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Abstract: We present a systematic review of thermodynamics of horizons in regular spherically
symmetric spacetimes of the Kerr-Schild class, ds2 = g(r)dt2 − g−1(r)dr2 − r2dΩ2, both asymptotically
flat and with a positive background cosmological constant λ. Regular solutions of this class have
obligatory de Sitter center. A source term in the Einstein equations satisfies Tt

t = Tr
r and represents

an anisotropic vacuum dark fluid (pr = −ρ), defined by the algebraic structure of its stress-energy
tensor, which describes a time-evolving and spatially inhomogeneous, distributed or clustering,
vacuum dark energy intrinsically related to space-time symmetry. In the case of two vacuum scales it
connects smoothly two de Sitter vacua, 8πGTµ

ν = Λδ
µ
ν as r → 0, 8πGTµ

ν = λδ
µ
ν as r → ∞ with λ < Λ.

In the range of the mass parameter Mcr1 ≤ M ≤ Mcr2 it describes a regular cosmological black hole
directly related to a vacuum dark energy. Space-time has at most three horizons: a cosmological
horizon rc, a black hole horizon rb < rc, and an internal horizon ra < rb, which is the cosmological
horizon for an observer in the internal R-region asymptotically de Sitter as r → 0. Asymptotically
flat regular black holes (λ = 0) can have at most two horizons, rb and ra. We present the basic
generic features of thermodynamics of horizons revealed with using the Padmanabhan approach
relevant for a multi-horizon space-time with a non-zero pressure. Quantum evaporation of a regular
black hole involves a phase transition in which the specific heat capacity is broken and changes sign
while a temperature achieves its maximal value, and leaves behind the thermodynamically stable
double-horizon (ra = rb) remnant with zero temperature and positive specific heat. The mass of
objects with the de Sitter center is generically related to vacuum dark energy and to breaking of
space-time symmetry. In the cosmological context space-time symmetry provides a mechanism for
relaxing cosmological constant to a certain non-zero value. We discuss also observational applications
of the presented results.

Keywords: horizons thermodynamics; regular black holes; relaxing cosmological constant

1. Introduction

In 1973 Bekenstein introduced a black hole entropy related to the Hawking area theorem [1].
A year later Hawking found that an observer at r = const outside a black hole will detect a
stationary flux of particles from a black hole with the thermal spectrum [2,3]. This gave the birth to
thermodynamics of black holes [4–6]. In 1976 Gibbons and Hawking found that also cosmological
horizon emits thermal radiation [7], and this gave rise to thermodynamics of horizons [8–16]. The basic
point is that an observer for whom a horizon prevents seeing the whole space-time, does not have an
access to the complete quantum state of the system, and the loss of information about quantum state is
responsible for the thermal character of radiation [5,6].
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Regular spherical black holes are typically described by the metrics of the Kerr-Schild class [17]

ds2 = g(r)dt2 − dr2

g(r)
− r2dΩ2 (1)

which can be presented as gµν = ηµν + 2 f (r)kµkν, where ηµν is the Minkowski metric, kµ are principal
null congruences, and f (r) = rM(r); M(r) = 4π

∫ r
0 ρ(x)x2dx. They form the special class of

algebraically degenerated solutions to the Einstein equations, with ∂µTµ
ν = 0 and pseudotensor

of gravitational energy tµν = 0 [18], and admit decomposition into (2+1)-dimensional shells with
∂µTµ

ν = 0, each of shells treated as a closed system and described by a (2+1) Hamiltonian [19].
Regular solutions of the Kerr-Schild class have obligatory de Sitter center provided that their

source terms in the Einstein equations satisfy the weak energy condition [20].
Stress-energy tensors responsible for the Kerr-Schild metrics have the algebraic structure [20–23]

Tt
t = Tr

r (pr = −ρ) (2)

and can be identified as vacuum dark fluid defined by the algebraic structure of its stress-energy
tensor [24]. The Einstein cosmological term λδ

µ
ν , λ = const, corresponds to the maximally symmetric

de Sitter vacuum Tµ
ν = ρvacδ

µ
ν ; ρvac = (8πG)−1λ = const. Algebraic classification of stress-energy

tensors implies the opportunity to introduce stress-energy tensors whose symmetry is partially reduced
(as compared with the maximally symmetric de Sitter vacuum) to Tt

t = Tα
α (pα = −ρ) which represents

a vacuum dark fluid invariant under the Lorentz boosts in the α-direction(s) [24]. Vacuum dark
fluid provides the description of the time-dependent and spatially inhomogeneous vacuum dark
energy which is generically related to the space-time symmetry and can be evolving and clustering
(for a review [25]). Space-time contains regions of the de Sitter vacuum with the restored maximal
symmetry [24,26]; transitions to regions with the reduced vacuum symmetry involve breaking of
space-time symmetry from the de Sitter group [20]. In the cosmological context the space-time
symmetry provides the mechanism of relaxing of cosmological constant to a certain non-zero value,
tightly fixed by dynamics of quantum evaporation of the cosmological horizon, in accordance with
the basic sense of the Holographic Principle ([27,28], for a review [25,29]). The key point is that
although QFT does not contain an appropriate symmetry to zero out ρvac or to reduce it to a certain
non-zero value, a relevant symmetry does exist in General Relativity as the space-time symmetry
which intrinsically involve breaking and restoration of the maximal de Sitter symmetry when needed.

The number of horizons is determined by the number of vacuum scales,
Nhorizons ≤ (2Nvacuum scales − 1) [26]. In the case of two vacuum scales a stress-energy tensor
(2) connects two de Sitter vacua, at the center and at infinity,

Tµ
ν (deSitter) = (8πG)−1Λδ

µ
ν ⇐= Tµ

ν =⇒ Tµ
ν (deSitter) = (8πG)−1λδ

µ
ν (3)

and represents a spherical anisotropic vacuum, pr = −ρ; p⊥ = −ρ− rρ′/2 [20,21]. Space-time can
have at most 3 horizons [30]. The metric (1) evolves between two de Sitter asymptotics with λ < Λ.

Asymptotically flat space-time with the de Sitter center has not more than 2 horizons [20].
The early proposals of replacing a black hole singularity with the de Sitter vacuum were based

on the hypotheses of self-regulation of geometry by vacuum polarization effects [31], of the existence
of the limiting curvature [32], and of the symmetry restoration at the GUT scale in the course of
the gravitational collapse [21,33]. The first solution describing regular black hole with the de Sitter
interior [21] was obtained with the density profile and corresponding mass function

ρ(r) = ρ0e−r3/r2
0rg ; M(r) = M

(
1− e−r3/r2

0rg

)
; rg = 2GM; r2

0 =
3

8πGρ0
; ρ0 = ρ(r → 0) (4)



Universe 2018, 4, 63 3 of 16

which we applied for presented below pictures illustrating generic behavior in the thermodynamics
of horizons. It describes vacuum polarization effects, which contribute all together to vacuum
polarization in the gravitational field [21], in the simple semiclassical model ρ ∝ exp (−Fcr/F), where
the gravitational (tidal) force F ∝ rg/r3, and the critical (de Sitter) force Fcr ∝ 1/r2

Λ [20,34].
Later a loop quantum gravity and noncommutative geometry provided arguments in favor of a

regular black hole with the de Sitter interior [35–38].
Generic analysis of the Hawking evaporation from both horizons of an asymptotically flat regular

black hole presented in [34] has shown that the quantum temperature drops to zero at the double
horizon and vanishes at infinity (following the Schwarzschild limit), so that it should have a maximum,
where the specific heat capacity is broken and changes its sign testifying for a second-order phase
transition [34]. Later generic evolution was studied for evaporation of three horizons in a space-time
with two vacuum scales and the phase transition in the course of evaporation was found for a
regular cosmological black hole [39]. In both cases quantum evaporation of horizons leaves behind a
thermodynamically stable double-horizon remnant (an extremal black hole) with zero temperature
and positive specific heat ([34,39], for a review [40]).

Presented in the literature results obtained for particular asymptotically flat regular black hole
solutions described by metrics of the Kerr-Schild class, confirm the appearance of a temperature maximum
and phase transition during evaporation for magnetically charged regular black holes [41–43], for the
minimal model proposed by Hayward [44,45], for the Hayward and noncommutative [46] regular
black holes [47], for charged AdS black holes with a global monopole [48], for the Bardeen black
hole [49] which represents the nonlinear magnetic monopole [50], for the Hayward, Ayon-Beato and
Garcia [51] black holes [52,53], and for regular black hole in quadratic gravity [52,54].

In the paper [45] a specific heat capacity was calculated as vanishing at the double horizon by
identifying the thermodynamical energy with a black hole mass M, which is true for the Schwarzschild
black hole but cannot be applied in the case of two horizons and non-zero pressure [39]. Identifying
a black hole mass M with the thermodynamical energy leads also to appearance of inconsistency
between the first law of black hole thermodynamics and relation of the black hole entropy with the
Bekenstein-Hawking area law ([53,55] and references therein).

The inconsistency between the first and second laws of black hole thermodynamics and
uncertainties concerning endpoint of evaporation are directly related to the problem of a unique
definition of thermodynamical parameters in a multi-horizon space-time with a non-zero pressure.
A general approach to defining thermodynamical variables in this case for spherical space-times
with the Kerr-Schild metrics (1) was developed by Padmanabhan [10–12] who considered a canonical
ensemble of space-time metrics (1) at the constant temperature of a horizon determined by the
periodicity of the Euclidean time in the Euclidean continuation of the Einstein action [10]. In this
approach the first law of thermodynamics for black holes described by metrics (1) is obtained in
agreement with the second law as a consequence of the Einstein equations [10–12]. A thorough
overview of the concept of honrizon is give in [56].

In this paper we present the basic generic features of thermodynamics of horizons in regular
space-times with the metrics (1) revealed with using the Padmanabhan approach.

The paper is organized as follows. In Section 2 we outline the regular spherical space-times
with the Kerr-Schild metrics and introduce the Padmanabhan approach to thermodynamics of their
horizons. In Section 3 we present the basic generic features of horizon thermodynamics including the
cosmological model for relaxing cosmological constant, distinguished by the Holographic principle
as the only stable state in quantum evolution of a certain class of one-horizon space-times, with the
finite non-zero value of vacuum dark energy tightly fixed by evaporation of cosmological horizon.
In Section 4 we summarize the results and discuss observational applications.
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2. Basic Equations

2.1. Basic Features of Regular Spherical Space-Times with Vacuum Dark Fluid

Eigenvectors of a stress-energy tensor related to its eigenvalues, Tν
µ = diag[ρ,−p1,−p2,−p3],

form a comoving reference frame with a time-like eigenvector representing a velocity. The maximally
symmetric de Sitter vacuum Tµ

ν = δ
µ
ν ρ with the equation of state p = −ρ and ρ = const, is denoted in

the algebraic classification of stress-energy tensors by [(IIII)]—all eigenvalues equal. It was identified
as a vacuum [57] since it has an infinite set of comoving reference frames which makes impossible to
fix a velocity with respect to it which is the most general intrinsic property of a vacuum [58].

Algebraic structure of a stress-energy tensor is generically related, via the Einstein equations,
to the space-time symmetry. Tν

µ with [(IIII)] generates the maximally symmetric de Sitter space-time
for any underlying particular model of Tν

µ .
A maximal symmetry [(IIII)] can be reduced to [(II)II] or [(III)I)] (more information in [20,21,24])

Tt
t = Tα

α (pα = −ρ). (5)

Invariance of (5) under the Lorentz boosts in the α-direction(s) still makes impossible to single
out a preferred comoving reference frame and thus to fix the velocity with respect to a medium
specified by (5), but makes density and pressures time- and spatially-dependent. Vacuum dark
fluid describes vacuum dark energy which can be associated with a variable cosmological term
Λµ

ν = (8πG)−1Tµ
ν ; Λ =⇒ Λt

t = (8πG)−1Tt
t [22].

Stress-energy tensors for vacuum dark energy generate space-times which contain regions of
maximally symmetric de Sitter vacuum, regions with the reduced vacuum symmetry, and transitions
between them involving breaking of space-time symmetry. Dependently on the coordinate mapping,
solutions to the Einstein equations with the source terms (3) describe cosmological models with several
vacuum scales if needed ([26] and references therein), or compact objects with the de Sitter vacuum
interiors (for a review [25]).

A spherically symmetric vacuum dark energy defined by Tt
t = Tr

r (pr = −ρ) [21], generates the
metrics of the Kerr-Schild class (1) where [23,59]

g(r) = 1− 2G
r
M(r)− λ

3
r2; M(r) =

∫ r

0
ρ(x)x2dx. (6)

when the weak energy condition (non-negative density as measured by any observer on a time-like
curve) is satisfied, a density component of Tν

µ is monotonically decreasing [20] and can be written as

Tt
t (r) = ρ(r) + (8πG)−1λ; ρ(r)→ ρ0 = (8πG)−1Λ as r → 0. (7)

It includes a background vacuum density ρλ = (8πG)−1λ and the dynamical density ρ which
should vanish at r → ∞ quickly enough to ensure the finiteness of the ADM mass for a compact object

M = 4π
∫ ∞

0
ρ(r)r2dr. (8)

In the asymptotically flat case (λ = 0), the metric is asymptotically de Sitter for r → 0 and
asymptotically Schwarzschild for large r. It has two horizons (r−, r+ in Figure 1 (right)) which coincide
for a certain mass Mcr corresponding to an extremal black hole [20,34]. Typical behavior of the
metric function is shown in Figure 1 (left). The parameter m refers to the mass M normalized to
Mcr. The compact objects without horizons (m < 1), replacing naked singularities, correspond to the
gravitational solitons G-lumps [20,34] defined in the spirit of Coleman lumps [60] as non-singular
non-dissipative objects keeping themselves together by their own self-interaction.
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In Figure 1 (right) we show two horizons, r−, r+, of asymptotically flat space-time and two
characteristic surfaces of geometry with the de Sitter center. For any such a geometry there exists
zero gravity surface r = rc defined by p⊥(rc) = 0 [22,34], beyond which the strong energy condition
(ρ + ∑ pk ≥ 0) is violated and gravitational attraction becomes gravitational repulsion. For geometries
satisfying the weak energy condition, there exists also surface of zero scalar curvature r = rs defined
byR(rs) = 0 [34] which can be essential for details of evaporation dynamics [20,33].

Figure 1. Typical behavior of the metric function g(r) for the asymptotically flat case (left); horizons
r+, r− and surfaces rs upper, r = rc lower (right).

In the case of two vacuum scales space-time can have at most 3 horizons and describes
five possible configurations shown in Figure 2: regular cosmological black hole within the mass
range Mcr1 < M < Mcr2, which is the T+–region between the event horizon rb and the internal
Cauchy horizon ra in the universe with the cosmological horizon rc (Figure 2 (left)); two extremal
double-horizon states, ra = rb(M = Mcr1) and rb = rc(M = Mcr2); and two one-horizon states
(Figure 2 (right)) [59].

Figure 2. Typical behavior of the metric function g(r) for the case of two vacuum scales.

Space-time has three characteristic length scales and is characterized by the dimensionless
parameter q relating vacuum densities in the regular center (ρ0 = (8πG)−1Λ) and at infinity

rg = 2GM; r0 =

√
3

8πGρ0
; rλ =

√
3

8πGρλ
; q =

√
Λ
λ

=

√
ρ0

ρλ
. (9)
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Space-time without the event horizon (the upper curve in Figure 2 (right)) represents a vacuum
gravitational soliton G-lump in the background de Sitter space with ρλ = (8πG)−1λ.

2.2. Basic Formulae for Thermodynamics of Horizons

For the class of metrics (1) the Gibbons-Hawking quantum temperature of each horizon rh is
defined by a surface gravity κh and reads [7]

kTh =
h̄

2πc
κh =

h̄
4πc
|g′(rh)| (10)

where g′ is the derivative of the metric function g(r). Quantum temperature (10) corresponds to the
periodicity of the Euclidean quantum field theory in the Euclidean time tE = it [7]. The dynamic
surface gravity was studied by Hayward in the elegant approach using the Kodama vector and
trapping horizon [61].

The basic fact concerning the metrics of the class (1) is that they allow for a positive definite
continuation to the Euclidean time tE = it and require it to be treated as periodic, with the period
which can be directly related to a finite temperature of a horizon [11]. As a result the exact partition
function can be introduced as the path integral sum for a canonical ensemble of space-time metrics (1)
at the constant temperature of the horizon, determined by the periodicity of the Euclidean time in the
Euclidean continuation of the Einstein action [10,11]

Z(kTh) = ∑ exp
(
− 1

16π

∫ (kTh)
−1

0
dtE

∫
d3x
√

gERE[g(r)]
)

. (11)

which gives (here and in what follows we use the geometric units c = h̄ = G = 1) and results in

Z(kTh) = Z0 exp
[

1
4

(
4πr2

h

)
− 1

kTh

(
|g′|
g′

rh
2

)]
∝ exp

[
S(rh)−

E(rh)

kTh

]
(12)

which leads to the identification [10,11]

Sh =
1
4

(
4πr2

h

)
=

1
4

Ah; Eh =
|g′|
g′

rh
2

=

(
Ah

16π

)1/2
; Fh = Eh − ThSh (13)

where Sh is the entropy, Eh is the thermodynamical energy, Fh(rh) is the free energy, and Ah is the
horizon area. A specific heat capacity, Ch = dEh/dTh, is calculated from C−1

h = dTh
drh

drh
dEh

and can be
written in the form [39]

Ch =
2πrh

g′(rh) + g′′(rh)rh
. (14)

On a double horizon (g′ → 0) it reduces to

Ch =
2π

g′′(rh)
(15)

which allows to identify a product of evaporation as thermodynamically stable either unstable [39].

3. Thermodynamics of Horizons in Spherical Spacetimes with De Sitter Center

The basic problem concerning evaporation of a singular black hole is which remnant (if any) it
leaves. Generalized uncertainty principle requires the existence of a remnant of the Planck mass [62].
On the other hand, an evident symmetry or quantum number preventing complete evaporation
is not found [63,64], while complete evaporation creates the problems related to a causal structure
of space-time [16,65]: A transition from a space-time with a distinguished center (distinguished
by a singularity), with the Schwarzschild-de Sitter metric function g(r)Schw−deS = 1− 2GM

r − λ
3 r2
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(the curve 3 in Figure 3 (left)) to the final stage of evaporation which is maximally symmetric de Sitter
space with the metric g(r)deS = 1− λ

3 r2 (Figure 3 (central)) and the global structure of the de Sitter
space (Figure 3 (right)) would not only involve a dramatic change in the global structure but also
creates the problem of how to evaporate a singularity [65].

g(r)

r

3

2

1

IV I

II

III

r =

r =

r = 0 r = 0

∞

∞
g(r)

r

1

Figure 3. Evolution of the Schwarzschild-de Sitter black hole in the case of complete evaporation.

In the case of a regular black hole the end-product of evaporation is defined uniquely by quantum
dynamics of evaporation which excludes the option of the complete evaporation.

3.1. Evolution during Evaporation

Applying the Padmanabhan approach [10] for a regular spherical space-time with the metric (1),
we get on the horizons r = rh the temperature and specific heat capacity [39]

kTh =
1

4π

∣∣∣∣ 1
rh
− λrh − 8πρ(rh)rh

∣∣∣∣ ; rh = ra, rb, rc (16)

C−1
h = − 1

2π

[
8πρ′(rh)rh + 8πρ(rh) + λ +

1
r2

h

]
. (17)

Following Teitelboim [14] we can take derivative of the relation g(rh, M) = 0 keeping λ and Λ
constant. It gives on the horizons [14,39]

drh
dM

= − ∂g
∂M

1
g′(rh)

. (18)

To study the derivative ∂g/∂M on horizons, we normalize r on a some characteristic scale r∗
which we define from the formula for the mass (8) where we normalize ρ(r) on the central density ρ0,
so that we have ρ(r) = ρ0ρ̃(r/r∗) and M = 4πρ0r3

∗
∫ ∞

0 ρ̃(y)y2dy. With taking into account (9) this gives

r∗ =
1

3β
(r2

0rg)
1/3; β =

∫ ∞

0
ρ̃(y)y2dy (19)

where y = r/r∗ and β is a numerical coefficient. For the regular black hole with the density profile
and mass function given by (4), β = 1/3 and r∗ = (r2

0rg)1/3 which is the characteristic scale for a
Schwarzschild-de Sitter transition at r → 0 [31]. The mass function takes the form [39]

M(r) = 3Mφ(y); φ(y) =
∫ y

0
ρ̃(y)y2dy, (20)



Universe 2018, 4, 63 8 of 16

the metric function reduces to

g = 1−M2/3 1

r2/3
0

[(
3

21/3

)
φ(y)

y
+

(22/3)

q2 y2

]
(21)

and on the horizons we get [39]
∂g
∂M

= − 2
3M

. (22)

Then it follows from (18) that

dra

dM
< 0;

drb
dM

> 0;
drc

dM
< 0. (23)

Generic form of the horizons-mass diagram is shown in Figure 4 (left) [40].
For an observer in the R-region 0 ≤ r ≤ ra, the horizon r = ra is his cosmological horizon, which

is the boundary of his manifold, so that the second law of thermodynamics reads dSa ≥ 0. As a result,
the evolution of ra as governed by the second law gives dra ≥ 0. It follows then from (23) that when ra

increases, mass M decreases, as a result black hole event horizon shrinks, drb < 0, and cosmological
horizon moves outward, drc > 0. Quantum evaporation proceeds with decreasing mass M, and goes
towards a formation of the double horizon ra = rb [39].

Figure 4. Generic form of the horizons-mass diagram (left) and dependence of critical masses on the
parameter q (right).

Two double-horizon states ra = rb and rb = rc, correspond to the values Mcr1 and Mcr2,
respectively. In Figure 4 (right) [40] we show dependence of the double horizon rb = ra (line denoted
by Mcr1) and of the double horizon rc = rb (line Mcr2) dependently on the parameter q. For the
certain values of qcr and Mcr, three horizons coincide at the triple horizon rt (Figure 4 (right), the point
where two lines meet). The values of qcr, Mcr and rt are uniquely defined by three algebraic equations
defining the triple horizon, g(rt) = 0, g′(rt) = 0 and g′′(rt) = 0 [27,40].

3.2. Thermodynamics of a Regular Black Hole

An asymptotically flat black hole evaporates from both horizons, and generic asymptotic behavior
of the metric function g(r) defines dynamics of evaporation. Temperature drops to zero at the double
horizon and follows the Schwarzschild limit for a large values of rb → rg, as a result it should have a
maximum, so that evaporation process involves a phase transition where a specific heat is broken and
changes its sign [20,34,45] (more references in Introduction, p. 3). A regular asymptotically flat black
hole leaves behind a thermodynamically stable double-horizon remnant with zero temperature and
the positive specific heat.
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In the case of two vacuum scales, an observer in the R-region rb < r < rc (shown in Figure 2, left)
can detect radiation from the black hole horizon rb and from the cosmological horizon rc. It is
impossible for him (her) to obtain, by one transformation, regularity on both horizons (required for
calculation in the Kruskal coordinates of quantum temperature corresponding to periodicity of the
Euclidean quantum field theory in the Euclidean time), so that an observer would detect the mixture
of radiations from horizons [7]. A common (global) temperature can be defined only in the case when
the relation of surface gravities on horizons rb and rc is the rational number, κb/κc = nb/nc where nb
and nc are prime integers, and the common temperature is given by [66,67]

kTcom =
h̄

2πc
(κb + κc)

(nb + nc)
=

h̄
2πc

κb
nb

=
h̄

2πc
κc

nc
. (24)

Derivative of the metric function g(r) in (16) is positive on a black hole event horizon rh = rb
which gives

Tb =
1

4π

(
1
rb
− 3rb

l2 − 8πρ(rb)rb

)
; Eb =

rb
2

. (25)

Behavior of temperature of the event horizon (r = rb here), shown in Figure 5 (left), plotted
with the value of q = 50 [39], is generic for black holes with the de Sitter center and dictated by the
behavior of the metric function g(r) [39]: g′(rb = rc) = 0; g′(ra = rb) = 0→ Tb = 0 as rb → rc, and
Tb = 0 as ra → rb. In the maximum of Tb the specific heat capacity (shown in Figure 5 (right), plotted
with q = 10 [39]) is broken and changes sign, hence a second order phase transition occurs which is
followed by the quantum cooling [34,39,45]. At the phase transition the temperature Tb acquires its
maximal value [39]

Tb max = Ttr = −
1

4π
g′′(rb)rb. (26)

In the case of the density profile (4) Ttr ' αTPl
√

ρ0/ρPl . For ρ0 = ρGUT and MGUT ' 1015 GeV,
temperature at the phase transition Ttr ' 0.2× 1011 GeV [34,39].

Figure 5. Generic behavior of temperature (left) and specific heat (right) of a regular cosmological
black hole.

Before the transition, Cb < 0, hence dTb/drb < 0; when rb decreases, Eb decreases too, temperature
increases to a maximum (26) where Cb changes sign, so that after transition we have dTb/drb > 0,
and thus further decreasing rb leads to decreasing Tb until it vanishes at the double horizon. At this
point the specific heat Cb is positive and takes the value (15), free energy is positive and equal Eb,
and energy Eb achieves its minimum, so that an extreme black hole with the double horizon rb = ra is
the thermodynamically stable end-point of evolution during evaporation.

Derivative of the metric function g(r) in (16) is negative on the cosmological horizon rh = rc and
the internal horizon rh = ra, which gives

Tc,a =
1

4π

(
8πρ(rh)rh +

3rh
l2 −

1
rh

)
; Eh = − rh

2
(27)
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An observer in the R-region 0 ≤ r < ra can detect the Gibbons-Hawking radiation from the
internal horizon ra which is his cosmological horizon. For the internal horizon dra/dM < 0, by (23),
and ra grows while M decreases. Since g′ < 0 on the internal horizon, we have [40]

dTa

dra
= −Ta

ra
+

1
4π

g′′(ra). (28)

Specific heat Ca is positive near ra → rb, so that dTa/dEa > 0 and dTa/dra < 0 when ra approaches
the double horizon. Hence Ta decreases with increasing ra, the mass M decreases too, dTa/dM > 0 and
dTa/dra < 0, so the growth in ra leads to monotonic decreasing of the mass M and of the temperature
Ta until it vanishes at the double horizon where the energy Ea achieves its minimal value Ea = −ra/2.
Temperature of the internal horizon is shown in Figure 6 (left) [40]. It decreases monotonically with
increasing ra, and vanishes for M = Mcr1 when ra = rb [40].

Figure 6. Typical behavior of temperature on the internal (left) and cosmological (right) horizon.

The cosmological horizon rc moves outwards, in accordance with (23), similar to the case of
ra, but the essential difference is that the specific heat is negative near the double horizon rb = rc.
Hence dTc/dEc < 0 and dTc/drc < 0; since drc/dM < 0, it follows that M decreases while rc increases,
and dTc/dM < 0 what we see in Figure 6 (right) where k is the Boltzmann constant and qcr is the value
of q at which the triple horizon appears [40]. As a result Ec decreases to its minimum, and specific heat
capacity remains negative.

A regular cosmological black hole leaves behind a thermodynamically stable double-horizon
remnant generically related to vacuum dark energy through its interior de Sitter vacuum ([39,40] and
references therein). Mass of the remnant is given by Mremnant ' βMPl

√
ρPl/ρint. For the density

profile (4) with ρΛ = ρGUT and MGUT ' 1015 GeV, the mass Mremnant ' 0.3× 1011 GeV [34].
In the case of one-horizon space-time with the de Sitter global structure and two vacuum scales

(initial and final) the evaporation process directed towards decreasing M starts in the state M > Mcr2

(Figure 2 (right)). Evaporation results in the state M = Mcr2 (the regularized Nariai solution) with the
negative specific heat according to (15), which is thermodynamically unstable.

3.3. Triple-Horizon Spacetime Singled Out by the Holographic Principle

One more possibility is presented by the class of one-horizon solutions with the inflection point
instead of the minimum (Figure 7 (left) [40]). In the course of quantum evaporation starting from
the state M > Mcr, cosmological horizon moves outwards in accordance with (23) and goes towards
the triple-horizon space-time rh = rt (M = Mcr) [27]. Specific heat capacity of this horizon is always
positive and tends to infinity at the triple horizon [40], so that the triple-horizon spacetime is the
thermodynamically stable final product of evaporation of the cosmological horizon. Evaporation stops
completely at Th = 0 and Ch → ∞. Three algebraic equations which specify the triple-horizon state
(g(rt) = 0; g′(rt) = 0; g′′(rt) = 0) define uniquely the basic parameters Mcr, rt, and the key parameter
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qcr = ρ0/ρλ, which gives the tightly fixed non-zero final value of a vacuum dark energy density ρλ for
the given value ρ0 [27].

The Holographic Principle states that the number of quantum degrees of freedom in a spatial
volume is bounded from above by its surface area [68]. It is also formulated as the Conjecture:
A physical system can be completely specified by data stored on its boundary [63].

Evolution of one-horizon space-time with the inflection point is governed by quantum dynamics
of surrounding it surface (cosmological horizon) and goes towards the triple-horizon space-time, whose
basic physical parameters, Mcr, rt and qcr, are entirely defined by the data stored on its boundary
(triple-horizon surface)—in agreement with the basic sense of Holographic Principle [27].

Choosing the density profile (4) we obtain Mcr = 2.33 × 1056 g; q2
cr = 1.37 × 10107;

rt = 5.4× 1028 cm [27]. To evaluate the vacuum dark energy density from q2
cr = ρ0/ρλ, we adopt

ρ0 = ρGUT . The Grand Unification scale is estimated as MGUT ∼ 1015–1016 GeV. This gives the value
of ρλ within the range 1.7× 10−30 g cm−3–1.7× 10−26 g cm−3, respectively. The observational value
ρλ (obs) ' 6.45× 10−30 g cm−3 [69] corresponds, in the considered context, to MGUT ' 1.4× 1015 GeV.
This gives ρGUT = 8.8× 1077 g cm−3 and r0 = 1.8× 10−25 cm. For this scale q2

cr gives the value of the
present vacuum density ρλ in agreement with its observational value [29].

τ+R

ln(r),ln(b)
100

-40

0.4 1.6 ×1053

Figure 7. Evolution towards triple-horizon space-time (left) and evolution of scale factors (right).

The triple-horizon space-time is distinguished by quantum dynamics of the cosmological horizon
as the only thermodynamically stable final product of its evaporation. Evaporation stops with the
finite non-zero value of the cosmological constant given by the finite value of qcr, so that the space-time
symmetry acts as the symmetry which provides, via the Holographic Principle, the mechanism of
relaxing of the cosmological constant to a certain tightly fixed non-zero value.

It is well known that in the frame of FLRW cosmology it is impossible to describe the initial
inflation and today accelerated expansion via a single self-consistent theoretical scheme. It is possible
in the frame of the Lemaître cosmology with anisotropic perfect fluid. For the case of the source terms
specified by (2), regular cosmological Lemaître class models are asymptotically de Sitter at the early
and late time, and can describe evolution from an inflationary beginning to the late time acceleration,
guided by dynamical vacuum dark energy closely related to space-time symmetry [26,30].

The static spherically symmetric metric (1) can always be transformed to the Lemaître
form ([26] and references therein) with the line element

ds2 = dτ2 − b2(R, τ)dR2 − r2(R, τ)dΩ2 (29)

where b2(R, τ) = (∂r/∂R)2 for the case when each 3-hypersurface τ = const is flat [58], which
guarantees fulfilment of the spatial flatness condition Ω = 1 required by observations.

One-horizon space-time have the same global structure as that for the de Sitter space-time
(3-d curve on the right in Figure 3), for spatially flat models with Ω = 1 evolution starts with
the non-singular non-simultaneous de Sitter bang at (τ + R) → −∞ from the regular time-like
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surface r(R, τ) = 0. It is followed by the anisotropic stage at which the expansion in the transversal
direction with ∂τr > 0 is accompanied by shrinking in the radial direction where ∂R|gRR| < 0 until
dg(r)/dr < 0 [26,30].

The evolution of two scale factors in the course of the evolution is shown in Figure 7 (right) [29]
(the upper curve for lnr(τ, R), the lower for lnb(τ, R)) plotted with the density profile (4) and the
model parameters given above the Figure 7 [29]. As we see, at the first inflationary stage and the
present stage of accelerated expansion the behavior of two scale factors is similar (curves run parallel
and differ only by constant) and corresponds to the flat de Sitter scale factor. The maximum in the scale
factor b(τ, R) at τ + R ' 0, 4 corresponds to the maximum of the transversal pressure (the variable
(τ + R) is normalized to the GUT time tGUT = rΛ/c ' 0.6× 10−35 s) [29].

4. Summary and Discussion

Algebraic classification of stress-energy tensors implies the possibility to introduce in general
setting dynamical vacuum dark energy which is directly related (via the Einstein equations) to
space-time symmetry and can be evolving and clustering. In the spherically symmetric case it is
specified by Tt

t = Tr
r (pr = −ρ). Regular solutions to the Einstein equations are described by the

metrics of the Kerr-Schild class, ds2 = g(r)dt2 − g(r)−1dr2 − r2dΩ2, and have obligatory de Sitter
centers provided that stress-energy tensors satisfy the weak energy condition. Dependently on
a mapping (reference frame), they describe regular cosmological models with time-evolving and
spatially inhomogeneous vacuum dark energy, and regular compact objects with de Sitter vacuum
interiors: regular black holes, their remnants and self-gravitating vacuum solitons, generically related
to vacuum dark energy.

Space-time with two vacuum scales can have at most three horizons. Regular cosmological
models with vacuum dark energy belong to the Lemaître class cosmologies with anisotropic perfect
fluid. Space-time symmetry provides the mechanism of relaxation of a cosmological constant to a
certain non-zero value via restoration of space-time symmetry to the de Sitter group.

Generic features of thermodynamics of horizons are obtained in the frame of the Padmanbhan
approach, appropriate for a multi-horizon space with a non-zero pressure and based on the canonical
ensemble of the Kerr-Schild metrics at the constant temperature of a horizon determined by the
periodicity of the Euclidean time in the Euclidean continuation of the Einstein action.

Among the one-horizon models with the same global structure as for the de Sitter space-time
and evolution of vacuum dark energy from the first inflation to the present accelerated expansion,
the Holographic Principle singles out the triple-horizon space-time as the only thermodynamically
stable product of quantum evaporation of the cosmological horizon, which uniquely defines the basic
physical parameters including the final non-zero value of the vacuum dark energy density.

For all regular black holes described by the Kerr-Schild metrics generated by any source with
Tt

t = Tr
r , quantum evaporation of horizons involves a second order phase transition followed by

quantum cooling and resulting in a thermodynamically stable double-horizon remnant with zero
temperature and positive specific heat capacity.

Regular compact black holes, their remnants and self-gravitating vacuum solitons G-lumps can be
responsible for observational effects typically related to a dark matter [24,70] and serve as the source
of information on the scale of inhomogeneity of the early Universe [71].

Black hole remnants are considered as a reliable source of dark matter for more than three
decades [72–74]. Regular primordial black holes (RPBH), their remnants and gravitational solitons
G-lumps with de Sitter vacuum interiors can arise during first and second, Ein f l = EQCD [75]
inflationary stages in a quantum collapse of primordial fluctuations. Probability of tunnelling in
a collapse is given by [76]

D ≥ exp

[
−4
(

M
MPl

)3/4
(

EPl
Ein f l

)]
f or

M
MPl

≥
(Ein f l

EPl

)4 ( EPl
Eint

)8
(30)



Universe 2018, 4, 63 13 of 16

where Ein f l is the scale of the inflationary vacuum. At the first inflation, Ein f l = EGUT , regular objects
with the interior de Sitter vacuum Eint = EGUT can arise with masses M > 1011 g. For Eint = EPl any
mass is possible, as well as for regular objects arising at the second inflationary stage.

RPBHs, their remnants and G-lumps can capture available charged particles and form
graviatoms ([76] and references therein)—gravitationally bound (αG = GMm/h̄c) quantum systems
with captured particles. Conditions of the existence of graviatoms [76] constrain the masses of captured
particles by m > 109 GeV for Eint = EGUT . This can be (i) heavy particles captured at the reheating
stage after the first inflation and (ii) leptoquarks survived in galactic haloes [77,78].

Observational signatures of graviatoms as heavy dark matter candidates provide a source of
information on a vacuum scale in the epoch when they were formed [71]. Most promising is the
oscillatory electromagnetic radiation of graviatom whose characteristic frequency depends on the
scale Eint of the interior de Sitter vacuum [76]. For the density profile (4), h̄ω = 0.678h̄c/rdeS =

0.678× 1011 GeV (Eint/EGUT)
2. Detection of cosmic photons is possible up to 1011.5 GeV [79].

Mass of objects with interior de Sitter vacuum is generically related to breaking of space-time
symmetry from the de Sitter group in their origins [20,80]. In the Standard Model de Sitter vacuum
appears as the false vacuum of the Higgs field responsible for particle masses (the Higgs field is
involved in mass generation in its false vacuum state p = −ρ). In graviatoms with the GUT scale
interiors, where baryon and lepton numbers are not conserved, a remnant component of graviatom
may induce proton decay, which could in principle serve as an additional observational signature of
graviatom for heavy dark matter searches at the IceCUBE experiment. If the relevant cross section is
determined by the geometrical size of nucleon (σi ∼ 10−26 cm2) one could expect in the matter of a
1 km3 detector, like IceCUBE, up to 300 events per year [71].
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