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Abstract: Every conformal field theory has the symmetry of taking each field to its adjoint.
We consider here the quotient (orbifold) conformal field theory obtained by twisting with respect to
this symmetry. A general method for computing such quotients is developed using the Coulomb gas
representation. Examples of parafermions, SU(2) current algebra and the N = 2 minimal models
are described explicitly. The partition functions and the dimensions of the disordered fields are
given. This result is a tool for finding new theories. For instance, it is of importance in analyzing the
conformal field theories of exceptional holonomy manifolds.

Keywords: conformal field theory; string theory

Conformal field theories enjoy several operations which result in different conformal field theories.
Examples are toroidal orbifolds [1,2], and coset type models [3,4]. Every conformal field theory (CFT),
C, contains the fields A in the Hilbert space along with their conjugate A†. In general, A 6= A†.
Thus we may consider the quotient theory (abstract orbifold),

C̃ = C/w, where w(A) = A†. (1)

From the point of view of CFT, this quotient is quite complicated since every field in the Hilbert
space transforms independently, and is not organized by some characters of an extended algebra.
We found, however, the following method to compute the partition function. Many, if not all, known
rational conformal theories may be described by a system of free bosons moving on a Lorentzian lattice
with a background charge. This is called the Coulomb gas method. By describing C as such a system,
the quotient by w becomes a Z2 orbifold where some of the free bosons flip sign. This on the other
hand is straightforward to compute. Thus, we derive the partition function of C̃ in the cases of Zk
parafermions, SU(2)k current algebra and kth N = 2 minimal model, and leave to further work the
consideration of other models.

The results described here for N = 2 minimal models are of importance in the study of the
conformal field theories of compactification of string theory on exceptional holonomy manifolds [5].
This is since these theories can be considered as the real part of string theories compactified on
Calabi-Yau manifolds. Our main interest is the compactification to two dimensions from 10 dimensions
on spin(7) holonomy manifolds [5]. It was shown by Figueroa-O’Farill [6] that the spin(7) algebra
can be constructed from a four-dimensional Calabi-Yau algebra (which is the N = 2 superconformal
algebra) by a twist which is taking the conjugate of the fields in the algebra. In particular, for the
minimal models compactification, this is taking the real part of a tensor product of minimal N = 2
superconformal models at the central charge c = 12.

Thus, it behooves us to study the real part of minimal N = 2 superconformal field theory, as this
will give us solvable spin(7) compactifications. This is what is described in this note. Moreover, the case
of the orbifold of parafermionic theories turns out to be useful to calculate string functions at level 2 [7].
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The left right symmetric Zk parafermion partition function is given by [8]

Z =
|η(τ)|2

2 ∑
l−m=0 mod 2

|cl
m(τ)|2, (2)

where l = 0, 1, . . . , k and m is any integer modulo 2k. Our considerations below may easily be
generalized for any modular invariant, but for simplicity we consider only the left right symmetric
one. Here η(τ) is the Dedekind’s eta function,

η(τ) = eπiτ/12
∞

∏
n=1

(
1− e2nπiτ

)
, (3)

and cl
m(τ) is the so-called string function, which is a generating function for the L0 of the states in the

representation of SU(2)k current algebra which have isospin l/2 and J3 = m/2,

cl
m(τ) = qα Tr

Hl
m

qL0 , (4)

where

α =
l(l + 2)
4(k + 2)

− m2

4k
− k

8(k + 2)
, (5)

is a factor which was originally added to ensure modular covariance [9], but is necessary to ensure that
ηcl

m is the parafermion partition function [8]. Kac and Peterson [10] expressed cl
m as Hecke indefinite

modular forms,
cl

m(τ) = η(τ)−3 ∑
−|x|<y≤|x|

(x,y) or ( 1
2−x, 1

2 +y)∈( l+1
2(k+2) , m

2k )+Z2

sign(x) e2πiτ[(k+2)x2−ky2]. (6)

As was noted in ref. [11], Equation (6) can be interpreted as the partition function of two bosons,
φ1 and φ2, (after multiplying by eta function) moving on a Lorentzian lattice of signature (1,−1) whose
stress tensor is,

T(z) = −1
4
(∂φ1)

2 +
1
4
(∂φ2)

2 +
i

2
√

k + 2
∂2φ1, (7)

where we included a background charge to get the correct central charge. The parafermions can be
written as,

ψ(z) =
1
2

(
∂φ2 −

√
k + 2

k
∂φ1

)
exp(iφ2/

√
k),

ψ†(z) =
1
2

(
∂φ2 +

√
k + 2

k
∂φ1

)
exp(−iφ2/

√
k). (8)

The lattice on which these bosons move is read from Equation (6) and is a rectangular one of
dimensions (

√
k + 2,

√
k).

Similarly, for subsequent reference, SU(2)k and the N = 2 minimal models can be constructed
using an additional free boson (the connection between parafermions and SU(2)k was described in
ref. [12], whereas the connection with N = 2 was described in ref. [13]), with no background charge, φ3,

T(z) = −1
4
(∂φ1)

2 +
1
4
(∂φ2)

2 − 1
4
(∂φ3)

2 +
i

2
√

k + 2
∂2φ1, (9)

where φ1,2 move on the same lattice as before and φ3 moves on a lattice of radius
√

k for SU(2)k, and of
radius 2k(k + 2) for the N = 2 case.
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The SU(2)k currents, J± and J3, are given by

J+(z) =
1
2

√
k

(
∂φ2 −

√
k + 2

k
∂φ1

)
exp

[
i√
k
(φ2 + φ3)

]
,

J−(z) =
1
2

√
k

(
∂φ2 +

√
k + 2

k
∂φ1

)
exp

[
− i√

k
(φ2 + φ3)

]
,

J3(z) =
√

k ∂φ3. (10)

Similarly, the currents for N = 2, G± and J, are obtained by the same expressions with the
rescaling of φ3 by a factor of

√
k + 2.

Now, it is clear from these expressions that the operation of taking A → A† is equivalent to
taking φ2 → −φ2 and φ3 → −φ3, i.e., it is a bosonic twist. We wish to compute the partition function,
of the quotient by this bosonic twist. Since φ2,3 do not have a background charge, this is almost a
standard orbifold. Consider the parafermion case. We have four sectors Z(δ1, δ2), where δi = 0, 1
mod 2, describing the path integral on the torus with boundary condition (−1)δ1 ((−1)δ2 ) in the time
(space) directions. Z(0, 0) is the parafermionic partition function Z described before, Equation (2).
Z(1, 0) is the partition function

Z(1, 0) = Tr
H
(−1)w qL0−c/24 q̄L̄0−c/24, (11)

where w(A) = A†. Z(1, 0) receives contributions only from states that have zero momentum in the
φ2 direction, since a state of momentum p, Ap, goes to A†

−p which is different and we can form the
pair of states, Ap ± A†

−p, which have the eigenvalues ±1 of w, thus giving a net contribution zero to
Equation (11). For p = 0 we have only the contribution of the moments of ∂φ2 which gives η(τ)η(2τ)−1

by standard arguments. Thus, Z(1, 0) setting y = 0 in Equation (6) and multiplying by the above
prefactor, for the contribution fromHl

0 sector (which imply that l is even) we get a contribution,

Bl(τ) = Y(1, 0)
∞

∑
n=−∞

(−1)nk e2(k+2)πiτ(n+ l+1
2(k+2) )

2
(12)

for l even, and Bl = 0 for l odd, where for the parafermions the prefactor is

Y(1, 0) = η(2τ)−1. (13)

Note that we changed some of the signs in Equation (11). This is required for modular invariance
as we will see below. The full partition function Z(1, 0) is given by

Z(1, 0) =
k

∑
l=0

l=0 mod 2

Bl B∗l . (14)

For SU(2) and N = 2 we can do the same. The partition function of SU(2)k is given by ref. [14]

Z =
k

∑
l=0

χl(τ, 0, 0) χ∗l (τ, 0, 0), (15)

where χl(τ, z, u) is the character of the affine SU(2)k representation with isospin l/2,

χl =
Θl+1,k+2 −Θ−l−1,k+2

Θ1,2 −Θ−1,2
, (16)
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and where the level m classical theta function is defined by,

Θn,m(τ, z, u) = e2πiu ∑
j∈n/(2m)+Z

e2πiτmj2+2πijz, (17)

where n is defined modulo 2m.
For the N = 2 partition function we have [15]

Z = ∑
l,m,s

∣∣∣χl(s)
m (τ, 0, 0)

∣∣∣2 , (18)

where the sum is over l = 0, 1, . . . , k and m and s modulo 2(k + 2) and 4 respectively. s = 0, 2 in the NS
sector, and s = 1, 3 in the Ramond sector. The χ

l(s)
m (τ, z, u) are the characters of the kth N = 2 minimal

model and are given by,

χ
l(s)
m (τ, z, u) = ∑

j mod k
cl

m+4j−s Θ2m+(4j−s)(k+2),2k(k+2)(τ, 2kz, u). (19)

Looking at the expressions for the characters in Equation (19), we see that again this is just the
appropriate partition function for the appropriate system of bosons. Thus we get the contribution
of the l representation by simply setting the momentum in the φ2,3 directions to zero. We get the
same answer as for the parafermions, Equation (12), with only a different prefactor to account for the
extra boson,

Y(1, 0) = η(τ)η(2τ)−1. (20)

It is the same prefactor for SU(2) and N = 2.
We can get the partition function for the twisted sectors Z(0, 1) and Z(1, 1) by modular

transformations. We have Z(1, 0)(−1/τ) = Z(0, 1)(τ) and Z(1, 1)(τ) = Z(0, 1)(τ + 1).
For consistency it is required that all partition functions would be invariant under τ → τ + 2 and
Z(1, 1)(−1/τ) = Z(1, 1)(τ). The total partition function is,

Z =
1
2 ∑

δ1,δ2=0,1
Z(δ1, δ2). (21)

The partition function for the untwisted sector, namely fields invariant under A → A†,
is 1

2 (Z(0, 0) + Z(1, 0)). Similarly, the partition function for the twisted sector, disorder fields, is
1
2 (Z(0, 1) + Z(1, 1)).

We can write the sum in the expression for Bl , Equation (12) as a theta function,

Bl/Y(1, 0) = Θl+1,k+2(τ, k/2, 0), (22)

where we used the definition, Equation (17). The theta functions transform nicely under modular
transformations [9],

Θn,m

(
− 1

τ
,

z
τ

, u− z2

2τ

)
=

1√
2m

(−iτ)
1
2 ∑

l mod 2m
e−πiln/m Θl,m(τ, z, u). (23)

Using this, we find the partition function Z(0, 1) by calculating Z(1, 0)(−1/τ). We find,

Z(0, 1) = |Y(0, 1)|2 ∑
γ,γ̄ mod 2(k+2)

γ−γ̄=0 mod k+2

eπi(γ−γ̄)/(k+2) Θγ+
p
2 ,k+2(τ, 0, 0)Θγ̄+

p
2 ,k+2(τ, 0, 0)∗, (24)

where p = 0 or p = 1, p = k mod 2.
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Dγ = Y(0, 1)(Θγ+
p
2 ,k+2 −Θγ+

p
2 +k+2,k+2)/a (25)

are the characters of the twisted sector, with respect to the appropriate extended chiral algebra. a is a
numerical factor equal to

√
2 for parafermions and a = 2 for N = 2 and SU(2). The lowest dimension

field in Dγ (‘primary fields’) are the disorder fields Aγ of dimension,

∆γ =
(γ + p/2)2

4(k + 2)
+ s + c/24, (26)

where s = 0 for SU(2) and N = 2, and s = −1/48 for parafermions, c is the central charge and γ is
defined modulo k + 2. Actually, for parafermions, the dimensions of these disorder fields were already
calculated by Zamolodchikov [13], and our results agree in this case. The novelty here is that we
obtained the characters, as well.

In terms of these, the partition function Z(0, 1) is left–right symmetric. The prefactor, Y(0, 1),
comes from the modular transform of the Y(1, 0). We find,

Y(0, 1) =

√
2

η(τ/2)
, for parafermions,

Y(0, 1) =
2η(τ)

η(τ/2)2 , for SU(2) and N = 2, (27)

where we used the well know transformation properties of the eta function, e.g., [9].
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121–124. [CrossRef]
12. Fateev, V.A.; Zamolodchikov, A.B. Parafermionic currents in the two-dimensional conformal quantum field

theory and selfdual critical points in Zn invariant statistical systems. Sov. Phys. JETP 1985, 82, 215–225.

http://dx.doi.org/10.1016/0550-3213(85)90593-0
http://dx.doi.org/10.1016/0550-3213(86)90287-7
http://dx.doi.org/10.1016/0370-2693(85)91145-1
http://dx.doi.org/10.1007/BF01464283
http://dx.doi.org/10.1007/BF01671569
http://dx.doi.org/10.1016/S0370-2693(96)01506-7
http://dx.doi.org/10.1016/j.nuclphysb.2014.07.009
http://dx.doi.org/10.1016/0550-3213(87)90348-8
http://dx.doi.org/10.1016/0001-8708(84)90032-X
http://dx.doi.org/10.1016/0370-2693(89)91060-5


Universe 2018, 4, 97 6 of 6

13. Zamolodchikov, A.B.; Fateev, V.A. Disorder fields in two-dimensional conformal quantum field theory and
N = 2 extended supersymmetry. Sov. Phys. JETP 1986, 63, 913.

14. Gepner, D.; Witten, E. String theory on group manifolds. Nucl. Phys. B 1986, 278, 493–549. [CrossRef]
15. Gepner, D. Space-time supersymmetry in compactified string theory and superconformal Models. Nucl. Phys. B

1988, 296, 757–778. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0550-3213(86)90051-9
http://dx.doi.org/10.1016/0550-3213(88)90397-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	References

