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Abstract: The ‘projective theory of relativity’ is a theory developed historically by Oswald Veblen
and Banesh Hoffmann, Jan Arnoldus Schouten and David van Dantzig. This theory differs radically
from Kaluza-Klein/conformal type theories of spacetime, although it shares with these theories
geometric aspects in five-dimensional spaces. The peculiarity of the projective geometries involved
in this theory was that it is based on spaces coordinated by five so-called ‘homogeneous coordinates.’
Since then, no physical observables could be ascribed to these five homogeneous coordinates and, in
particular, during the elaboration of this theory which consequently fell completely into oblivion. We
will present how this projective theory of relativity can be fully justified physically from the causal
structures and localizing protocols involved in so-called ‘relativistic localizing systems’ that extend
‘relativistic positioning systems.’ We explain the correspondence between ‘homogeneous coordinates’
of the projective theory of relativity and the physical observables defined in relativistic localizing
systems. Then, possible astrophysical manifestations will be presented based on projective effects,
invariance of interactions, or observations with respect to projective transformations.
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1. Reference Systems—Relativistic Positioning vs. Localizing Systems

As demonstrated in previous works [1–3], the physical justification of the ‘projective geometry of
spacetime, and thus the validity of the ‘projective theory of relativity’ [4–6], is completely deduced
from peculiar characteristics of the physical observables that are expressed in relativistic localizing
protocols of spacetime events. These protocols are explicitly implemented in the so-called ‘relativistic
localizing systems’ (RLS) [1–3] that are extensions of the so-called ‘relativistic positioning systems’
(RPS) [7–14]. The latter have been designed to correct the current, first generation, non-relativistic
positioning systems such as the GPS, Galileo, Glonass, Beidou, or IRNSS. These new, second generation,
relativistic positioning systems not only answer the question of possible technological improvements
to current positioning systems but also very fundamental questions in spacetime physics. For example,
in special or general relativity, particular protocols have historically been devised to construct physical
observables associated with the position in space at a given time relative to a reference frame. But all
are based, in particular, on a convention of simultaneity [15] that is not inherently relativistic because,
as it is well known, simultaneity is relative to one frame and only one. Relativistic positioning systems
solve this difficulty by freeing themselves from the need to define a notion of simultaneity in one way
or another. Then, moreover, relativistic observables are obtained from RLSs without, in particular,
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the use of any geometric symmetry criteria and can then be applied to, for example, the determination
of a genuine relativistic quantum field theory. Only constraints resulting from causal axiomatics are
really necessary and better still, it is not even necessary to make hypotheses about the geometric,
differential nature and even about the existence or not of these spacetime characteristics. The latter
are the results of the relativistic localizing protocol, detailed in the present section, which ultimately
only involves causal orders of information exchanges [16]. To put it succinctly, these are processes of
code geometrization.

Besides, it should also be noted that the ‘projective theory of relativity’ is not a particular string
theory. String theories all have a pseudo-Riemannian, base spacetime manifold whose geometry
follows the axiomatics of Euclidean geometry. In the present case of the projective theory of relativity,
the pseudo-Riemannian spacetime manifold follows the axiomatics of projective geometry. It is
therefore a geometric theory with a radically different basic axiomatics and, moreover, it is not a
string theory upon such projective geometry. Also, we ought to indicate that there are alternative
theories to the projective theory of relativity, in particular, the so-called Fantappié-Arcidiacono one
developed by Licata, Chiatti, and Benedetto [17–21].

But then, the question is to know what other manifestations of the projective geometry of
spacetime could appear, and in particular in astrophysics. Two results have previously been obtained
on this subject [22]: A foliation of spacetime with a structure similar to those of black holes, and fits of
galactic rotational velocity curves. These results are presented briefly in Sections 2–4 but their difficult
interpretations are discussed in Section 5 in greater depth and in a new way both from a mathematical
point of view and from the point of view of physical implications and meanings.

In order to give some details about these RLSs, we recall briefly in this introductory section some
definitions and principles of how reference systems, RPSs, and RLSs strongly differ and work, and
why RPSs are relativistic unlike current positioning systems such as the GPS.

Basically, a ‘reference system’ (RS) is a set of procedures for creating a ‘reference frame’ (RF) from
which space and time coordinates can be ascribed to “geographic” locations belonging to a given,
extended material body such as, for examples, Earth, Moon, Mars, etc. The RS named WGS84 ( World
Geodetic System 1984) is the set of procedures used by the GPS for Earth. The set of procedures used by
Galileo is named ITRS (International Terrestrial Reference System). Beside, the RF of the reference systems
WGS84 is called merely WGS84 Reference frame defined in a very similar way to the ITRF (International
Terrestrial Reference Frame). For Galileo, the RF is named GTRF09v1 (Galileo Terrestrial Reference Frame
2009 ver. 1), which is a particular frame among those provided by the ITRS (International Terrestrial
Reference System).

The reference system WGS84 has three main features: a Cartesian system of coordinates also called
grid of [Cartesian] coordinates provided by the particular terrestrial frame called the ‘WGS84 Reference
frame’ as indicated above, a reference oblate ellipsoid called the ‘datum’ from which a zero altitude
can be somehow defined for Earth’s surface, and a gravitational, nominal mean sea level equipotential
surface called the ‘ geoid’ which is defined from the EGM96 (Earth Gravitational Model 1996).

Now, a positioning system (PS) is the physical realization of a grid of coordinates, i.e.,
a “physical grid”. Let us note that the circles of latitude (parallels) and longitude (meridians) have
no physical counterparts; unless we can find a very improbable way to draw lines with, for instance,
colored pigments on the whole of Earth’s surface. Actually, electromagnetic signals are used which
“draw” a grid of coordinates varying in time called emission grid. Each coordinated “line” are then
electromagnetically “stamped” by so-called time stamps. Actually, these grids of coordinates are
physically achieved by signages in space and time which assume existence of physical media for digital
informations. Such physical media are well known for road networks for instance with milestones.
In the case of PSs, physical media are electromagnetic fields carrying digital informations, which are
dates also known as ‘time stamps’ broadcast by clocks on board satellites.

Now, what are the differences between “classical” and relativistic PSs? At the present days,
all positioning systems (GPS, Galileo, Beidou, etc.) are classical PSs because the time stamps must
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be corrected for the relativistic effects such as time dilatation for instance. Without these corrections,
the grids provided by current PSs which are grids of light coordinates, i.e., emission grids, do not
correspond to the grids of null geodesics defined from the systems of reference (e.g., WGS84). More
precisely, the process of positioning is a transitive process: the users are positioned relative to satellites
of the PSs and the satellites are positioned with respect to the RF via ground stations. Then, the users
are positioned in the RF. But, relativistic corrections must be made regularly over time between the
space (satellites) and control (reference frame/ground stations) segments by uploading to the satellites,
ephemerids, and orbits, corrected by ground calculations and from which the time stamps transmitted
to users are modified.

These calculation processes carried out in ground stations and uploaded to satellites are eliminated
in the case of RPSs. It is through a process known as ‘auto-location’ [14], entirely relativistic and
autonomous, that the correct ephemerids and orbits of satellites are continuously and permanently
determined in time without intermediate calculations of relativistic corrections. Let us note that
ground stations as “ancillary ground satellites" must be included as crucial parts in the auto-location
process. Thus, the relationship between the space and control segments becomes entirely relativistic
in nature and defines somehow a unique “space-control segment”. But RPSs do not have this only
advantage. They have the following properties according to Coll [14]: They are (1) ‘generic’, i.e.,
they can be constructed whatever is the given spacetime class, (2) (gravity-)‘free’, i.e., no knowledge
of the gravitational field is necessary, and (3) ‘immediate’, i.e., users can know their coordinates with
respect to the given RF without delay.

Also, Coll and Tarantola have extended the characteristics of the RPSs to ‘galactic positioning
systems’ [23]. The first experimental result implementing this protocol was performed by
Ruggiero et al. [24,25] using astronomical data from pulsars used to replace satellites. This galactic
positioning protocol has also been very recently and successfully implemented on board the ISS by
Winternitz et al. [26] without any reference to the work of Coll, Tarantola, Ruggiero et al., which we
quote to do them justice.

Finally, it can be noted that these RPSs only work if we own “GPS/Galileo/Beidou . . . receivers”
and, obviously, we cannot locate an event that is not itself a “receiver carrier”. To put it succinctly,
we cannot locate a star relatively to the terrestrial RS since this would imply that the star “holds” a
GPS receiver. What we need for is precisely a RLS that avoids completely the need for any kind of
receivers. Roughly speaking, a RLS is a “radar” system, relativistically localizing events in spacetime
and localizing them in an emission grid provided by an underlying RPS.

Basically, a RLS is made of five satellites, four of them providing an underlying RPS. These five
satellites exchange time stamps so that each can self-locate in the emission grid of the underlying
RPS. In addition, they also have the particularity of being made up of completely “spherical retinas”.
These retinas have their own coordinate systems to locate directions of incident light rays as “light
points” on their surfaces. Typically, for example, these coordinates are the two angles corresponding
to latitude and longitude. Each of these retinas can be considered as celestial spheres on which the
directions where the other four satellites are located are visualized by points and, possibly as well the
direction of events to be located in the emission grid after localization (see Figure 1); which is naturally
the goal. Hence, on each retina, there are four points associated with the other four satellites, and they
constitute a projective frame for PR2 .

But in addition, these four points are also linked at each instant to pairs of time stamps evolving
over time and used in the underlying auto-locating process. As a result, we can translate pairs of angle
values into pairs of time stamps that provide additional coordinates for each projective point on the
retinas (see Figure 2) associated with an event. More precisely, this angles/time stamps translation
makes it possible to assign pairs of time stamps to each event detected on the retinas. Actually,
four pairs of time stamps only are necessary.
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Figure 1. The five satellites (Sat) of a relativistic localizing system (RLS) and an event in an
interstellar medium. A projective frame for PR2 is represented by the four colored points on satellite 1
spherical retina.

Figure 2. “Retina view” of Satellite (Sat) 1. The yellow lines represent the angle grid for longitude and
latitude on the satellite 1 retina. The four green, blue, red, and yellow points constitute the projective
frame. Each point is associated with one of the four other satellites of the RLS and to each is ascribed a
pair of time stamps (τ, τ′) .

Then, from a reconstruction process, we can assign to each detected event four time stamps
from which the event can be located in the emission grid of the underlying RPS. This is a kind of
generalization of the now well-known reconstruction process from which 3D views can be obtained
from two 2D pictures. From this reconstruction process based on four projective 2D pictures, we get
a projective 4D spacetime, i.e., the geometric structure of spacetime is the projective space PR4 .
This structure is intrinsic and fully relativistic. No hypothesis is made as to the geometric nature of
the Riemannian differentiable manifold of spacetime. In particular, no Lorentzian metric is assumed
as well as a possible temporal orientation of spacetime. Only the existence of a minimal causal
axiomatics [16] and the complete characterization of the intrinsic projective geometry of the “retinas”
are necessary. In other words, the geometric projective structure of the spacetime manifold is emergent



Universe 2019, 5, 13 5 of 12

from the relativistic localizing protocol as the result of a process of conversion from exchanged codes
to a projective geometry of spacetime.

2. The Admisssible Lorentzian Metric

2.1. The Underlying Hyperbolic Geometry

As indicated in previous section, the spacetime manifold we denote by M is an emergent
geometric structure arising somehow “naked”, i.e., neither time orientation nor any Lorentzian metric
are really defined on the emergent spacetime manifoldM from localization; appart the fundamental,
projective ground structure. Nevertheless, we can start with a few following geometric assumptions
about the geometric structure ofM [22]: (1) The spacetime manifoldM is time-orientable and simply
connected, (2) we provideM with an Euclidean metric ds2 such that (M, ds2) is the four-dimensional
hyperbolic space H4 ⊂ PR41, (3) to each event e ∈ M, a system of four Riemann normal coordinates
(ui

p) ≡ p ∈ M can be attached such that uα
e = 0 (i = 1, . . . , 4)2, (4) the coordinates ui are assumed to

be the inhomogeneous coordinates of the local projective geometry ofH4 , and (5) to the inhomogeneous
coordinates ui there corresponds five homogeneous coordinates Uα (α = 0, 1, . . . , 4).

Unlike what is usually done in such similar circumstances, it is an “underlying” hyperbolic spaceH4

that is considered here because this space is simply connected contrarily to anti-de Sitter spaces AdSn ;
all the more so as anti-de Sitter spaces are not subspaces of projective spaces PRn but of Euclidean
spaces Rn+1 . We recall thatH4 is defined from a quadratic form Q and a metric dS2 on R5 such that
Q(U) ≡ (U0)2 −∑4

i=1(U
i)2 and dS2 ≡ ∑4

i=1(dUi)2 − (dU0)2 . More precisely, we have the following.

Definition 1. The hyperbolic space H4 ⊂ PR4 is the open set of lines in R5 generated by points U ∈ R5

such that Q(U) > 0 and equiped with the metric ds2 (see below).

Futhermore, defining from Q the section σ : (ui) ∈ R4 −→ (Uα) ∈ R5 such that U0 = σ(u)0 ≡√
1 + ∑4

i=1(ui)2 and Ui = σ(u)i ≡ ui (i = 1, . . . , 4) , then, the Euclidean metric ds2 can be defined as
the pull-back of dS2 by σ , i.e., ds2 ≡ σ∗(dS2) . Then, we obtain

ds2 =
∑4

i=1(dui)2 + ∑4
i=1<j(u

j dui − ui duj)2

1 + ∑4
i=1(ui)2

, (1)

which is the Euclidean metric defined on R4 ' M and defining completely H4 as a Riemannian
manifold embedded in PR4 . To complete the description ofH4 , we ought to mention that the restricted
Lorentz group SO+(1, 4) ⊂ PGL(5,R) = SL(5,R) acts transitively onH4 via homographies [A] defined
from linear actions A ≡ (Aα

β) on R5 . More precisely, we have u′ = [A](u) whenever U′ = A.U, i.e.,
in indexed notation (α = 0, . . . , 4 ; i = 1, . . . , 4):

u′ = [A](u) ⇐⇒ ui =
Ai

0 + ∑4
j=1 A

i
j uj

A0
0 + ∑4

k=1 A
0
k uk

whenever U′ = A.U ⇐⇒ U′α = ∑4
β=0 A

α
β Uβ . (2)

Then, Q and dS2 are invariant with respect to linear maps A ∈ SO+(1, 4) whereas ds2 is invariant
with respect to homographies [A] , i.e., we have [A]∗(ds2) = ds2 .

1 Considering the cell decomposition PR4 ≡ R4 ∪ PR3 of PR4 , then we identify R4 withM such that PR4 'M∪ PR3 .
2 BecauseH4 is a Riemannian manifold then we can always find a system of Riemann normal coordinates attached to each of

its points.
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2.2. The Pseudo-Hyperbolic Space and the Admissible Lorentzian Metric

To recover an admissible Lorentzian metric dτ2 instead of the Euclidean metric ds2 onM , we use
the assumption thatM is time orientable, i.e., we can find a nowhere non-vanishing, everywhere
defined vector field on M . We assume that this vector field exists and that it is the dual of the
differential 1-form du1 ∈ T∗M . Then, M becomes time-oriented and dτ2 is defined by formula:
dτ2 ≡ (du1)2 − ds2 . Also, dτ2 is the pull-back by σ of a metric dT2 on R5 , i.e., we have dτ2 ≡ σ∗(dT2)

where dT2 ≡ 2(dU1)2 − dS2 = ∑1
k=0(dUk)2 −∑4

i=2(dUi)2 . Clearly, this last metric dT2 is the metric
defined on the anti-de Sitter space AdS4 ⊂ R5 of signature (2, 2) and which is defined from the
quadratic form Λ on R5 such that Λ(U) ≡ Q(U) + 2(U1)2 = ∑1

k=0(U
k)2 −∑4

i=2(U
i)2 . Then, AdS4 is

the set of points U such that Λ(U) = −k2 = cst < 0 . Nevertheless, we must not consider AdS4 ⊂ R5

which is not simply connected but a simply connected subspace of PR4 that we call the pseudo-hyperbolic
space H1,3 . Let us note also that if Q(U) > 0 then, necessarily, we have Λ(U) > 0 which forbids to
consider AdS4 .

Definition 2. The pseudo-hyperbolic spaceH1,3 ⊂ PR4 is the open set of lines in R5 generated by points
U ∈ R5 such that Q(U) > 0 and equiped with the metric dτ2 .

Then, the orthochronous pseudo-orthogonal group SO+(2, 3) ⊂ PGL(5,R) is the group of
invariance of the quadratic form Λ and the metric dT2 . This group SO+(2, 3) acts by linear maps A on
Λ and dT2 . In return, this involves to restrict SO+(2, 3) to the subgroup SO+(1, 4)∩ SO+(2, 3) ≡ [Ĝ+

τ ]

in order to simultaneously keep an invariance of Q defining H4 and H1,3 . Nevertheless, the metric
dτ2 is no more invariant with respect to homographies [A] .

Let π : R5 −→ PR4 be the projective map such that, in particular, π(U)i = Ui/U0 whenever U0 6=
0 , and a : R4 −→ B4 the embedding such that a ≡ π ◦ σ and where B4 ⊂ R4 is the four-dimensional
open ball. Then, we define the representation J K of homographies such that JAK = a−1 ◦ [A] ◦ a
where [A] ∈ [Ĝ+

τ ] . Then, dτ2 is invariant with respect to JAK . More precisely, it can be shown that
JAK∗(dτ2) = dτ2 where A ∈ Ĝ+

τ .

3. The Singular Pseudo-Hyperbolic Space and the Foliation

In the previous section, we have shown that the metric dτ2 is invariant with respect to the JAK
action (where A ∈ Ĝ+

τ ). Nevertheless, we can define another Lorentzian metric dĥ2 invariant with
respect to the [A] action. However, this new metric dĥ2 is no more defined on R4 but only on the
four-dimensional open ball B4 ⊂ R4 . Actually, dĥ2 is defined to be such that dĥ2 = a−1∗(dτ2) with
[A]∗(dĥ2) = dĥ2 . In addition, this metric dĥ2 is totally discontinuous although bounded on the
boundary B̊ ≡ ∂B4

= S3 of B4 . Now, let I : (ui) ∈ B4∗ −→ (ui/R2) ∈ R4 − B4 be the inversion map in
the 3-sphere S3 where B4∗ ≡ B4 − {0} and R2 ≡ ∑4

j=1(u
j)2 . This inversion commutes with [A] , i.e.,

we have I ◦ [A] = [A] ◦ I .
Then, from I , we can define the metric dȟ2 on R4− B4 such that dȟ2 ≡ I−1∗(dĥ2) . Then, we obtain

a metric dh2 ≡ (dȟ2, dĥ2) on B4 ∪ (R4− B4
) ≡ R4− S3 which is invariant with respect to the [A] action.

We can partially only bypass this discontinuity issue on S3 defining a particular class of conformal
metrics dν2 from dh2 .

For this purpose, we define first the functions q(u) and Ξ(q) such that

q(u) ≡ 1 + 2
(u1)2

1−∑4
i=1(ui)2

, Ξ(q) ≡ C(q)
q5/4 , (3)

where C(q) is a continuous function such that C(+∞) 6= 0 whenever u1 6= 0 and bounded on [1,+∞] .
It is important to note that the function q is invariant with respect to homographie in [Ĝ+

τ ] , i.e.,
q([A](u)) = q(u) for any A ∈ Ĝ+

τ .
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As a result, we can define metrics dν̂2 ≡ Ξ(q)2 dĥ2 on B4 − S2 with their associated metrics
dν̌2 ≡ I−1∗(dν̂2) on R4 − (B4 ∪ S2) . As a consequence, we obtain metrics dν2 ≡ (dν̌2, dν̂2) on R4 − S2

where S2 is the spatial 2-sphere, i.e., such that u1 = 0 and ∑4
k=2(u

k)2 = 1 . These two metrics are
invariant with respect to Ĝ+

τ . In particular, we have JAK∗(dν̂2) ≡ Ξ(q([A](u)))2 JAK∗(dĥ2) = dν̂2 for
any A ∈ Ĝ+

τ .
Then, we call singular pseudo-hyperbolic space H1,3

s the space R4 − S2 equipped with the metric
field dν2 . Then, we deduce: (1) an invariance ofH1,3

s with respect to homographic action of group Ĝ+
τ ,

and (2) a class of conformal metrics dν2 projectively invariant and singular (discontinuous) only on the
spacelike equatorial sphere S2 ⊂ S3 .

But also, in addition, we obtain a particular foliation from the group action Ĝ+
τ onH1,3

s . The group
action defines orbits in H1,3

s which are: (1) the three-dimensional, disjoint, simply connected and
connected north and south hemispheres H3+

α (u1 > 0) and H3−
α (u1 < 0) of 3-ellipsoids S3

α such
that α2(u1)1 + ∑4

k=2(u
k)2 = 1 where α2 > 1 , and the spacelike leaf H3

∞ ≡ B4 ∩ ({0} × R3) (i.e.,
the open ball B3), and (2) their corresponding “inverted” leaves I(H3+

α ) , I(H3−
α ) and the spacelike leaf

I(H3
∞) ≡ R3 − B3 .
This foliation [22] can be represented by the following Figure 3.

Figure 3. The foliation of spacetime with respect to group action of group Ĝ+
τ [22].

4. Similar Black Hole Structures and a Simple, Modified Newton’s Law

The previous foliation indicates a structure very similar to that of a black hole. Nevertheless,
there is no central singularity in that case; only a so-called ‘closed trapped surface’ which is the
equatorial spacelike 2-sphere S2 ⊂ {0} ×R3 on which the metrics dν2 are discontinuous. This suggests
a first manifestation of projective invariance in an alternative black hole model essentially based on
termodynamical/non-ergodic trapping effects by spherical shock front possibly stabilized by this
foliation and localized on the equatorial spacelike 2-sphere.

A second possible manifestation of projective geometry could be a modification of the Newton’s
law of gravitation. Indeed, it can be shown that due to invariance with respect to the group Ĝ+

τ , we can
deduce [22] a modified force of gravitation

#„
F such that

#„
F (r) = G m m′

(α + β r)2

r2
#„v , (4)
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where G is the constant of gravitation , r is the distance between the two masses m and m′, #„v is the
unit vector on the line joining the two masses and α and β are two parameters. A priori, we should
have α ' 1 and β ' 0 to be close to the (non-modified) Newtons’s law. Nevertheless, the cases α = 0
and β 6= 0 are perfectly acceptable within the context of this “projective modification”. Moreover, it is
important to note that these two parameters α and β are not fixed, universal constants. They depend
on physical contexts of observation of the two masses. Indeed, what is characteristic of projective
geometry in physics is the existence of geometric perspectives with its lines of horizons and vanishing
points. In dimension 3, the modified images resulting from the perspective viewpoints are distinct
according to the position of the observers, the dimensions of the objects observed and their reciprocal
geometric relationships. The situation present in dimension 4 is here perfectly similar although it is
expressed geometrically in addition with dimensions of time, energy or force.

Hence, if, for instance, an observer looks at these two masses as stellar objetcs in a galaxy,
necessarily the two parameters α and β in the modified Newton’s law will depend on the relative
distance between the observer and the given galaxy, and the extension of the latter. This is very
disconcerting from the point of view of classical physics, which is not in projective spaces but Euclidean
for which these dimension effects and dependence on the distance to observer do not really exist.
Also, because the u1-time is a cosmological time orienting spacetime, considering galactic dimensions,
the two parameters α and β should depend on the difference of cosmological times between the galaxy
and observers and its cosmological distance from the observers; in addition to characteristic times and
lengths of the given galaxy.

Then, as a result, we have the following rotational velocity fields (constant G being set to 1)

v(r) ≡
√∣∣∣β +

α

r

∣∣∣M(r) , (5)

where M(r) is the mass enclosed in a sphere of radius r . Fits of rotational velocity curves have been
obtained for around 10 galaxies [22] recorded in the SPARC astronomical database and 18 galaxies
from the THINGS database. In the first “SPARC case”, no mass models were used to deduce the masses
M(r) for each galaxy, and in the second “THINGS case”, Formula (5) was given without theoretical or
physical justifications and from a pure phenomenological viewpoint just because of the quality of the
fits obtained. Moreover, in the “SPARC case”, the masses have been deduced from galactic surface
brightness data. On the contrary, in the “THINGS case”, no such galactic surface brightness data were
available and thus various mass models were tested. In addition, the implicit following constraint
was imposed [27] (see Formula (17)): α ≡ 1 + R0 β , where R0 is the galactic scale length (in that case,
as indicated above, R0 could depend on cosmological times/distances as well as β). In full generality,
such constraint is not always satisfied, e.g., α = 0 and β > 0 . We obtain such null value for α to make
the best fit of the rotational velocity curve of the dwarf galaxy LSBC F583-01 (see Figure 4). In that limit
case, we obtain the odd relation v(r) '

√
M(r) , but well justified in the present projective framework.
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Figure 4. Fits of the rotational velocity curve [22] of galaxy LSBC F583-01 (SPARC database). Green
solid curve: (α, β) = (0.0000, 20.8025) . Red dashed curve: (α, β) = (−9.015, 22.233) .

5. Conclusions—Interpretations and Physical Perspectivities

At the heart of projective geometry is the notion of geometric perspective as illustrated in
Figure 5 below.

Figure 5. Vanishing points on horizon. Field of lavender plants, Valensole plateau, Alpes-de-Haute-
Provence, France. Photo by François Rouvière in [28] (Figure 20, p. 211) c©EDP Sciences.

It is clear, reasoning on the basis of this figure, that the viewpoint of the observer plays an
important role in the representation of the object observed as well as its dimensions. The same will
apply to laws and physical objects subject to projective geometry and they will therefore depend on
the views of observers and the characteristic dimensions involved in these laws or physical objects.
These dimensions will involve temporal and/or spatial characteristics. We are therefore in physical
situations that are not in this case geometric representations only of what is observed but which actually
manifest genuine physical effects. This would therefore be particularly apparent in the variations in α
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and β parameters depending on the observers and galaxies observed. In particular, this would imply
that the α and β parameters would vary depending on the observer for the same galaxy. This seems
rather shocking although in fact it is impossible for us, in the current state of technology, to change our
viewpoints as observers over distances comparable or larger than the galactic dimensions; and therefore
to actually observe these variations of α and β .

If we take the reasoning a little further, it would also mean that the dynamics of a galaxy would
depend on the observer; but on condition, in this case, that the observer’s mass, or physical influence,
is significant in relation to the masses and physical phenomena contained or involved in the galaxy
under consideration. We are therefore led to suggest that the α and β parameters are very specific
to each galaxy but that they vary only slightly depending on the selected observers whose physical
influence is weak or vanishing. Another alternative would be to consider observers without influence
on galactic dynamics but that the observation of a galaxy by an observer is done from a geometric
perspective which is equivalently translated into a modification of Newton’s law applied to the
dynamics of the considered galaxy. Conversely, considering, for example, the case of stars in a galaxy,
each of these stars would interact gravitationally with the others via a modified Newtonian force with
α and β parameters that would be specific to that star in that galaxy. In other words, it would also be
necessary to consider a dynamic of these various modified Newton’s laws, i.e., a dynamic of the α

and β parameters. Such a dynamic would therefore remain to be determined. Only in the absence of
knowledge of such a dynamic, or even its existence, such a modification of Newton’s law presents a
conceptual weakness in the state of the suggested physical projective model.

But also, in another way, it can be said that Newton’s law is no longer universal. This loss of
universality manifests with parameters α and β that depend on geometric/physical characteristics at
the origin of the Cartesian coordinates chosen to express Formula (4). This also means that this origin
has a physical content. The fits of galaxies were done considering that this origin coincides with the
galactic center. In other words, these parameters depend on large scale structures. The latter can be
mass distributions or spacetime curvature at the galactic center which could be considered somehow
as a “geometrical synthesis” of the mass distribution around this center. Besides, we can note that
because projective geometry is locally an affine geometry to which points at infinity are added, most of
the definitions of projective geometrical objects are dependent on a common, given, and arbitrarily
fixed origin (e.g., a galactic center), contrarily to geometrical objects in Euclidean geometry.

Actually, in particular, considering that the α and β parameters depend on, for instance,
the curvature, this means that we have a kind of dynamical feedback process: First, the universal
Newton’s law bends spacetime, and then, the resulting non-vanishing local curvature modifies the
Newton’s initial law to remain compatible with projective geometry. It is rather the opposite that could
surprise us: That the change in spacetime curvature has no effects on the universality of certain physical
laws. Indeed, why does the Newton’s law not change with topological/geometrical changes induced
by the curvature changes it produces? Roughly speaking, universality would refer to Euclidean aspects
and Newton’s law is clearly expressed only within the framework of Euclidean geometry. As a result,
there would be a dynamical relationship between the shape of, for instance, a galaxy and the way the
Newton’s law is modified via the α and β parameters; a kind of renormalization process to recover a
global projective invariance of the system “galaxy plus internal, gravitational interactions”.

Beside, such Formula (4) for gravitational force seems also at first sight simply impossible, because
the force does not fall when the distance goes to infinity. The introduced modification can help to
describe the rotational curves of spiral galaxies, but Formula (4) with parameters fixed from the
rotational curves (with nonzero value for β) leads to completely impossible gravitational effects
at larger distances. However, projective spaces are topologically compact spaces meaning that the
projective geometry cannot be considered with an infinite extension from the chosen origin imposing a
limit on the modifications of the Newton’s law. Therefore, such modifications could be unavailable
at very large scales/distances. As indicated in previous papers [1–3], we have a ‘generalised Cartan
space(time)’ locally homeomorphic to local four-dimensional (compact) projective spaces.
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Also, what appears at first glance to be a major conceptual weakness of this projective approach
could be a very big advantage. Indeed, Newton’s law modified according to Formula (4) is only the
simplest possible modification of Newton’s law compatible with projective invariance, rotational
invariance and time and space splitting. In fact, we have shown that there is an infinite number of
particular possible modifications to this law that are compatible with projective invariance. And one of
the most general ways to present these modifications is to actually consider the α and β parameters as
scalar fields. Therefore, an interpretation of these two scalar fields (in fact, a 2-dimensional vector field)
would be to consider them as effective, “massless dark matter” fields. Therefore we would be confronted
with a modified Newton’s law incorporating such dynamic fields. And this would then have to be
compared with the great variability of the situations encountered with galaxies having or not having
dark matter within them; and for the moment remaining undetectable as a massive field. We would
then have a mixed model of modified Newton’s law parameterized by an effective, ‘massless dark
matter’ field which would be the signature of the loss of universality of the Newton’s law within a
projective geometry framework.
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Gomboc, A., Horvat, M., Kostić, U., Eds.; ESA Advanced Concepts Team: Noordwijk, The Netherlands, 2013;
pp. 35–47. [CrossRef]

http://dx.doi.org/10.1155/2017/9672417
http://dx.doi.org/10.1063/1.5043926
http://dx.doi.org/10.1103/PhysRev.36.810
http://dx.doi.org/10.2307/1968203
http://dx.doi.org/10.1119/1.1326078
http://dx.doi.org/10.1103/PhysRevD.65.044018
http://dx.doi.org/10.1103/PhysRevD.65.044017
http://dx.doi.org/10.1103/PhysRevD.73.084017
http://dx.doi.org/10.1063/1.2218182
http://dx.doi.org/10.2420/AF07.2013.35


Universe 2019, 5, 13 12 of 12

15. Malament, D. Causal Theories of Time and the Conventionality of Simultaneity. Noûs 1977, 11, 293–300.
[CrossRef]

16. Kronheimer, E.H.; Penrose, R. On the structure of causal spaces. Proc. Camb. Philos. Soc. 1967, 63, 481–501.
[CrossRef]

17. Fantappié, L. Su una Nuova Teoria di Relatività Finale. Rend. Lincei 1954, XVII, 158.
18. Arcidiacono, G. Spazi di Cartan e teorie unitarie. Collect. Math. 1964, 16, 149–168.
19. Arcidiacono, G. A New “Projective Relativity” Based on the De Sitter Universe. Gen. Rel. Gravit. 1976, 7,

885–889. [CrossRef]
20. Chiatti, L. Cosmos and Particles: A Different View of Dark Matter. Open Astra J. 2012, 5, 44–53. [CrossRef]
21. Licata, I.; Chiatti, L.; Benedetto, E. De Sitter Projective Relativity; Springer: Berlin, Germany, 2017; ISBN

978-3-319-52270-8.
22. Rubin, J.L. Applications of a Particular Four-Dimensional Projective Geometry to Galactic Dynamics. Galaxies

2018, 6, 83. [CrossRef]
23. Coll, B.; Tarantola, A. A Galactic Positioning System. In Astrometry, Geodynamics and Solar System Dynamics:

From Milliarcseconds to Microarcseconds, Proceedings of the Journées 2003—Systèmes de Référence Spatio-Temporels
(JSR 2003), Institute of Applied Astronomy of the Russian Academy of Sciences, St. Petersburg, Russia, 22–25
September 2003; Finkelstein, A., Capitaine, N., Eds.; Institute of Applied Astronomy of the Russian Academy
of Sciences: St. Petersburg, Russia; Paris, France, 2004; pp. 333–334.

24. Tartaglia, A.; Ruggiero, M.L.; Capolongo, E. A Relativistic navigation system for space. Acta Futur. 2011, 4,
33–40. [CrossRef]

25. Ruggiero, M.L.; Capolongo, E.; Tartaglia, A. Pulsars as Celestial Beacons to Detect the Motion of the Earth.
Int. J. Mod. Phys. 2011, 20, 1025–1038. [CrossRef]

26. Winternitz, L.B.; Hassouneh, M.A.; Mitchell, J.W.; Price, S.R.; Yu, W.H.; Semper, S.R.; Ray, P.S.; Wood, K.S.;
Arzoumanian, Z.; Gendreau, K.C. SEXTANT X-ray Pulsar Navigation Demonstration: Additional On-Orbit
Results. In Proceedings of the 2018 SpaceOps Conference, SpaceOps Conferences, (AIAA 2018-2538),
Marseille, France, 28 May–1 June 2018. [CrossRef]

27. Wojnar, A.; Sporea, C.A.; Borowiec, A. A Simple Model for Explaining Galaxy Rotation Curves. Galaxies
2018, 6, 70. [CrossRef]

28. Audin, M. Géométrie, 1st ed.; EDP Sciences: Les Ullis, France, 2006; ISBN 2-86883-883-9.

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2307/2214766
http://dx.doi.org/10.1017/S030500410004144X
http://dx.doi.org/10.1007/BF00771020
http://dx.doi.org/10.2174/1874381101205010044
http://dx.doi.org/10.3390/galaxies6030083
http://dx.doi.org/10.2420/AF04.2011.33
http://dx.doi.org/10.1142/S0218271811019256
http://dx.doi.org/10.2514/6.2018-2538
http://dx.doi.org/10.3390/galaxies6030070
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Reference Systems—Relativistic Positioning vs. Localizing Systems
	The Admisssible Lorentzian Metric
	The Underlying Hyperbolic Geometry
	The Pseudo-Hyperbolic Space and the Admissible Lorentzian Metric

	The Singular Pseudo-Hyperbolic Space and the Foliation
	Similar Black Hole Structures and a Simple, Modified Newton's Law
	Conclusions—Interpretations and Physical Perspectivities
	References

