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Abstract: Both electromagnetic shock-waves and gravitational waves propagate with the speed of
light. If they carry significant energy-momentum, this will change the properties of the space-time
they propagate through. This can be described in terms of the junction conditions between space-time
regions separated by a singular, null hypersurface. We derived generic junction conditions for
Brans-Dicke theory in the Jordan frame, exploring a formalism based on a transverse vector, rather
than normal, which can be applied to any type of hypersurfaces. In the particular case of a non-null
hypersurface we obtain a generalised Lanczos equation, in which the jump of the extrinsic curvature
is sourced by both the distributional energy-momentum tensor and by the jump in the transverse
derivative of the scalar. In the case of null hypersurfaces, the distributional source is decomposed
into surface density, current and pressure. The latter, however, ought to vanish by virtue of the scalar
junction condition.
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1. Introduction

General relativity (GR) has withstood the confrontation with observations both in Solar System
tests and in strong field regimes, the latter of which had been the experimental detection of gravitational
waves by the LIGO Scientific Collaboration and Virgo Collaboration [1–6]. The direct detection of
gravitational waves from black hole binaries and a neutron star coalescence has confirmed (through
the test of the dispersion relations and of the model dependent delay in the arrival time of the gamma
radiation following the neutron star merger) that they propagate with the speed of light [3,6–8].
In consequence, many modified/extended theories of gravitation were disruled. Nevertheless, there
are still many interesting such theories, which allow for light-like gravitational wave propagation, that
are still worth investigating.

General relativity (GR) has given predictions on both galactic scales and beyond which can
be reconciled with observations only at the price of introducing still undetected (otherwise than
gravitationally) dark matter and dark energy. There is hope that modified gravity theories might
replace them by corresponding geometrical effects. Such modified gravity theories encompass either
a more complicated (higher-order) dynamics for the metric tensor (but this may lead to instabilities
and ghosts), or increase the number of the fields describing pure gravity, with adding scalars, vectors,
2-form fields or even a second metric. The main difference as compared to models with additional
fields representing the dark sector is in the way the metric couples to them: for the dark sector the
coupling is minimal, for a geometric field it may be more complicated. The simplest of them would be
a scalar-tensor theory. Horndeski has established [9,10] the most generic class of such theories with
both the metric tensor and the scalar field obeying second-order dynamics.

Historical interest in scalar-tensor theories of gravity began with the Kaluza-Klein theory. In 1919
Kaluza sought to unify gravity with electrodynamics by considering a five-dimensional spacetime,
whose metric is subject to the Einstein field equations. To account for the observed four-dimensional
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nature of space-time, he assumed that the extra dimension is compact and small, hence the dependence
on this fifth coordinate could be averaged out. Then, the five dimensional metric is decomposed into a
four dimensional metric (describing gravity), a four-vector (describing electromagnetism), and a scalar
field. At the time, the scalar field was thought to be undesirable, however later on (especially when the
connection between fields and particles had been established), Kaluza-Klein theory proved to be an
inspiration for more general theories of gravity with added scalar fields, such as the much-investigated
Brans-Dicke theory.

In scalar-tensor theories it is customary to explore one of two conformally related metrics
g′µν (x) = Ω2 (x) gµν (x) (with Ω (x) a nowhere-vanishing smooth function): (1) the Jordan (Jordan-
Fierz or string) frame gµν, in which the scalar field φ is coupled non-minimally to gravity, but is not
coupled to matter fields, and (2) the Einstein frame g′µν, in which the coupling between gravity and the
scalar field is minimal, but there is an anomalous coupling of the scalar field to the matter fields [11].

Despite scalar-tensor theories being around for a long time, there is still a heated debate on
whether both frames are physical or not, and if so, whether they are physically equivalent. Dicke
argued [12] that since physics must be invariant under the rescaling of units, and the conformal
transformation is merely a local rescaling of distances, physics should not depend on the conformal
frame, provided that the units of length, time and mass scale appropriately [13], although this argument
has been criticized [11]. Some authors argue in favour of the Einstein frame, as in it comparison with
pure GR results is easier [14] and the energy conditions for the scalar field are obeyed, while in the
Jordan frame the scalar field violates all known energy conditions [15,16]. Other authors prefer the
Jordan frame, satisfying the equivalence principle, which is violated in the Einstein frame due to the
anomalous scalar field-matter couping. Therefore, in the Einstein frame, the matter stress-energy
tensor rather than obeying a continuity equation is subject to ∇µTµν = −T∇ν ln Ω [11,14].

Both in GR and in modified gravity theories it is of special interest to match spacetime regions
with different matter sources or even different set of symmetries. This can be done along a common
hypersurface, which may be temporal, spatial or even null. Moreover, the hypersurface may contain
a distributional energy-momentum layer, complicating the junction conditions. For GR they were
worked out covariantly by Israel [17], but this formalism does not apply for null hypersurfaces. In order
to deal with them, Barrabès and Israel proposed a modified junction formalism [18], relying on the use
of a transverse vector to the null hypersurface.

Junction conditions can also be derived by employing a variational principle, both for GR and
scalar-tensor theories in the Einstein frame (incorporating the scalars in the matter sector) [19].
The dynamics of bubbles (infinitesimally thin shells) or plane domain walls were considered in
Brans-Dicke theory in the Jordan frame [20–23]. For the Horndeski class of theories they were
discussed in the Jordan frame in [24], nevertheless only for space-like or time-like hypersurfaces
and further applied in a cosmological setup [25]. These results, however, cannot be applied for null
hypersurfaces. Such hypersurfaces may be of physical interest as they represent light-like shock-waves,
both electromagnetic or gravitational, which modify the gravitational properties of spacetime they
propagate through.

In this paper, we investigate a general approach for the junction conditions for scalar-tensor
theories, which can be applied for any type of hypersurfaces. We opt for the Jordan frame, motivated
by the desire to keep the generic form of the function G4 in the Hordeski Lagrangian. Another
motivation for assuming that the sources couple to gravity only via the metric tensor, and not via the
scalar field would be to avoid any non-gravitational interaction of the scalar field with the baryonic
matter fields ψi, hence to be able to describe the dark sector with φ. We derive the Euler-Lagrange
equations for both the metric and the scalar and investigate the singular contributions, which would
appear only in the second derivatives of both fields (terms proportional to Dirac-delta functions).
This is related to the approach of [26], which considers metrics whose curvature tensors are well
defined as distributions (e.g., avoid products of distributions).
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We derive the junction equations by separating the singular contributions to the field equations
and connecting them to distributional sources in Section 2. As a first exercise we apply the formalism
for the Brans-Dicke scalar-tensor theory in Section 3. We note that a related treatment was developed
in [14], but in Einstein frame and for multi-scalar fields. Finally in Section 4 we specify our results for
null hypersurfaces, which is followed by a Summary.

2. Junction Conditions across Arbitrary Hypersurfaces

We consider the spacetime M cut into two disjoint parts M+ and M− by a common boundary
hypersurface Σ, with unspecified causal character. We allow certain otherwise smooth geometric
quantities to undergo sudden changes at the boundary, leading to discontinuities across Σ. Physically,
Σ may separate a star from its exterior (collapsing stars included); however, it also can be the
world-volume of a shockwave (for example, one emanating from a supernova explosion), or a
space-like hypersurface encompassing a cosmological phase transition, among others.

Despite the junction, M does possess a smooth structure [27]; hence, in principle it is possible
to use a coordinate system that transitions smoothly across Σ. However, in practical situations, such
coordinate systems might not be straightforward to identify, hence, we will express all equations on the
junction surface in coordinate charts internal to Σ. In other words we use a doubly covariant formalism.

Null hypersurfaces representing shockwaves travelling at the speed of light are physically relevant,
nevertheless their study is obstructed by the fact that they have degenerate metrics and their normal
vectors are also tangential, preventing a proper orthogonal decomposition of quantities along Σ.
Therefore, following [18] we explore an oblique decomposition, valid for all types of hypersurfaces.
The holonomic basis vectors of the hypersurface are denoted eµ

a , with a transverse vector field lµ

completing the basis. The normal covector field nµ satisfies nµlµ = 1/η (η arbitrary and nonvanishing)
with the norm ε = nµnµ (depending on the type of hypersurface, ε = ±1, 0). If Σ is given as the zero
set of a scalar field f , then nµ = 1

α ∂µ f , with α a normalising factor.
For an arbitrary field quantity F on M, its jump, arithmetic mean and soldering accross Σ are [18]:

[F] = F+ − F−
∣∣
Σ ,

F̄ =
1
2
(

F+ + F−
)∣∣

Σ ,

F̃ = F+Θ ( f ) + F−Θ (− f ) , (1)

with

Θ (x) =


1, x > 0
0, x < 0
1
2 , x = 0

(2)

the Heaviside function. It is straightforward to derive the relation

∂µ F̃ = ∂̃µF + [F] nµαδ ( f ) . (3)

In a scalar-tensor theory with at most second-order dynamics (Horndeski class [9], avoiding
Ostrogradsky-instabilities [28], see also [29]) we require that none of the contributions to the field
equations exhibit derivatives of Dirac-delta functions (difficult to interpret from a physical point of
view), while the Dirac-delta functions themselves will be allowed (related to the density of some
finite quantity characterising an idealised, infinitely thin layer along Σ). This condition can be assured
by assuming both gµν (in smooth coordinates) and φ continuous across Σ. The continuity of the
induced metric is the first junction condition of Israel [17]. The continuity of the rest of the metric
components can be assured by picking up C1 Gaussian normal coordinates, the existence of which has
been proven in [27].
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The action of the system is

S
[

gµν, φ, ψi
]

= SG
[
gµν, φ

]
+ SM

[
gµν, ψi

]
,

SG
[
gµν, φ

]
=

∫
d4x

(
5

∑
k=2

Lk

)
, (4)

with the gravitational part given by the Horndeski Lagrangians and the matter part independent of φ

in order to assure that the equivalence principle remains valid (this argument applies to the Jordan
frame, which is the physical frame, where energy-momentum conservation holds).

We note that the recent confirmation of the gravitational wave propagation speed to agree with
the speed of light at the order of one part in quadrillionth [7,8] at low redshifts has disruled theories
with dependence of the kinetic term X = − 1

2∇µφ∇µφ in the coupling of the Ricci curvature R
and Einstein tensor Gµν in L4 and L5, respectively [30,31]. Further, the latter does not depend on φ

either (except through its derivatives), hence, due to the Bianchi identities, the whole L5 ought to
vanish [32] (see also [33,34]).

The energy-momentum tensor associated with the matter fields is defined as

Tµν = − 2√−g
δSM
δgµν . (5)

Without specifying the details of the dynamics, we can denote the left hand sides (lhs) of the
Euler-Lagrange equations as

Eµν =
1√−g

δSG
δgµν (6)

and
Eφ =

1√−g
δSG
δφ

, (7)

the equations of motion being

Eµν =
1
2

Tµν , Eφ = 0 . (8)

The lhs’ exhibit the following dependencies:

Eµν = Eµν

(
φ, ∂φ, ∂2φ, g, ∂g, ∂2g

)
,

Eφ = Eφ
(

φ, ∂φ, ∂2φ, g, ∂g, ∂2g
)

. (9)

Plugging in the continuous fields gµν = g+µνΘ ( f ) + g−µνΘ (− f ) and φ = φ+Θ ( f ) + φ−Θ (− f ),
their first derivatives generate jumps, while the second derivatives terms proportional to δ ( f ):

Eµν = Ẽµν + E µναδ ( f ) ,

Eφ = Ẽφ + E φαδ ( f ) . (10)

Similarly, the energy-momentum tensor allows for a distributional contribution on Σ:

Tµν = T̃µν +T µναδ ( f ) .

The junction conditions are therefore the distributional equations of motion:

E µν =
1
2
T µν , E φ = 0 , (11)

along with the continuity condition [φ] =
[
gµν

]
= 0.



Universe 2018, 4, 44 5 of 11

The scalar Equation (11) is simple to be evaluated on Σ. The tensor Equation (11) can be
decomposed with respect to the oblique basis, employing a Σ-scalar El , a Σ-vector E a

l and a Σ-tensor
E ab defined as

E µν = El lµlν + 2E a
l e(µa lν) + E abeµ

a eν
b . (12)

This decomposition is left unchanged by coordinate transformations on M±. However, only the
E ab part would be nonvanishing, as the distributional stress-energy tensor T µν represents the intrinsic
stress energy of the singular source on the surface. In GR the vectorial and scalar contributions can be
expressed in terms of the Hamiltonian and diffeomorphism constraints, hence they do not carry new
information. The same has been verified for the simplest scalar-tensor theories. Therefore, the junction
conditions can be rewritten as equations on Σ as

E ab =
1
2
T ab , E φ = 0 . (13)

3. Brans-Dicke Theory

Perhaps the most well-known scalar-tensor theory is the Brans-Dicke theory, born from the
simple assumption of replacing the gravitational constant with a scalar field φ. Its Lagrangian in the
Jordan frame

LBD = − ω

16πφ
∂µφ∂µφ +

Rφ

16π
, (14)

contains a coupling constant ω. The field equations obtained from the metric and scalar field
variations are

8πTµν =
ω

φ

[
−∇µφ∇νφ +

1
2
(∇φ)2 gµν

]
+ φGµν

−∇µ∇νφ +�φgµν ,

0 = −ω

φ
(∇φ)2 + φR + 2ω�φ (15)

By exploring the trace of the tensorial equation to eliminate the curvature scalar, one obtains a
Klein-Gordon equation with the trace of the stress-energy tensor as a source:

�φ =
8π

3 + 2ω
T . (16)

It has been claimed that GR is recovered for the large ω limit [35]. The GR limit of the Brans-Dicke
theory, however, is intricate, reducing to GR in the ω → ∞ limit only if the trace of the matter
energy-momentum tensor does not vanish. Indeed, in that particular case (including the vacuum) the
asymptotic behaviour in ω is different [36]. This has been explained in [37] in terms of the differences
in the conformal invariance group modifying ω in the two cases. In light of this analysis it is not trivial
to prove whether the same limit applies for vacuum, nevertheless it has been assumed by analysing
the Cassini probe data [38], and stringent constraint ω > 40000 was set in order the Brans-Dicke theory
to survive the Solar System tests [11,39].

The Euler-Lagrange expressions for the Brans-Dicke Lagrangian in the Jordan frame are given by

16πEµν = −ω

φ
∇µφ∇νφ +

ω

2φ
(∇φ)2 gµν + φGµν −∇µ∇νφ +�φgµν ,

16πφEφ = −ω

φ
∇µφ∇µφ + φR + 2ω�φ . (17)

Only the last three terms of Eµν contain second derivatives, so only those will contribute
singular terms.
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Due to smoothness in the domains M±, and continuity through Σ, the jump in the derivatives of
gµν and φ are necessarily transversal [18]:[

∂σgµν

]
= ηnσcµν ,[

∂µφ
]
= ηnµ J . (18)

With these, the singular part of the Einstein-tensor can be expressed [18] as

Gµν =
1
2

η
(

nµcν + nνcµ − nµnνc− gµνc† − ε
(
cµν − cgµν

))
, (19)

where we introduced the notations

cµ = cµνnν, c = cµ
µ, c† = cµνnµnν. (20)

One may easily check that G µν is tangential (G µνnν = 0); thus, it is possible to represent it as an
intrinsic Σ-tensor as

G µν = G abeµ
aeν

b , (21)

this representation being invariant with respect to the choice of transversal vector lµ.
We find the singular part of the expression ∇µ∇νφ−�φgµν as

Jη
(
nµnν − εgµν

)
. (22)

A contraction with nν reveals that this term is also tangential.
The tensorial junction Equation (11) then reads

8πT µν =
1
2

φη
(

nµcν + nνcµ − nµnνc− gµνc† − ε (cµν − cgµν)
)

− Jη (nµnν − εgµν) . (23)

In what follows we will express this equation as an intrinsic Σ-tensor equation.
A convenient basis of the tangent spaces of M along Σ is

(
lµ, eµ

a

)
, with the dual frame

(
ηnµ, θa

µ

)
,

where θa
µ obeys the relations

θa
µeµ

b = δa
b , θa

µlµ = 0 . (24)

Unlike eµ
a, the covector fields θa

µ depend on the choice of lµ. For any vector Xµ along Σ, the contraction
θa

µXµ provides the tangential components of X. Further, when X is purely tangential, this contraction
simply provides its lµ-independent components in the coordinate frame adapted to Σ. This will be
explored in identifying E ab from E µν, when E a = 0 = E , and rewriting Equation (23) accordingly.
In doing so we will explore the jump of the extrinsic curvature.

The extrinsic curvature of a space-like or time-like surface with normal nµ is defined as
Kab = 1

2 eµ
aeν

bLngµν. For null hypersurfaces this quantity does not carry transverse information (as nµ

becomes tangential), hence we replace it with the analogous transverse curvature [18]

Kab =
1
2

eµ
aeν

bLl gµν . (25)

The jump of the transverse curvature is

[Kab] =
1
2

eµ
aeν

bcµν ≡
1
2

cab . (26)
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To show how this relates to the full cµν, we decompose the latter with respect to the dual frame

cµν = cnnµnν + 2cn
a n(µθa

ν) + 2 [Kab] θa
µθb

ν . (27)

We also decompose the inverse metric with respect to the vector frame

gµν = εη2lµlν + 2ηnal(µeν)
a + hab

∗ eµ
aeν

b , (28)

where na = nµθa
µ is the “tangential” part of n in the nµ = nl lµ + naeµ

a decomposition, and hab
∗

is a pseudo-inverse metric on Σ, defined as hab
∗ = gµνθa

µθb
ν (it becomes the inverse for non-null

hypersurfaces if the transverse is chosen as the normal).
Because Equation (23) is tangential (as can be seen by contracting with nµ), contracting with θa

µθb
ν

gives the intrinsic components of the tensorial junction condition

T ab =
φη

8π
[Kcd]

(
hac
∗ nbnd + hbc

∗ nand − hcd
∗ nanb − hab

∗ ncnd

−ε
(

hac
∗ hbd
∗ − hab

∗ hcd
∗

))
− Jη

8π

(
nanb − εhab

∗

)
(29)

This is the analogue of the Lanczos equation of GR and it is valid for arbitrary junction surface Σ.
The non-null GR limit is readily obtained with φ = G−1 and J = 0, and further simplified

by the choice lµ = nµ. This gives na = 0, η = ε, Kab = Kab and hab
∗ = hab. Inserting these into

Equation (29) gives

T ab = − 1
8πG

([
Kab
]
− [K] hab

)
, (30)

the familiar Lanczos equation of GR.
Next we consider the scalar junction condition (11). In the scalar equation of motion (15) only the

terms φR + 2ω�φ contain second derivatives, only they contribute the singular parts

Eφ =
1

16π

(
φη
(

c† − εc
)
+ 2ωηεJ

)
. (31)

As a scalar equation, this is already intrinsic to Σ. Proceeding as in the case of the tensorial
equation, we explore Equation (27) to express c† and c in terms of cn, cn

a and cab = 2 [Kab]. After
simplification and inserting into Eφ = 0 we get

0 = φη [Kab]
(

nanb − εhab
∗

)
+ 2ωηεJ . (32)

This, together with Equation (29) constitute the junction equations in Brans-Dicke theory.
The non-null limit (with the choice lµ = nµ and consequences as described earlier) of these

junction conditions arises as

T ab = − φ

8π

([
Kab
]
− [K] hab − Jhab

)
, (33)

0 = − 1
8π

(φ [K]− 2ω J) . (34)

These junction conditions derived in the Jordan frame correspond to the one scalar case of those
obtained in Einstein frame in the context of multi-scalar tensor theories of gravity in [14].

4. The Null Case

The junction equations derived so far are applicable to any hypersurface, irrespective of its
causal character. In what follows, we assume Σ a null hypersurface, so the normal vector becomes
also tangential. Hence the choice lµ = nµ leads to a degenerate situation, and another simplifying
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assumption for the transverse vector should be made. This is covered by our forthcoming analysis,
which in turn closely follows the one presented for GR by Poisson [40]. We will chose an autoparallel
normal vector, denoted Nµ (satisfying Nν∇νNµ = κNµ) and we will use a coordinate system adapted
to Nµ. The parameter along the integral curves of Nµ is λ, one of the coordinates on Σ. We denote the
two additional coordinates

{
σA} (capital latin indices taking the values 2, 3), labelling the geodesic

integral curves of Nµ. The transverse vector, denoted Lµ is chosen [40,41] as

LµLµ = 0, LµNµ = 1, Lµeµ
A = 0 . (35)

Here eµ
A = ∂xµ/∂σA are the coordinate basis fields associated to σA. If eµ

A also obey
orthonormality relations, the basis (35) is pseudoorthonormal. The induced metric in this basis
is manifestly two-dimensional:

h11 = gµνNµNν = 0, h1A = gµνNµeν
A = 0, qAB ≡ hAB = gµνeµ

Aeν
B . (36)

It is easy to check that qAB (as opposed to hab) is non-degenerate, and a unique inverse qAB exists.
If we define the dual frame e A

µ = gµνqABeν
B, it obeys

eA
µeµ

B = qBCqAC = δA
B . (37)

The dual frame of
(

Lµ, Nµ, eµ
A

)
is
(

Nµ, Lµ, e A
µ

)
.

With it the components of the normal (defined as na = nµθa
µ) become Nλ = NµLµ = 1 and

NA = Nµe A
µ = 0, hence na = δa

λ. The normal na ≡ ea
λ = δa

λ is therefore a first basis vector on the
tangent space of Σ, the other two being ea

A = δa
A. The pseudo-inverse metric has the components

hλλ
∗ = gµνLµLν = 0, hλA

∗ = gµνLµe A
ν = 0, hAB

∗ = gµνe A
µ e B

ν = qAB .

By inserting these into Equation (29) and substituting η = 1 and ε = 0, we obtain the tensorial
junction condition

T ab = ρea
λeb

λ + jA
(

ea
Aeb

λ + ea
λeb

A

)
+ pqABea

Aeb
B , (38)

where
ρ = − φ

8π
[KAB] qAB − J

8π
(39)

is the surface density of the layer,

jA =
φ

8π
[KBλ] qAB (40)

the surface current of the layer, and

p = − φ

8π
[Kλλ] (41)

the isotropic pressure of the layer. With φ = G−1 and J = 0 the corresponding result derived in [40]
is reobtained.

Finally the scalar junction Equation (32) simplifies to 0 = φ [Kλλ], implying that

p = 0 ,

thus, the presence of a continuous scalar field contributing to the expressions of the surface density,
current and pressure does not allow for an isotropic surface pressure on the null layer. This result
is consistent with the pressurelessness condition derived in [14] for a multiscalar generalization of
Brans-Dicke theory in the Einstein frame.
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5. Conclusions

The junction of space-time regions with different geometrical characteristics is an important task
in all geometric theories of gravity. It is of particular interest when the separating hypersurface is
singular, carrying distributional energy-momentum tensor. The junction formalism is complicated
if the hypersurface is null. We have derived the generic junction conditions for Brans-Dicke theory
in the Jordan frame, as this is the frame in which the matter energy-momentum conservation holds
(the physical frame). We explored a formalism based on a transverse vector, rather than normal, which
can be applied to any type of hypersurface. Then we considered the particular cases of (i) non-null
hypersurfaces, obtaining the generalisations of the Lanczos equation, in which the jump of the extrinsic
curvature is sourced by both the distributional energy-momentum tensor and by the jump in the
transverse derivative of the scalar, and ii) null hypersurfaces, which represent shock-waves propagating
with the speed of light. In the latter case the distributional source is decomposed into surface density,
current and pressure. The latter, however, ought to vanish by virtue of the scalar junction condition.
A similar result derived as a traceless requirement for the distributional energy-momentum source in
the Einstein frame is a remarkable example of the frame independence of a physical result.

Confronting these results with previous ones derived for non-null hypersurfaces in the Einstein
frame, as well as their generalisation for the so-called Generalised Brans-Dicke theory (given by the
Lagrangian LGBD = 1

2 F (φ) R + B (φ) X− 2G (φ)�φX, where F, B, G are arbitrary smooth functions
of φ and X are in progress and will be presented elsewhere.
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