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Abstract: Geodesics (by definition) have an intrinsic 4-acceleration zero. However, when expressed
in terms of coordinates, the coordinate acceleration d2xi/dt2 can very easily be non-zero, and the
coordinate velocity dxi/dt can behave unexpectedly. The situation becomes extremely delicate in
the near-horizon limit—for both astrophysical and idealised black holes—where an inappropriate
choice of coordinates can quite easily lead to significant confusion. We shall carefully explore
the relative merits of horizon-penetrating versus horizon-non-penetrating coordinates, arguing
that in the near-horizon limit the coordinate acceleration d2xi/dt2 is best interpreted in terms of
horizon-penetrating coordinates.

Keywords: geodesic equation; coordinate velocity; coordinate acceleration; horizon-penetrating
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1. Introduction

Coordinate dependence in general relativity is a topic that continues to cause confusion to this day,
despite over 100 years of work on this issue. (For a variety of articles, both pro and con, both published
and unpublished, see [1–14]. For two recent overviews, see [15,16]). The situation is particularly acute
in the immediate vicinity of any horizon that might be present, whether it be for an astrophysical or
an idealised (mathematical) black hole, where an inappropriate choice of coordinates can needlessly
add to the confusion. Indeed, while horizons are often associated with coordinate singularities,
these coordinate singularities are a property of the coordinate patch, not the spacetime geometry,
and these coordinate singularities can quite easily go away with a different choice of coordinates.
For astrophysical black holes, as opposed to maximally analytically extended idealised black holes,
one still trusts the usual Einstein equations in the domain of outer communication—and down to any
inner horizon that might be present. Similarly for the black holes arising from numerical simulations,
which are key to modelling the astrophysical black holes of direct observational interest, one typically
calculates down to some region inside the outer horizon, but well above the singular region, relying
on the usual idealised picture for near-(outer)-horizon physics. Finally, for semi-classical black holes,
as long as the quantum fields are in the Unruh vacuum state, the near-horizon geometry in the vicinity
of the future horizon is qualitatively similar to that in classical general relativity.
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In short, the black holes of observational interest in astronomy and cosmology can be adequately
represented, at least in the domain of outer communication and down to any inner horizon that might
be present, by the idealised Schwarzschild and Kerr spacetimes—and analysis of the near-horizon
physics can adequately be performed using the classical Schwarzschild and Kerr spacetimes. In fact,
it is very useful to distinguish:

• Horizon-penetrating coordinates—these coordinate systems are regular as one crosses the horizon
(for example, Painleve–Gullstrand coordinates, Kerr–Schild coordinates, and variants thereof).

• Horizon-non-penetrating coordinates—these coordinate systems are singular as one crosses
the horizon (for example, the Schwarzschild curvature coordinates, isotropic coordinates,
and variants thereof).

The horizon-non-penetrating coordinates are simpler for some purposes (the metric is typically
diagonal), but are ill-behaved in the immediate vicinity of the horizon. In contrast horizon-penetrating
coordinates are better behaved in the immediate vicinity of the horizon, but the metric is typically
non-diagonal, and the asymptotic behaviour may sometimes be more subtle than expected. We shall
work through a number of examples illustrating the dangers and the pitfalls.

Consider for instance the Schwarzschild geometry—this is a very well-known spacetime since it
was the first known exact solution to the (vacuum) Einstein field equations [17]. It is certainly of direct
physical relevance—the spacetime geometry exterior to the sun and that exterior to slowly-rotating
astrophysical black holes can be well-approximated by the Schwarzschild geometry. Perhaps the
simplest form of the Schwarzschild spacetime is the Hilbert form expressed in terms of (what are now
known as) Schwarzschild curvature coordinates [18–20]

ds2 = −
(

1− 2m
r

)
dt2 +

(
1− 2m

r

)−1
dr2 + r2

(
dθ2 + sin2 θ dφ2

)
. (1)

There is a coordinate singularity at r = 2m, see for instance [21–30], making this representation
horizon-non-penetrating [31]. It is easy to see that in these coordinates the radial geodesics “pile up”
at r = 2m, never (in these coordinates) crossing the horizon. In fact, for any radial incoming geodesic,
ṙ → 0 as one approaches the horizon.

Taking into account the Killing conservation law for the energy, we shall soon see that, even
for infalling particles, r̈ → (something positive) sufficiently close to the horizon, though not at the
horizon itself. However, this near-horizon r̈ > 0 phenomenon is a coordinate artefact; the behaviour
can be very different in other coordinates. Despite this, some researchers are now (even in 2018)
completely misinterpreting this coordinate artefact and asserting that “gravity becomes repulsive
near the horizon”. This claim is, at best, a gross misinterpretation of the actual situation. (For specific
examples of this particular confusion, see particularly [1,3–6,9–13]. For partial antidotes, see [7,8,14].
For a somewhat different sort of coordinate confusion, mistaking white holes for black holes, see [2].)

Below, we shall show that the coordinate acceleration near horizons is, in horizon-penetrating
coordinates, (such as the Painleve–Gullstrand [32–40] or Kerr–Schild [21,24,27–29,40] coordinates),
much easier to understand. We shall then wrap up with some generic comments regarding arbitrary
horizon-penetrating coordinate systems [41–44].

We shall use letters from the beginning of the Roman alphabet (a, b, c, d, ...) for spacetime indices,
(see for instance Wald [22], or Hobson–Efstathiou–Lasenby [23]). Whenever there is a clearly defined time
coordinate t, we shall use letters from the middle of the Roman alphabet (i, j, k, l, ...) for the remaining
spatial indices. We reserve the notation ẋ and ẍ for derivatives with respect to the time coordinate t.

2. Geodesic Equation

Consider the geodesic equation in non-affine-parameterised form:

d2xa

dλ2 + Γa
bc

dxa

dλ

dxb

dλ
= f (λ)

dxa

dλ
. (2)
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This part of the analysis works equally well for timelike or null geodesics. Assume the zero’th
coordinate is timelike, at least outside any horizon that might be present. That is, take xa = (t, xi).
We can then choose the coordinate t to be a non-affine parameter for the geodesic. The geodesic
equation separates into

d2t
dt2 + Γt

bc
dxb

dt
dxc

dt
= f (t)

dt
dt

; (3)

d2xi

dt2 + Γi
bc

dxb

dt
dxc

dt
= f (t)

dxi

dt
. (4)

The first of these equations implies

f (t) = Γt
bc

dxb

dt
dxc

dt
. (5)

The second equation then becomes

d2xi

dt2 = −Γi
bc

dxb

dt
dxc

dt
+

(
Γt

bc
dxb

dt
dxc

dt

)
dxi

dt
. (6)

This is still very general. Let us now specialize to spherical symmetry, taking

gab =


gtt gtr 0 0
gtr grr 0 0
0 0 gθθ 0
0 0 0 gφφ

 . (7)

Then the radial geodesics are given by

d2r
dt2 = −Γr

bc
dxb

dt
dxc

dt
+

(
Γt

bc
dxb

dt
dxc

dt

)
dr
dt

. (8)

That is,

r̈ = −
[
Γr

tt + 2Γr
rt ṙ + Γr

rr ṙ2
]
+
[
Γt

tt + 2Γt
rt ṙ + Γt

rr ṙ2
]

ṙ. (9)

Finally, regrouping, we see

r̈ = −Γr
tt +

(
Γt

tt − 2Γr
rt
)

ṙ +
(
2Γt

rt − Γr
rr
)

ṙ2 + Γt
rr ṙ3. (10)

Note that the “coordinate acceleration” r̈ is cubic in the “coordinate velocity” ṙ. This effect is
certainly real if perhaps naively unexpected. (This effect is also manifestly coordinate-dependent.)

3. Killing Conservation Law for Energy: Coordinate Velocity

In all the situations we will be interested in, there is a timelike Killing vector (timelike outside any
horizon that may be present), and there is no real loss of generality in taking the t coordinate to be
compatible with that Killing vector; so Ka = (∂t)a. (That is, we choose coordinates to manifestly respect
the time-translation Killing symmetry.) However, then any timelike geodesic with 4-velocity Va is
subject to the energy conservation law

gab KaVb = −ε (11)

where ε is a constant, effectively the energy per unit rest mass. Observe that ε = 1 corresponds to
dropping a particle at rest from spatial infinity; ε > 1 corresponds to dropping a moving particle
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from spatial infinity; ε < 1 corresponds to a gravitationally bound particle, dropped at rest from some
finite radius. In fact, in an asymptotically flat spacetime, ε = 1/

√
1− β2

∞, where β∞ is the “coordinate
velocity at infinity.” In spherical symmetry, this Killing conservation law can be written as

gtb
(1, ṙ, 0, 0)b

||(1, ṙ, 0, 0)|| = −ε. (12)

That is,

(gtt + gtr ṙ) = −ε
√
−(gtt + 2gtr ṙ + grr ṙ2). (13)

Even more explicitly,

(gtt + gtr ṙ)2 = −ε2(gtt + 2gtr ṙ + grr ṙ2). (14)

This is quadratic in ṙ, with a general solution

ṙ =
−gtr(1 + ε−2gtt)±

√
(1 + ε−2gtt)(g2

tr − gttgrr)

grr + ε−2g2
tr

. (15)

Physically, the situation is this: If one drops a particle from some initial position r0 with initial
coordinate velocity ṙ0, then one can calculate the energy ε from Equation (11) and subsequently extract
ṙ at general positions r from Equation (15).

Formally, null geodesics can be viewed as the ε→ ∞ limit of this formalism. This is most easily
seen from Equations (13) or (14), which in the ε→ ∞ limit imply

gtt + 2gtr ṙ + grr ṙ2 = 0. (16)

However, this is exactly the condition that the radial curve is a null curve. In this null limit, one
sees that the Killing conservation law becomes

ṙ =
−gtr ±

√
g2

tr − gttgrr

grr
. (17)

Two special cases are of particular interest:

• In coordinate charts where the metric is diagonal, (for example, the Schwarzschild curvature
coordinates or isotropic coordinates), we have gtr = 0. Therefore, for timelike geodesics,

ṙ = ±
√
(1 + ε−2gtt)(−gtt grr)

grr
. (18)

As long as we are primarily interested in dropping (infalling) particles, we must choose the
negative root and set

ṙ = −
√
(1 + ε−2gtt)(−gtt grr)

grr
. (19)

In the null limit (ε→ ∞), this simplifies considerably and becomes

ṙ = −
√
−gtt

grr
. (20)

• In contrast, in coordinate charts where the metric satisfies gttgrr − g2
tr = −1, (for example,

the Painleve–Gullstrand coordinates or Kerr–Schild coordinates), for timelike geodesics, we have
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ṙ =
−gtr(1 + ε−2gtt)±

√
1 + ε−2gtt

grr + ε−2g2
tr

. (21)

As long as we are primarily interested in dropping (infalling) particles, we can safely choose the
negative root and set

ṙ =
−gtr(1 + ε−2gtt)−

√
1 + ε−2gtt

grr + ε−2g2
tr

= −
√

1 + ε−2gtt

{
1 + gtr

√
1 + ε−2gtt

grr + ε−2g2
tr

}
. (22)

Note that 1 + ε−2gtt ≥ 0 in order to keep ṙ real, while grr + ε−2g2
tr > 0 always, so choosing the

negative root selects the ingoing geodesic.

In the null limit (ε→ ∞), this simplifies considerably and becomes

ṙ = −
{

1 + gtr

grr

}
. (23)

Let us now apply these quite general considerations to study the fixed-energy coordinate
acceleration.

4. Coordinate Acceleration

For a dropped (timelike trajectory) particle, the coordinate acceleration at arbitrary radius is thus
an interplay between the geodesic equation

r̈ = −Γr
tt +

(
Γt

tt − 2Γr
rt
)

ṙ +
(
2Γt

rt − Γr
rr
)

ṙ2 + Γt
rr ṙ3, (24)

and the Killing-induced coordinate velocity equation

ṙ =
−gtr(1 + ε−2gtt)±

√
(1 + ε−2gtt)(g2

tr − gttgrr)

grr + ε−2g2
tr

. (25)

Combining these results, we would get something of the general form

r̈ = f (ε, r) (26)

where f (ε, r) is some explicit but coordinate-dependent function. Note that we could always use the

chain rule to write r̈ = dṙ
dr

dr
dt = dṙ

dr ṙ = 1
2

d(ṙ2)
dr . This serves as a consistency check, and side-steps

the geodesic equation, but when doing so, one loses information regarding the coordinate velocity
dependence of the coordinate acceleration. We shall now give a few examples of this phenomenon,
focusing particularly on near-horizon behaviour.

5. Example: Schwarzschild Geometry

The Schwarzschild spacetime geometry is perhaps the pre-eminent example of an exact
solution in general relativity [17–21,24–27]. As specific examples of near-horizon behaviour for the
coordinate velocity ṙ and coordinate acceleration r̈, let us consider the Schwarzschild spacetime in
four commonly occurring coordinate systems [28–30,32–36]: Schwarzschild curvature coordinates,
isotropic coordinates, Painleve–Gullstrand coordinates, and Kerr–Schild coordinates.

5.1. Schwarzschild Curvature Coordinates

The Schwarzschild geometry in Schwarzschild curvature coordinates is described by
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ds2 = −
(

1− 2m
r

)
dt2 +

(
1− 2m

r

)−1
dr2 + r2

(
dθ2 + sin2 θdφ2

)
. (27)

It is easy to calculate the Christoffel symbols and to verify that the geodesic equation implies

r̈ = −m(1− 2m/r)
r2 +

[
3m

r2(1− 2m/r)

]
ṙ2. (28)

This can be rewritten as

r̈ = −m
r2

{(
1− 2m

r

)
− 3 ṙ2

(1− 2m/r)

}
. (29)

This gives the coordinate acceleration r̈ in terms of the Newtonian value −m/r2, modified by
relativistic corrections—due to both spacetime geometry and the local coordinate velocity. Furthermore,
this already demonstrates (working in terms of r and ṙ) that r̈ changes sign at the critical coordinate
velocities given by

(ṙ)2
∗ =

1
3

(
1− 2m

r

)2
. (30)

At large r (that is, weak fields), this sign flip takes place at ṙ2 ≈ 1/3; this is mildly relativistic
but certainly not ultra-relativistic. (In fact, this sign flip takes place for both ingoing and outgoing
geodesics.) Furthermore, from the Killing conservation equation, we deduce

ṙ = ±
(

1− 2m
r

)√
1− ε−2

(
1− 2m

r

)
. (31)

In particular at the horizon (ṙ)H = 0, and at spatial infinity, we see limr→∞ ṙ =
√

1− ε−2 for
fixed ε. Combining these geodesic and Killing results

r̈ = −m
r2

(
1− 2m

r

)(
1− 3(ε2 − 1 + 2m/r)

ε2

)
. (32)

Note that (for fixed ε), the coordinate acceleration r̈ goes through zero and changes sign at the
critical values of r given by

r∗ =
6m

3− 2ε2 ; and r∗ = 2m. (33)

(In fact, this sign flip takes place for both ingoing and outgoing geodesics.) In particular, at the horizon
(r̈)H = 0 for fixed ε.

For a time-like particle dropped at rest from spatial infinity (ε = 1), this simplifies to

ṙ = −
(

1− 2m
r

)√
2m
r

; r̈ = −m
r2

(
1− 2m

r

)(
1− 6m

r

)
; r∗ ∈ {6m, 2m}. (34)

(Note that asymptotically ṙ →
√

2m/r, and r̈ → −m/r2, as expected from the Newtonian limit.)
Oddly enough (in this particular coordinate system), the coordinate acceleration switches sign

at r∗ = 6m, the location of the innermost stable circular orbit (ISCO); this is a coincidence, not
anything fundamental.

For a light-like particle (ε→ ∞), this simplifies to

ṙ = −
(

1− 2m
r

)
; r̈ = +2

m
r2

(
1− 2m

r

)
; r∗ = 2m. (35)
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(Note that a photon can have non-trivial coordinate velocity and non-zero coordinate acceleration
even if its physical speed is always exactly equal to c. This is one of the reasons that the concepts of
coordinate velocity and coordinate acceleration must be used with care and discretion.)

Now these particular observations are not new, dating back (at least) to Hilbert in 1915 and
the mid-1920s [18–20]. (It must be emphasised that Hilbert’s comments have subsequently been
grossly misinterpreted by some of the later commentators on this topic.) (See particularly [1,3–6,9–13].
For partial antidotes, see [7,8,14]. For a different sort of coordinate confusion (mistaking white holes
for black holes) see [2].) What is new in the current discussion is that we will now put these issues into
a wider context emphasising the extent to which these results are simply coordinate artefacts.

The radial coordinate velocity and radial coordinate acceleration for timelike geodesics are plotted
as shown in Figures 1 and 2. For null geodesics, see Figures 3 and 4.

Figure 1. Behaviour of ṙ in the Schwarzschild geometry when using Schwarzschild curvature
coordinates for m = 1 and ε = 1. Note the curve crosses the r axis only at r = 2, and the coordinate
velocity is negative all the way from the horizon to spatial infinity.

Figure 2. Behaviour of r̈ in the Schwarzschild geometry when using Schwarzschild curvature
coordinates for m = 1 and ε = 1. Note the curve crosses the r axis at both r = 2 and r = 6;
the coordinate acceleration is positive between the horizon and the ISCO.
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Figure 3. Behaviour of ṙ for null geodesics in the Schwarzschild geometry when using Schwarzschild
curvature coordinates for m = 1 and ε → ∞. Note the curve crosses the r axis only at r = 2, and the
coordinate velocity is negative all the way from the horizon to spatial infinity.

Figure 4. Behaviour of r̈ for null geodesics in the Schwarzschild geometry when using Schwarzschild
curvature coordinates for m = 1 and ε → ∞. Note the curve crosses the r axis only at r = 2, and the
coordinate acceleration is positive all the way from the horizon to spatial infinity.

5.2. Isotropic Coordinates

The Schwarzschild geometry in isotropic coordinates is described by [21]

ds2 = −
(
1− m

2r
)2(

1 + m
2r
)2 dt2 +

(
1 +

m
2r

)4 [
dr2 + r2

(
dθ2 + sin2 θ dφ2

)]
. (36)
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Compared to Schwarzschild curvature coordinates, only the meaning of the r coordinate has
changed. Indeed,

rSchwarzschild = risotropic

(
1 +

m
2risotropic

)2
. (37)

(In these isotropic coordinates, the horizon is now at r = m
2 .)

The Christoffel symbols are easily calculated and the geodesic equation becomes

r̈ = −m
r2

(1− m
2r )

(1 + m
2r )

7 + 3
m
r2

(1− m
6r )

(1− m
2r )(1 +

m
2r )

ṙ2. (38)

This can also be recast as

r̈ = −m
r2

{
(1− m

2r )

(1 + m
2r )

7 − 3
(1− m

6r )

(1− m
2r )(1 +

m
2r )

ṙ2
}

. (39)

This already demonstrates (working in terms of r and ṙ) that r̈ changes sign at the critical
coordinate velocities

(ṙ)2
∗ =

1
3

(
1− m

2r
)2(

1 + m
2r
)6

(1− m
6r )

. (40)

At large r, (i.e., weak fields), this sign flip takes place at ṙ2 ≈ 1/3; this is mildly relativistic but
certainly not ultra-relativistic. (In the weak-field limit, the Schwarzschild curvature coordinates and
the isotropic coordinates asymptotically approach each other.)

From the Killing conservation equation, since the metric in isotropic coordinates is diagonal,
we deduce

ṙ = ±
√
(ε2 + gtt)(−gttgrr)

εgrr
= ±

√
(1 + ε−2gtt)(−gttgrr)

grr
. (41)

This implies

ṙ = ±1
ε

√
ε2 −

(
1− m

2r
1 + m

2r

)2 (
1− m

2r
)(

1 + m
2r
)3 . (42)

Note that, at the horizon, now located at r = m/2, we again have ṙ → 0, while at spatial infinity
we again see ṙ →

√
1− ε−2 at fixed energy. Combining these results, for a dropped particle (of fixed

energy ε), we have

r̈ = −m
r2

(1− m
2r )

(1 + m
2r )

7

(
1−

3(1− m
6r )

ε2

[
ε2 −

(
1− m

2r
1 + m

2r

)2
])

. (43)

Note that the coordinate acceleration r̈ goes through zero and (apart from the trivial zero at
r∗ = m/2) changes sign at the critical values r∗ of r given by solving the cubic equation

r∗ : 1−
3(1− m

6r )

ε2

[
ε2 −

(
1− m

2r
1 + m

2r

)2
]
= 0. (44)

For a particle dropped at rest from spatial infinity (ε = 1), this simplifies to

ṙ = −

√
1−

(
1− m

2r
1 + m

2r

)2 (
1− m

2r
)(

1 + m
2r
)3 (45)

r̈ = −m
r2

(1− m
2r )

(1 + m
2r )

7

(
1− 3

(
1− m

6r

) [
1−

(
1− m

2r
1 + m

2r

)2
])

, (46)
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with the (non-trivial) zeros of coordinate acceleration determined by

1− 3
(

1− m
6r

) [
1−

(
1− m

2r
1 + m

2r

)2
]
= 0 r∗ = (5± 2

√
5)

m
2

. (47)

(Though not entirely obvious, it is easy to check that, at large distances ṙ →
√

2m/r, as expected from
the Newtonian limit. It is more obvious that at large distances r̈ → −m/r2. In isotropic coordinates,
the ISCO is at

(
5
2 +
√

6
)

m, which is not where r̈ → 0; that these two locations coincided in curvature
coordinates is merely a coincidence.)

For null geodesics (ε→ ∞), we have

ṙ = −
(
1− m

2r
)(

1 + m
2r
)3 r̈ =

2m
r2

(1− m
2r )(1−

m
4r )

(1 + m
2r )

7 . (48)

The radial coordinate velocity and radial coordinate acceleration for timelike geodesics are plotted
as shown in Figures 5 and 6. For null geodesics, see Figures 7 and 8. Note the similarities and differences
compared to what we saw for Schwarzschild curvature coordinates.

Figure 5. Behaviour of ṙ in the Schwarzschild geometry using isotropic coordinates for m = 1 and ε = 1.
Note the coordinate velocity is negative all the way from the horizon (now at m/2) to spatial infinity.
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Figure 6. Behaviour of r̈ in the Schwarzschild geometry using isotropic coordinates for m = 1 and

ε = 1. Note that the curve crosses the r axis both at r = 1/2 and r = 5+2
√

5
2 ≈ 4.736067977; there is a

third unphysical root at r = 5−2
√

5
2 ≈ 0.263932023.

Figure 7. Behaviour of ṙ for null geodesics in the Schwarzschild geometry using isotropic coordinates
for m = 1 and ε→ ∞. Note the coordinate velocity is negative all the way from the horizon (now at
m/2) to spatial infinity.
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Figure 8. Behaviour of r̈ for null geodesics in the Schwarzschild geometry using isotropic coordinates
for m = 1 and ε → ∞. Note the horizon is now at m/2; there is an extra zero at m/4. Note the
coordinate acceleration is positive all the way from the horizon to spatial infinity.

5.3. Painleve–Gullstrand Coordinates

The Schwarzschild geometry in Painleve–Gullstrand coordinates is described by [32–36]

ds2 = −
(

1− 2m
r

)
dt2

PG + 2

√
2m
r

dtPG dr + dr2 + r2
(

dθ2 + sin2 θ dφ2
)

(49)

where the Painleve–Gullstrand time coordinate is given in terms of the Schwarzschild time
coordinate by

tPG = tSchwarzschild − 2m

[
2
√

r
2m
− ln

(
1 +
√

2m/r
1−
√

2m/r

)]
. (50)

Note in particular that gtt grr − g2
tr = −1.

It is easy to calculate the Christoffell symbols and verify that, in these coordinates, the radial
geodesic equation becomes

r̈ = −m
r2

(
1− 2m

r

)
+

3m
r2

√
2m
r

ṙ +
3m
r2 ṙ2 +

√
2m/r
2r

ṙ3. (51)

We can rewrite this as

r̈ = −m
r2

{(
1− 2m

r

)
− 3

√
2m
r

ṙ− 3ṙ2

}
+

√
2m/r
2r

ṙ3. (52)

Viewed as a function of ṙ, this flips sign at the critical coordinate velocity

(ṙ)∗ =
6

√
2m
r
−
√

2m
r

, (53)
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which is always positive outside the horizon. (This actually implies that r̈ factorizes as follows:
r̈ =

(
ṙ−

[ 6
√

2m/r−
√

2m/r
])
× (quadratic in ṙ), where the quadratic has no real zeroes. Unfortunately,

the specific form of the quadratic is too messy to be illuminating.)
In view of the fact that, in these coordinates −gtt grr + g2

tr = 1, the general Killing-induced result
for the coordinate velocity simplifies to

ṙ =
−gtr(ε2 + gtt)± ε

√
(ε2 + gtt)

ε2grr + g2
tr

. (54)

Thence

ṙ =
−
√

2m/r(ε2 − 1 + 2m/r)± ε
√
(ε2 − 1 + 2m/r)

ε2 + 2m/r
. (55)

This can also be written as

ṙ = −
√

2m
r

+

√
2m/r± ε

√
(ε2 − 1 + 2m/r)

ε2 + 2m/r
. (56)

At the horizon, r = 2m, we have

(ṙ)H ∈
{

0,
−2ε2

ε2 + 1

}
. (57)

Therefore, we see that the ingoing geodesic crosses the horizon with finite coordinate velocity

(ṙ)H = − 2ε2

ε2 + 1
= − 2

1 + ε−2 ∈ (−2, 0), (58)

while the outgoing geodesic crosses the horizon with coordinate velocity zero. (Note that |ṙ| can easily
exceed unity; this is just a coordinate speed, not a physical speed.) This makes it clear that, for a
dropped particle, we should take the negative root in ṙ so that

ṙ = −
√

1− ε−2(1− 2m/r)
1 +
√

2m/r
√

1− ε−2(1− 2m/r)
1 + ε−2(2m/r)

. (59)

Combining these results, for a dropped particle (fixed energy ε), we have

r̈ = −m
r2

(
1− 2m

r

)
+

3m
r2

√
2m
r

[
−
√

2m/r(ε2 − 1 + 2m/r)− ε
√
(ε2 − 1 + 2m/r)

ε2 + 2m/r

]

+
3m
r2

[
−
√

2m/r(ε2 − 1 + 2m/r)− ε
√
(ε2 − 1 + 2m/r)

ε2 + 2m/r

]2

+

√
2m/r
2r

[
−
√

2m/r(ε2 − 1 + 2m/r)− ε
√
(ε2 − 1 + 2m/r)

ε2 + 2m/r

]3

. (60)

For a timelike particle dropped at rest from spatial infinity (ε = 1), this simplifies quite drastically
to yield

ṙ = −
√

2m
r

; r̈ = −m
r2 . (61)

(The fact that in this particular situation the Painleve–Gullstrand coordinate system exactly reproduces
the Newtonian result is one of the many reasons that the Painleve–Gullstrand coordinate system is
so useful.)
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Note that for ε = 1 the (ingoing) coordinate acceleration r̈ is extremely simple, and always
negative. In fact, the coordinate acceleration is finite at horizon crossing (r̈)H = −1/(4m).

For an infalling light-like particle (ε→ ∞), this again simplifies quite drastically to yield

ṙ = −1−
√

2m
r

; r̈ = − 1
2r

√
2m
r

(
1 +

√
2m
r

)
. (62)

Note that for ε → ∞ the (ingoing) coordinate acceleration r̈ is relatively simple, and always
negative. In fact, the coordinate acceleration is finite at horizon crossing (r̈)H = −1/(2m).
(The situation for Painleve–Gullstrand coordinates is ultimately so simple that graphs are not needed.)

5.4. Kerr–Schild Coordinates

The Schwarzschild geometry in Kerr–Schild coordinates is described by [24,42]

ds2 = −dt2 + dr2 + r2
(

dθ2 + sin2 θ dφ2
)
+

2m
r
(dt + dr)2. (63)

That is,

ds2 = −
(

1− 2m
r

)
dt2 +

4m
r

dtdr +
(

1 +
2m
r

)
dr2 + r2

(
dθ2 + sin2 θ dφ2

)
. (64)

Note in particular that gtt grr − g2
tr = −1.

The Christoffel symbols are easily calculated and in these coordinates the radial geodesic
equation becomes

r̈ = −m
r2

(
1− 2m

r

)
+

6m2

r3 ṙ +
3m
r2

(
1 +

2m
r

)
ṙ2 +

2m
r2

(
1 +

m
r

)
ṙ3. (65)

It may be better to rewrite this as follows:

r̈ = −m
r2

{(
1− 2m

r

)
− 6m

r
ṙ− 3

(
1 +

2m
r

)
ṙ2 − 2

(
1 +

m
r

)
ṙ3
}

. (66)

This factorizes

r̈ = −m
r2 (1 + ṙ)2

{(
1− 2m

r

)
− 2

(
1 +

m
r

)
ṙ
}

. (67)

As a function of ṙ, we see that r̈ flips sign at the critical coordinate velocity

(ṙ)∗ =
1− 2m/r

2(1 + m/r)
. (68)

This is always positive, and less than 1/2, outside the horizon.
In view of the fact that in these coordinates −gtt grr + g2

tr = 1, the general Killing-induced result
for the coordinate velocity simplifies to

ṙ = ±
√
(1 + ε−2gtt)

1∓ gtr
√

1 + ε−2gtt

grr + ε−2g2
tr

. (69)

Thence

ṙ = ±
√

1− ε−2(1− 2m/r)
1∓ (2m/r)

√
1− ε−2(1− 2m/r)

(1 + 2m/r) + ε−2(2m/r)2 . (70)

At the horizon

(ṙ)H ∈
{

0,− 2ε2

2ε2 + 1

}
. (71)
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Therefore, the ingoing geodesic crosses the horizon with finite coordinate velocity

(ṙ)H = − 2ε2

2ε2 + 1
∈
(
−1,−2

3

)
, (72)

while the outgoing geodesic crosses the horizon with coordinate velocity zero. This makes it clear that,
for a dropped particle, we should take the negative root in ṙ.

Combining these results, for a dropped (ingoing) particle (fixed energy ε), we have

ṙ = −
√

1− ε−2(1− 2m/r)
1 + (2m/r)

√
1− ε−2(1− 2m/r)

(1 + 2m/r) + ε−2(2m/r)2 . (73)

For unbound particles (ε ≥ 1), this is negative real everywhere, both outside and inside the
horizon—in fact, all the way down to r = 0. For the coordinate acceleration,

r̈ = −m
r2

{(
1− 2m

r

)
−6m

r

[
−(2m/r)(ε2 − 1 + 2m/r)− ε

√
(ε2 − 1 + 2m/r)

ε2(1 + 2m/r) + (2m/r)2

]

−3
(

1 +
2m
r

)[
−(2m/r)(ε2 − 1 + 2m/r)− ε

√
(ε2 − 1 + 2m/r)

ε2(1 + 2m/r) + (2m/r)2

]2

−2
(

1 +
m
r

) [−(2m/r)(ε2 − 1 + 2m/r)− ε
√
(ε2 − 1 + 2m/r)

ε2(1 + 2m/r) + (2m/r)2

]3
 . (74)

At the horizon, r = 2m, we have

(r̈)H = −3
2

ε2

(2ε2 + 1)3m
, (75)

a finite inward coordinate acceleration.
For a timelike particle dropped at rest from spatial infinity (ε = 1), this simplifies to

ṙ = −
[

(2m/r)2 +
√

2m/r
(1 + 2m/r) + (2m/r)2

]
= −

√
2m
r

[
1 + (2m/r)3/2

1 + 2m/r + (2m/r)2

]
. (76)

(Note that asymptotically ṙ → −
√

2m/r, as expected from the Newtonian limit.) Furthermore,

r̈ = −m
r2

{(
1− 2m

r

)
+

6m
r

[
(2m/r)2 +

√
(2m/r)

(1 + 2m/r) + (2m/r)2

]

−3
(

1 +
2m
r

)[
(2m/r)2 +

√
(2m/r)

(1 + 2m/r) + (2m/r)2

]2

+2
(

1 +
m
r

) [ (2m/r)2 +
√
(2m/r)

(1 + 2m/r) + (2m/r)2

]3
 . (77)

Note that the coordinate acceleration r̈ and the coordinate velocity ṙ are both always negative. We
can also factorize this as
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r̈ = −m
r2

[
1−

√
2m
r

{
1 + (2m/r)3/2

1 + 2m/r + (2m/r)2

}]2

×
{(

1− 2m
r

)
+ 2

√
2m
r

(
1 +

m
r

) [ 1 + (2m/r)3/2

1 + 2m/r + (2m/r)2

]}
. (78)

We can see that when approaching the horizon, at fixed ε = 1, we have

(ṙ)H = −2
3

; (r̈)H = − 1
18m

. (79)

The radial coordinate velocity and radial coordinate acceleration are plotted as shown in
Figures 9 and 10, respectively.

Finally, note that for a light-like particle (ε → ∞) in Kerr–Schild coordinates, we have the very
drastic simplification

ṙ = −1; r̈ = 0. (80)

(Therefore, in Kerr–Schild coordinates, ingoing photons happen to have coordinate acceleration zero.
This is one reason Kerr–Schild coordinates are popular. For this particular case, a figure would be
entirely superfluous.)

Figure 9. Behaviour of ṙ for the Schwarzschild geometry in Kerr–Schild coordinates for m = 1 and
ε = 1. Note that the coordinate velocity at the horizon is −2/3 and that the coordinate velocity remains
negative between the horizon and spatial infinity.



Universe 2018, 4, 68 17 of 19

Figure 10. Behaviour of r̈ for the Schwarzschild geometry in Kerr–Schild coordinates for m = 1 and
ε = 1. Note the coordinate acceleration remains negative between the horizon and spatial infinity.

6. Conclusions

Now that we have seen some examples of what happens to near-horizon geodesics in various
coordinate systems, let us attempt to draw some general inferences. While the specific computations
in this article have been carried out for the Schwarzschild geometry, this is known to be a good
approximation for slowly rotating astrophysical black holes, and for numerical simulations of
black holes, and even for semi-classical black holes in the Unruh quantum vacuum—so the overall
conclusions are generic to a wide class of physically and observationally interesting black holes.

The most obvious conclusion we can draw is that the coordinate velocity, and coordinate
acceleration, are (quite naturally) extremely coordinate-dependent, and that no general physical
conclusions can be drawn from the magnitude of the coordinate velocity (ṙ can easily exceed unity)
or the sign of the coordinate acceleration r̈. Claims that gravity in general relativity is “repulsive” at
high speeds and/or near the horizon are at best disingenuous—they are merely misinterpretations
of coordinate artefacts. For a fixed spacetime, by suitably choosing the coordinate system we can
easily make (r̈)H = 0 or (r̈)H = (finite negative) at horizon crossing. For a fixed spacetime, by suitably
choosing the coordinate system we can easily make the coordinate acceleration r̈ either positive or
negative just prior to horizon crossing. Indiscriminately mixing general relativistic and Newtonian
concepts is dangerous and misleading.

The major distinction we have seen in the specific examples we explored was in the difference
between horizon-penetrating and horizon-non-penetrating coordinates. There are good physical
and mathematical reasons for this. In horizon-non-penetrating coordinates geodesics (essentially by
definition) pile up at the horizon and do not cross it—in coordinates of this type |ṙ| first increases as
one falls inwards, but then has to go to zero at the horizon. This implies that |ṙ|must have a maximum
where ∂r ṙ = 0 and hence r̈ = 0. Thence, regions where the coordinate acceleration is positive r̈ > 0 are
unavoidable in horizon-non-penetrating coordinates. In contrast, horizon-penetrating coordinates are
much better behaved when studying near horizon physics, with the coordinate velocity and coordinate
acceleration being non-zero and finite at horizon crossing.
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