, none of the classical tests of special relativity (SR) are affected, but it is possible to provide a
non-local mass term for the neutrino [13].

Recently, we have used VSR to build the VSRSM [14]. We have used the same particles and
symmetries as the Weinberg–Salam model, but masses and neutrino oscillations are explained by a
non-local Lorentz-violating and Sim(2)-invariant contribution. New predictions are obtained such as
the process µ− > e + γ, which is forbidden in the SM.

In this paper, we want to consider loop corrections in the VSRSM. To do that, we need to
introduce appropriate Feynman rules, including an external momentum-dependent null vector for the
infrared regulator in the Mandelstam–Leibbrandt prescription [15–17]. In this note, we calculate one
loop corrections in very special relativity quantum electrodynamics (VSRQED), which are obtained
restricting the VSRSM to the processes involving photons and charged leptons alone. The charged
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lepton and the neutrino of the same family share a common VSR mass (they are a SU(2)L doublet).
Then, we are able to get information about the mass of the neutrino calculating transitions in VSRQED.

2. The Model

At present, we restrict ourselves to the electron family. m is the VSR mass of both the electron and
neutrino, producing the second term of (1). After spontaneous symmetry breaking (SSB), the electron
acquires a mass term M = Gev√

2
, where Ge is the electron Yukawa coupling and v is the Vacuum

Expectation Value(VEV)of the Higgs, i.e., the third term of (1). Please see Equation (52) of [14].
The neutrino mass is not affected by SSB: Mνe = m.

Restricting the VSRSM after SSB to the interactions between the photon and electron alone, we get
the VSRQED action. ψ is the electron field. Aµ is the photon field. We use the Feynman gauge.

L = ψ̄

(
i
(
6 D +

1
2
6 nm2(n · D)−1

)
−M

)
ψ− 1

4
FµνFµν −

(∂µ Aµ)2

2
(1)

In (1), nµ is a fixed null vector, i.e., n.n = 0, Dµ = ∂µ − ieAµ, Fµν = ∂µ Aν − ∂ν Aµ.
We see that the electron mass, determined by the pole of the propagator, is Me =

√
M2 + m2.

In fact, Dirac’s equation in momentum space is:(
6 p−M− m2

2
6 n

n · p

)
u(p) = 0 (2)

Multiplying by
(
6 p + M− m2

2
6n

n·p

)
, we get:

(
( 6 p− m2

2
6n

n·p )
2 −M2

)
u(p) = 0(

p2 −m2 −M2) u(p) = 0
(3)

We have used that 6 n. 6 n = n.n = 0.
To draw the Feynman graphs we used [18]. In the following sections, we have extensively used the

program FORM [19]. Due to the non-local term (n.D)−1, there is an infinite number of photon-electron
vertices corresponding to the expansion:

(n.D)−1 = (n.∂− ien.A)−1 = (1− ie(n.∂)−1(n.A))−1(n.∂)−1 =

(1 + ie(n.∂)−1(n.A) + (ie)2(n.∂)−1(n.A)(n.∂)−1(n.A) + . . .)(n.∂)−1 (4)

Inserting (4) into the action (1), we can derive the Feynman rules.
In Figure 1, we write the Feynman rules needed to compute one loop one-particle irreducible

diagrams with at most two external photon legs.

Figure 1. Feynman rules for one loop computations: electron and photon propagators, Aµee and
Aµ Aνee vertex.
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We notice that the fermion propagator, as well as the vertices contain n.pi in the denominators. pi
are momenta.

These factors will produce infrared divergences in loop integrals. To regularize these integrals,
we will use the Mandelstam–Leibbrandt prescription (ML) [15–17].

3. Mandelstam–Leibbrandt Prescription

As an example, let us compute the following simple integral:

Aµ =
∫

dp
f (p2)pµ

n.p

where f is an arbitrary function. dp is the integration measure in d-dimensional space, and nµ is a
fixed null vector (n.n = 0). This integral is infrared divergent when n.p = 0.

To regulate the infrared divergence, we use the ML prescription:

1
n.p

= lim
ε→0

p.n̄
n.pp.n̄ + iε

(5)

This prescription has very nice features: It is invariant under the shift of the integration
variable, preserves naive power counting of divergent integrals, combines well with dimensional
regularization [17], and is the unique prescription that can be derived from canonical quantization [20].

To compute Aµ, we have to know the specific form of f , provide a specific form of nµ and n̄µ,

and evaluate the residues of all poles of f (p2)
n.p in the p0 complex plane, a rather formidable task for an

arbitrary f .
Instead, we want to point out the following symmetry [17]:

nµ → λnµ, n̄µ → λ−1n̄µ, λ 6= 0, λεR (6)

It preserves the definitions of nµ and n̄µ:

0 = n.n→ λ2n.n = 0

0 = n̄.n̄→ λ−2n̄.n̄ = 0

1 = n.n̄→ n.n̄ = 1

We see from (5) that:
1

n.p
→ 1

n.p
λ−1

Now, we compute Aµ, based on its symmetries. It is a Lorentz vector, which scales under (6) as
λ−1. The only Lorentz vectors we have available in this case are nµ and n̄µ. However, (6) forbids nµ.
That is:

Aµ = an̄µ

Multiply by nµ to find A.n = a. Thus, a =
∫

dp f (p2). Finally:

∫
dp

f (p2)pµ

n.p
= n̄µ

∫
dp f (p2)

We consider now a more general integral. We will see here that the regularity of the answer will
determine it uniquely.

Consider:

A =
∫

dp
F(p2, p.q)

n.p
= n̄.q f (q2, n.qn̄.q) (7)
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qµ is an external momentum, a Lorentz vector. F is an arbitrary function. The last relation follows
from (6), for a certain f we will find in the following.

We get:

∂A
∂qµ =

∫
dp

F,u pµ

n.p
=

n̄µ f (x, y) + 2n̄.qqµ
∂

∂x
f (x, y) + [(n̄.q)2nµ + n.qn̄.qn̄µ]

∂

∂y
f (x, y)

We define u = p.q, x = q2, y = n.qn̄.q. (),u means the derivative with respect to u. Thus:

∂A
∂qµ nµ =

∫
dpF,u = g(x) =

f (x, y) + 2y
∂

∂x
f (x, y) + y

∂

∂y
f (x, y) (8)

Assuming that the solution and its partial derivatives are finite in the neighborhood of y = 0,
it follows from the equation that f (x, 0) = g(x). That is, the partial differential equation has a unique
regular solution.

Now, we apply this result to compute integrals that appear in gauge theory loops:∫
dp

1
[p2 + 2p · q−m2]a

1
(n · p) = (n̄ · q) f (x, y)

In this case:
g(x) = −2a

∫
dp

1
[p2 − x−m2]a+1

The unique regular solution of (8) is:

f (x, y) = −1
y

{∫
dp[p2 − x−m2]−a −

∫
dp[p2 − x + 2y−m2]−a

}
We can check that f (x, 0) = −2a

∫
dp[p2 − x−m2]−a−1 = g(x).

Using the same technique and dimensional regularization, we obtain, for arbitrary complex a, b, ω:∫
dp

1
[p2 + 2p.q−m2]a

1
(n.p)b =

(−1)a+bi(π)ω(−2)b Γ(a + b−ω)

Γ(a)Γ(b)
(n̄.q)b

∫ 1

0
dttb−1 1

(m2 + q2 − 2n.qn.qt)a+b−ω
, ω = d/2 (9)

Other integrals can be obtained deriving with respect to qµ:

∫
dp

pµ

[p2 + 2p.q−m2]a+1
1

(n.p)b =

(−1)a+bi(π)ω(−2)b−1 Γ(a + b−ω)

Γ(a + 1)Γ(b)
(n̄.q)b−1bn̄µ

∫ 1

0 dttb−1 1
(m2 + x− 2yt)a+b−ω

+

(−1)a+bi(π)ω(−2)b Γ(a + b + 1−ω)

Γ(a + 1)Γ(b)
(n̄.q)b ∫ 1

0 dttb−1 qµ − t(n.qn̄µ + n̄.qnµ)

(m2 + x− 2yt)a+b+1−ω

(10)

ML introduces an extra null vector n̄, such that n.n̄ = 1 Having a fixed global extra null vector
n̄µ destroys the Sim(2) invariance of the model. To avoid this problem, we have to trade n̄µ by a
linear combination of nµ and some momenta Pµ, which are external to the loop, as we did in [21],

i.e., n̄µ = anµ + bPµ. From the conditions: n̄.n̄ = 0, n̄.n = 1, we get n̄µ(P) = − P2

2(n.P)2 nµ +
Pµ

n.P .
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We will see below that it is possible to assign different n̄µ(Pi) inside a one-particle irreducible
(1PI) Green function such that the Ward identity and the Sim(2) symmetry are preserved. Here, Pi are
linear combinations of the external momenta.

4. Tree Graphs

We assume that each fermion and boson line carries a pair of vectors (p, P). p is the usual
momentum, whereas P is an associated momentum used to build n̄(P). External fermion and boson
legs (not attached to a fermion loop) have P = p.

Both momenta p and P are conserved at each vertex.
A boson line connecting two points in the same fermion line has P = 0.
The three-vertex is now:

− ie
{

γµ +
1
2

nµm2 6 n(n.(p + q))−1
P2

(n.q)P1

}
(11)

P1(P2) are the associated momentum corresponding to the incoming (outgoing) fermion leg arriving
at the vertex.

Current Conservation

Define:

ū2(p′)
{
(γµ)βα +

1
2
( 6 n)βα nµm2

[(
1

n.p

)
1

(
1

n.p′

)
2

]}
u1(p) = jµ (12)

We find that the current is conserved:

(p′ − p)µ jµ = ū2(p′)
{
6 p′− 6 p +

1
2
( 6 n) m2

[(
1

n.p

)
1
−
(

1
n.p′

)
2

]}
u1(p) = 0 (13)

We have used that:

ū2(p′)
[
6 p′ − 1

2
( 6 n) m2

(
1

n.p′

)
2
−M

]
= 0 (14)[

6 p− 1
2
( 6 n) m2

(
1

n.p

)
1
−M

]
u1(p) = 0 (15)

and:

n.p
(

1
n.p

)
n̄
= lim

ε→0

(n · p)(p · n̄)
(n · p)(p · n̄) + iε

= 1, ∀n̄ (16)

The last identity holds even if p is integrated over.
That is, external legs can be defined using different n̄ for each, and the gauge symmetry still will

be preserved.
The assignation of Pµ for tree graphs respects momentum (p, P) conservation in each vertex, for

any number of insertions of photon lines. In tree graphs, all Pµ are known, in terms of the external
momenta of photon and fermion lines.

5. Photon Self-Energy in VSRQED

In this section, we present the computation of the photon self-energy. It is easy to check that the
Ward identity for any number of external photon lines attached to a fermion loop implies that all n̄
in the loop are equal. Since the Ward identity implies that the 1PI graph must be symmetric under
the interchange of all independent external photon momenta, we choose n̄µ(P) = − P2

2(n.P)2 nµ +
Pµ

n.P ,
with Pµ = ∑i kiµ, where kiµ is a complete set of independent external photon momenta.

We consider now the graphs contributing to the photon self-energy:
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Applying the Sim(2)-invariant regulator to the addition of the graphs of Figure 2, we get:

iΠµν = A(ηµνq2 − qµqν) + B
(
−q2 nµnν

(n.q)2 +
nµqν + nνqµ

n.q
− ηµν

)
(17)

with

A = (−ie)2 i
(4π)ω

∫ 1

0
dxΓ(2−ω)

8x(1− x)
(M2

e − (1− x)xq2)2−ω

B = −m2i
e2

4π2

∫ 1

0

dx
(1− x)

log
[

1− q2(1− x)2

M2
e − q2(1− x)x

]
(18)

Here, −e is the electron electric charge, m the electron neutrino mass, and Me the electron mass.
qµ is the virtual photon momentum.

We first notice that qµΠµν = 0, as required by the U(1) gauge invariance of the photon field. It is
obtained by a straightforward application of the regularized integrals of [21]. Moreover, B(q2 = 0) = 0;
therefore, the photon remains massless. Furthermore, the photon wave function divergence is the
same as in QED.

Figure 2. Vacuum polarization one loop graphs.

6. Electron Self-Energy in VSRQED

Here, we calculate the electron self-energy. Again, we have two graphs contributing to the
two-proper vertex. See Figure 3.

− iΣ(q) = C
6 n
n.q

+ D 6 q + E (19)

with:

C = (−ie)2m2[
i

16π2

∫ 1

0
dx(1− x)−1 ln

(
1 +

q2(1− x)
(M2

e − q2 − iε)

)
+

2i(4π)−ω
∫ 1

0
dx

Γ(2−ω)

[µ2x− x(1− x)q2 + M2
e (1− x)− iε]2−ω

], (20)

D = −2(−ie)2(ω− 1)i(4π)−ω
∫ 1

0
dx

Γ(2−ω)x
[µ2x− x(1− x)q2 + M2

e (1− x)− iε]2−ω
, (21)

E = (−ie)22ωMi(4π)−ω
∫ 1

0
dx

Γ(2−ω)

[µ2x− x(1− x)q2 + M2
e (1− x)− iε]2−ω

(22)

Figure 3. Electron self-energy one loop graphs. The second graph vanishes in the Feynman gauge.
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7. Electron-Electron-Photon Proper Vertex) Γµ(p + q, p)

In this section, we discuss the electron-electron-photon (EEP) vertex and verify the Ward–
Takahashi identity. This is an important test of the gauge invariance of the regulator. The one loop
contribution to Γµ(p′ = p + q, p) consists of the addition of three graphs (Figure 4):

Figure 4. One loop contribution to the three-point proper vertex.

As a result of the shift symmetry, which is respected by the regulator,
∫

dp f (pµ) =
∫

dp f (pµ + qµ)

for arbitrary qµ, we can prove the Ward–Takahashi identity. This identity must hold for both the
divergent and finite pieces of the Green functions:

− iqµΓµ(p + q, p) = S−1(p + q)− S−1(p) (23)

Here, S(p) = i
6p−M−Σ(p) is the full electron propagator and Γµ(p + q, p) is the EEP vertex.

The Ward–Takahashi identity is satisfied with the assignments shown in the graphs. The numbers
represent different n̄. According to the conservation rule for the extra momenta Pµ, we must have:
P2µ = p′µ, P1µ = pµ. As a simple check, below, we explicitly verified that the pole at d = 4 satisfies (23).

Pole contribution:

PΣ(q) = −(−ie)2 1
16π2

{
2m2 6 n

n.q
− 6 q + 4M

}
1

2−ω
(24)

PΓµ(p + q, p) = −(−ie)2 1
16π2

1
2−ω

(
γµ + 2m2 6 n

nµ

n.p n.(p + q)

)
(25)

The divergent piece satisfies the Ward–Takahashi identity (23):

qµPΓµ(p + q, p) = PΣ(p)− PΣ(p + q) = −(−ie)2 1
16π2

1
2−ω

{
6 q− 2m2 6 n

(
1

n.p + n.q
− 1

n.p

)}
Form Factors

The on-shell EEP vertex can be written as follows:

Mµ(p, q) = ū(p + q)
{

G2
[
−iσµνqν 6 n

]
+ G3 6 nQµ + F3 6 nσµνqν 6 n + γ̃µF1 + F2i

σµν

2M
qν

}
u(p) (26)

where:

γ̃µ = γµ +
m2

2
6 nnµ

n.p (n.p + n.q)
, Qµ = qµ − q2 nµ

n.q (27)

F1, F2.F3, G2, G3 are form factors (Lorentz scalar combinations of nµ, pµ, qµ). Under the Sim(2) scaling
nµ → λnµ, F1, F2 are invariants, F3 → λ−2F3, G3 → λ−1G3, G2 → λ−1G2.

In the non-relativistic (NR) limit, we get Table 1, keeping terms that are at most linear in qµ.
The operator whose coefficient is the form factor reduces in this limit to the addition of the terms
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appearing in the first column of Table 1, corresponding to the same form factor in the second column
of Table 1.

Table 1. In the right column, we list the form factor. In the left column, we have the non-relativistic
(NR) limit of the matrix element accompanying the form factor in (26). All form factors are evaluated
at qµ = 0. Here, A0 is the electric potential and Ai is the vector potential. ϕs′ is a two- dimensional
constant vector that corresponds to the NR limit of the Dirac spinors.

NR Limit Form Factor

2Me ϕ↑s ϕs A0 F1(0)
3m2

4M2 iεijk ϕ↑s σi ϕs′ n̂jqk A0 F1(0)
iεijkqj ϕ

↑
s σk ϕs′Ai F1(0)

−2in0 Mεijk ϕ↑s σk ϕs′qj Ai G2(0)
−iεijknk

m2

M ϕ↑s n̂.~σϕs′qj Ai G2(0)
i(2Mεijknk ϕ↑s σj ϕs′ + 2Meini ϕ

↑
s ϕs′ )A0qi G2(0)

2Men0 ϕ↑s ϕs′Qµ Aµ G3(0)
(−4Meεijknk ϕ↑s~n.~σϕs′ + 4Men2

0εijk ϕ↑s σk ϕs′ )qj Ai F3(0)
4Men0εijknj ϕ

↑
s σk ϕs′A0qi F3(0)

iεijk ϕ↑s σk ϕs′Aiqj F2(0)
−i m2

2M2 εijkn̂j ϕ
↑
s σk ϕs A0qj F2(0)

To show the power of the Sim(2)-invariant regularization prescription presented in [21], we will
compute the one loop contribution to the (isotropic) anomalous magnetic moment of the electron. It is
given by F2(0)− 2n0MG2(0)− 4F3(0)Men2

0i (see Rows 11, 5, and 9 of Table 1).
Evaluating the integrals according to the Sim(2)-invariantprescription to o(m2), we get [21]:

F2 − 4F3Men2
0i− 2G2n0M =

α

2π
(28)

where α is the fine structure constant. Therefore, to this order, the QED result holds.
Notice that already at the tree level, the model predicts the existence of an anisotropic electric

moment of the electron, corresponding to the second line of the list and an anisotropic magnetic
moment of the electron, corresponding to the fourth row of the list, both of the order of m2

M2
e
.

To compute the electric dipole moment, notice that the effective coupling of the electron to an
external electric potential A0 is given by the first row in Table 1, 2Me ϕ↑s ϕs A0. Therefore, to have the
right coupling eA0, we must redefine the NR spinors:

√
2Me ϕs = χs (29)

Then, the second row of Table 1 is,

1
2Me

3m2

2M2
~E.(n̂×~s) (30)

We have used that Ek = −iqk A0, χ↑s σiχs′ = 2si and n0 = |~n|, where si is the electron spin. In the
Born approximation, this corresponds to the coupling of the electron to an external electric field with
the interaction energy −~p.~E. Then, the electric dipole moment is:

~p = − 1
2Me

3m2

2M2 (n̂×~s) (31)

Therefore,

|~p| = 3e
4Me

m2

M2
e
|(~s× n̂)| � 3

8
λe

m2

M2
e

(32)
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where λ = 2.4× 10−12m is the Compton wavelength of the electron.
Using the best bound on the electric dipole moment of the electron [22], |~p| < 8.7× 10−29 eċm.,

we get:
m2

M2
e
< 9.7× 10−19 (33)

For the muon, λ = 1.17× 10−14m. Using the best bound on the muon electric dipole moment [23],
|~pµ| < 1.8× 10−19 eċm., we get:

m2
µ

M2
µ
< 4× 10−7 (34)

The Sim(2)-invariant regularization permits exploring the full quantum properties of VSR.
They should be systematically tested, in particle physics models, as well as in quantum gravity models.

8. Conclusions

We applied the VSR formalism to the Weinberg–Salam model. This modification admits the
generation of a neutrino mass without lepton number violation and without sterile neutrinos or other
types of additional particles.

Now, we have non-local mass terms that violate Lorentz invariance.
The model is renormalizable, and the unitarity of the S matrix is preserved.
We studied the QED part of the VSR SM. Feynman rules were obtained. These rules incorporate

the information about the infrared regulator compatible with the Ward identities.
We invented a Sim(2)-invariant dimensional regularization.
We computed the vacuum polarization graphs. They satisfy the Ward identity. New form factors

in the vertex correction were computed. We obtained bounds on the mass of the neutrino from new
form factors and the anomalous electric moment of the electron. m2

M2
e
< 9.7× 10−19.
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