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Abstract: The properties of dense matter in quantum chromodynamics (QCD) are delineated through
equations of state constrained by the neutron star observations. The two solar mass constraint, the
radius constraint of '11–13 km, and the causality constraint on the speed of sound, are used to
develop the picture of hadron–quark continuity in which hadronic matter continuously transforms
into quark matter. A unified equation of state at zero temperature and β-equilibrium is constructed
by a phenomenological interpolation between nuclear and quark matter equations of state.
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1. Introduction

The study of the phase structure in quantum chromodynamics (QCD) at large baryon density
has been a difficult problem, partly because the lattice Monte Carlo simulations based on the QCD
action are not at work, and partly because many-body problems with strong interactions are very
complex in theoretical treatments. Currently, the best source of information for dense QCD is the
physics of neutron stars from which one can extract useful insights into QCD equations of state [1], as
well as the transport properties in matter. Since the domain relevant for these physics is the baryon
density of nB ∼ 1− 10n0 (n0 ' 0.16 fm−3: nuclear saturation density) or baryon chemical potential of
µB ∼ 1− 2 GeV, we can use the neutron star constraints to explore the properties of matter beyond the
nuclear regime.

There have been remarkable progress in observations that constrain our understanding on the
nature of dense QCD matter. They include the discoveries of two-solar mass (2M�) neutron stars [2,3],
the constraints for the neutron star radii from X-ray analyses [4,5], and, most remarkably, the detection
of the gravitational waves (GW170817) [6] and the electromagnetic signals [7] from the neutron star
merger found on 17 August. While the GW170817 was announced only after this meeting, we include
this topic in this article because of its significance.

Of particular concern in this article are the constraints on equations of state through the neutron
star mass–radius (M-R) relations. In principle, a precisely determined M-R relation can be used
to directly reconstruct the neutron star equations of state [8], even without any knowledge about
microscopic properties of the matter. Actually, the current precision of M-R relations is not good
enough to pin down the unique equation of state. Nevertheless, the current constraints are already
significant for us to derive qualitative and semi-quantitative understanding about the nature of dense
QCD matter.

Based on equations of state supposed from the M-R and causality constraints, we will develop
the picture of hadron–quark continuity in which hadronic matter continuously transforms into
quark matter without experiencing thermodynamic phase transitions. Such continuity picture was
developed in the context of the crossover from the superfluid hadronic phase to the color-flavor-locked
superconducting phase [9]. This scenario was revisited in [10,11] where the role of UA(1) anomaly is
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emphasized. The previous studies are based on theoretical considerations and model calculations,
while, in our approach, we reach the continuity picture from the demand to satisfy the neutron
star constraints.

2. The Neutron Star Constraints and the Implications for QCD Equations of State

To begin with, we first define some terminology in this article. “Stiff” equations of state mean
equations of state with large pressure P at given energy density ε. The stiffer equations of state generally
lead to larger maximum masses and larger radii for neutron stars. We will not use the speed of sound
cs = (∂P/∂ε)1/2 as the measure of the stiffness, as even ideal gas equations of state with the relatively
small sound velocity (compared to what we will consider) can generate very large maximum masses.

Secondly, we should specify at which region of density the equations of state are stiff. We will use
the terminology such as “soft-stiff”, by which we mean that equations of state is soft at low density,
nB ≤ 2n0, and stiff at high density, nB ≥ 5n0. For the reasons described below, equations of state
leading to R1.4 ≤ 13 km for 1.4M� stars will be called “soft at low density”, and equations of state
leading to M ≥ 2M� will be called “stiff at high density’. Then, the soft-stiff equations of state generate
the M-R curves with the typical radii of R1.4 ≤ 13 km and the maximum mass ≥2M�.

The classification of equations of state by the baryon density is useful because it has been
known [12] that the shapes of the M-R curves have strong correlations with equations of state at
several fiducial densities (see Figure 1). At very low density, the material is loosely bound by the
gravity, but, as M increases, R rapidly decreases because of the stronger gravity. Around ∼2n0, the
matter starts to observe the repulsive forces in microscopic dynamics; then, the M-R curve starts to
go vertically. Eventually, the curve reaches the maximum in M at nB ≥ 5n0. Using these correlations
between M-R and nB, one can focus on the radius constraint in the studies of low density equations of
state, or one can focus on the maximum mass when studying high density equations of state.

Figure 1. The correlation between the M-R relation and equations of state.

The existence of two-solar mass (2M�) neutron stars [2,3] tells us that high density equations
of state at nB ≥ 5n0 must be stiff. Meanwhile the estimate of R1.4 is relatively uncertain. There have
been many theoretical predictions for R1.4 which range from '10 km to '16 km. The observational
constraints on R1.4, which have been based on spectroscopic analyses of the X-rays from the neutron
star surface, include several systematic uncertainties, but the current trend converges toward the
estimate R = 11–13 km 1. In addition, the analyses of gravitational waves from GW170817 favors
equations of state with the radii smaller than ∼13 km. More precisely, the actual constraint is on the

1 The exception can be found in [13], where the authors (Suleimanov et al.) estimate R1.4 > 13.9 km using the X-ray burst
from 4U 1724-307. The paper was published in 2011. Later, further analyses were done by two of the authors and their
collaborators. In a recent paper [14], they discussed that the event used to extract R1.4 > 13.9 km is not suitable for reliable
analyses due to large contaminations in the neutron star atmosphere. The newer analyses include more samples and cleaner
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dimensionless tidal deformability, Λ = 2
3 k2(R/GN M)5 (GN : Newton constant; k2: Love number [16]),

of each star before the coalescence; clearly Λ is very sensitive to the compactness and radius of the star.
Therefore, the QCD equation of state is likely to be the soft-stiff type. For the left over region

nB = 2− 5n0, there is also a causality constraint on the speed of sound c2
s = ∂P/∂ε, i.e., cs must be less

than the light velocity 2. This constraint becomes significant for soft-stiff equations of state because
P(ε) is small at low density but must be large at high density, meaning that in between there must be
a region where ∂P/∂ε must be large. The difficulty is even more signified if there are the first order
phase transitions, see Figure 2; during such transitions, P(ε) is constant for increasing ε, and, after the
phase transitions, even larger ∂P/∂ε is necessary to get connected to P(ε) at high density.

Figure 2. The pressure vs. energy density for soft-stiff (left) and stiff-stiff (right) equations of state. The
slope is given by ∂P/∂ε = c2

s , the sound speed square, which must be smaller than the light speed, 1.
The soft-stiff equations of state have smaller radii than the stiff-stiff ones, and disfavor the strong 1st
order phase transitions.

If we assume the neutron star radii to be large > 13 km, then the equations of state at low density
is so stiff that, even after strong 1st order phase transitions, the low density equations of state have
the causal connection to P(ε) at high density [17]. Thus, the determination of the neutron star radii is
crucial for our understanding of the QCD phase structure. It should be evident that if the strength of
transitions is sufficiently weak, the soft-stiff equations of state is still possible even with the 1st order
transitions. For more quantitative and systematic analyses, we refer to Ref. [18].

These considerations for soft-stiff equations of state motivate us to consider the picture of
hadron–quark continuity in which equations of state at 2n0 and 5n0 are continuously connected.

3. The 3-Window Modeling

Now, we turn to the discussions about the microscopic nature of matter. We consider the matter
by decomposing it into 3-windows [19–22]; the nuclear regime at nB ≤ 2n0; the crossover regime
for 2n0 − 5n0; and the quark matter regime at nB ≥ 5n0. The picture we have is illustrated in
Figure 3. At low density, nB ≤ 2n0, the matter is dilute and baryons remain well-defined objects,
so the equations of state are described by nuclear ones. Beyond ∼2n0, it is unlikely that nucleons
are effective degrees of freedom; many-body forces become increasingly important as seen from
microscopic nuclear calculations, which include nuclear interaction up to 3-body forces [23,24],
and, in addition, typical calculations indicate that baryonic excitations other than nucleons are no

events than the previous ones, and yield the estimate 11 km < R < 13 km for neutron stars with the masses ranging from
1.1–2.1M� [15]. The author appreciates Dr. David Blaschke for mentioning these papers.

2 Some people postulated that the c2
s should be smaller than the conformal limit c2/3 (c: light velotiy). As argued by Bedaque

and Steiner, this hypothesis is in tension with the neutron star observations.
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longer negligible. Even though the matter is presumably not dense enough to consider quark matter,
the above-mentioned problems demand us to think of matter based on microscopic quark degrees of
freedom. At nB ∼5n0, baryons with the radii of ∼0.5 fm start to touch one another. If we assume a
3-flavor quark matter, the density 5n0 corresponds to the quark Fermi momentum of pF ∼400 MeV
(for 2-flavor matter pF is even larger), reasonably large compared to the QCD non-perturbative scale,
ΛQCD ∼200 MeV.

Figure 3. The 3-window modeling of the QCD matter.

One might think that, since some phenomenological hadronic equations of state have been
made consistent with the 2M� constraint (e.g., [23]), there is no need to introduce the quark matter
descriptions for neutron star matter. However, to pass the 2M� constraint is the necessary but not
sufficient condition to validate the hadronic models; the construction of equations of state must be
reasonable from the microscopic point of view, but, at this point, we have problems in extrapolating
purely hadronic descriptions beyond 5n0, for the reasons already discussed above. This motivates us
to start with quark matter picture at high density side and approach the hadronic side by including
hadronic correlations. This approach, even when ∼5n0 happens to not be high for the quark matter
formation, at least will shed light on the nature of hadronic matter in terms of quark descriptions.

We will construct equations of state based on this 3-window picture. For the nuclear regime,
we use the Akmar–Phandheripande–Ravenhall (APR) equation of state as a representative 3 [23].
For the quark matter regime, we use a schematic quark model that concisely expresses microscopic
interactions relevant in hadron and nuclear physics. In between, neither purely hadronic nor quark
matter descriptions are appropriate, so here we use the hadron–quark continuity picture to smoothly
interpolate the APR and quark model equations of state. Specifically, our interpolation is done with
polynomials [21]

P(µB) =
5

∑
n=0

cnµn
B . (1)

To determine the coefficients cns, we first compute nB = ∂P/∂µB, and then demand, at nB = 2n0

and 5n0, the interpolating function to match with the APR and quark equations of state up to the
second order derivatives of P(µB).

4. A Model for Quark Matter

In our phenomenological modeling, we need to choose a quark model for nB ≥ 5n0. Guided
by the continuity picture, the form of effective models is exported from those for hadron physics.
Here, semi-long range interactions, relevant for the energy scale of 0.2–1 GeV or distance scale

3 Actually, we also need to use some crust equations of state for nB < 0.2− 0.5n0. We use the Togashi equation of state [24],
which is based on the microscopic calculations with techniques similar to the APR, and is consistent with the regime of
laboratory nuclei below the neutron drip regime.
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∼0.2–1 fm−1 [25], should remain important from low to high densities because the quark matter regime
observes the contents inside of hadrons. Meanwhile, due to the overlap of baryon wavefunctions, the
confining forces that try to neutralize the color are expected to be less important at higher densities,
except for any excitations that break the local color neutrality. The confining force is a long range
interaction relevant for the energy scale ΛQCD ∼0.2 GeV∼1 fm−1.

Our effective Hamiltonian is (µq = µB/3) [1]

H = q̄(iγ0~γ ·~∂ + m− µqγ0)q− Gs ∑8
i=0

[
(qτiq)2 + (q̄iγ5τiq)2]+ 8K(detfq̄RqL + h.c.)

+H3q→B
conf − H∑A,A′=2,5,7

(
q̄iγ5τAλA′Cq̄T) (qTCiγ5τAλA′q

)
+ gV(qγµq)2 .

(2)

The first line is the standard Nambu-Jona-Lasinio (NJL) model with u, d, s-quarks and responsible
for the chiral symmetry breaking. We use the Hatsuda–Kunihiro parameter set [26] with which
the constitutent quark masses are Mu,d ' 336 MeV and Ms ' 528 MeV. The first term in the
second line includes the confining interactions which trap 3-quarks into a baryon. The second
term is the color-magnetic interaction for color-flavor-antisymmetric S-wave channel; they play very
important roles in the level splitting in the hadron spectra, e.g., N-∆ splitting. The last term is the
phenomenological vector repulsive interactions, which are inspired from the ω-meson exchange in
nuclear physics. In actual calculations, the confining term is not explicitly included as we do not know
a good modeling for it. Therefore, we restrict the use of this model to nB ≥ 5n0 where we expect that
confining effects are not significant.

While the form of the Hamiltonian is obtained by extrapolating the description of hadron and
nuclear physics, in principle the range of parameters (Gs, K, gV , H) at nB ≥ 5n0 can be considerably
different from those used in hadron physics due to, e.g., medium screening effects. In a strongly
correlated region, the estimate of medium modifications is difficult; for instance, screening masses
in 2-color QCD, measured in lattice QCD [27], are qualitatively different from the perturbative
behaviors [28]. For 3-color QCD, no reliable estimates on medium modifications are available, so
here we use the neutron star constraints to examine the range of these parameters, and then use them
to delineate the properties of QCD matter at nB ≥ 5n0. Below, we vary (gV , H), while assuming
that (Gs, K) do not change from the vacuum values appreciably; this assumption will be checked
posteriori. More elaborated treatment is to explicitly determine the medium running coupling gV(µB),
as demonstrated in Ref. [29].

Our Hamiltonian for quarks, together with the contributions from leptons, is solved within the
mean field (MF) approximation. We impose the neutrality conditions for electric and color charges
as well as the β-equilibrium condition. In the MF treatments, we find that the chiral and diquark
condensates coexist at nB ≥ 5n0. For the range of parameters that we have explored, the diquark
pairing always appears to be the color-flavor-locked (CFL) type at nB ≥ 5n0; other less symmetric
pairings such as the 2SC type appear only at lower density, thus we will not take their appearance at
face value.

Now, we examine the roles of effective interactions by subsequently adding gV and then H to
the standard NJL model [21]. First of all, in order to make equations of state stiff, (Gs, K)@5n0 should
remain comparable to the size of its vacuum values; the large reduction of these parameters accelerates
the chiral restoration that yields contributions similar to the bag constant, i.e., the positive (negative)
contributions to energy (pressure). As a result, the significant softening takes place in equations of
state. Actually, even if we fix (Gs, K)@5n0 to the vacuum values, the strong 1st order chiral transition
takes place at nB ∼2–3 n0 in the standard NJL model, so the equations of state at nB ≥ 5n0 is too soft to
pass the 2M� constraint.

This situation is changed by adding gV . It stiffens the equations of state in two-fold ways. Firstly,
the repulsive interactions obviously contribute to the stiffening. Secondly, it delays the chiral restoration
by tempering the growth of baryon density as a function of µB, so that there is no radical softening
associated with the chiral restoration. In fact, the 1st order transition turns into a crossover in the
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range of gV we explored. The value of gV large enough to pass the 2M� constraint, however, causes
another kind of problem in connecting the APR and quark model pressure; see the left panel of
Figure 4; with larger gV quark pressure, P(µB) tends to appear at higher µB with less slope, and, as
a consequence, the pressure curve in the interpolation region tends to contain an inflection point at
which ∂2P/(∂µB)

2 is negative. Such region is thermodynamically unstable and so must be excluded.
Therefore, while a larger value of gV is favored to pass the 2M� constraint, it generates more mismatch
between the APR and quark pressure in the µB direction.

Figure 4. The impacts of the vector and color-magnetic interactions.

Here, the color-magnetic interactions improve the situation; see the right panel of Figure 4.
We note that the onset chemical potential of the APR pressure is the nucleon mass µB ' 939 MeV,
while, for the NJL pressure, it is µB ' 3Mu,d ' 1018 MeV. In a conventional picture of quark models,
the nucleon and ∆ masses are split by the color-magnetic interaction, and the nucleon mass is reduced
from 3Mu,d. From this viewpoint, the color-magnetic interactions naturally induce the overall shift of
the NJL pressure toward the lower chemical potential, thus making the matching between the APR
and quark pressure curves much better.

The M-R relations are shown in Figure 5 for the parameter sets (gV , H)/Gs = (0.5, 1.4), (0.8, 1.5),
and (1.0, 1.6). For all these sets, the radius of a neutron star at the canonical mass 1.4M� is 11.3–11.5 km,
mainly determined by our APR equations of state. In these sets, only the set (0.8, 1.5) fulfills all of
the constraints; the set (0.5, 1.4) is slightly below the 2M� constraint, while (1.0, 1.6) slightly violates
the causality bound. More exhaustive parameter surveys [1] show that gV should be >∼0.7 Gs,
and H >∼1.4 Gs which are comparable to the vacuum scalar coupling. For given gV , the value of H is
fixed to ∼10%; in fact, we do not have much liberty in our choice when we connect the APR and quark
matter pressures.

Figure 5. The mass–radius relations from the 3-window equations of state for sets of parameters,
(gV , H)/Gs = (0.5, 1.4), (0.8, 1.5), (1.0, 1.6). Only the set (0.8, 1.5) satisfies the 2M� and causality constraints.

We note that the couplings (Gs, gV , H) as large as the vacuum coupling of Gs are necessary to fulfill
the constraints from neutron star observations and causality. With such strong effective couplings, we
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expect that gluons in the non-perturbative regime still survive in spite of the presence of quark matter.
In addition, substantial amounts of chiral and diquark condensates coexist [21]. It is also important to
emphasize that the quark matter contains the strange-quarks as much as up- and down-quarks.

5. Discussion and Conclusion

We first mention the difference between the finite temperature crossover and low temperature
crossover (see Figure 6). The relevant thermodynamic relations are P = Ts − ε (s: entropy) and
P = µBnB − ε, respectively. In the finite temperature crossover, which has been established by the
lattice Monte Carlo calculations [30,31], the QCD matter changes from a hadron resonance gas to a
quark gluon plasma as the temperature increases. The transition is smooth, but radical changes take
place in the thermodynamic quantities. In particular, there is radical growth in the entropy and energy
densities as a consequence of liberation of quarks and gluons, which in turn lead to a dip in the speed
of sound cs. In contrast, this feature is not present in the low temperature crossover; the sound velocity
should have a peak, rather than a dip, in the crossover region [1]. Neither the baryon density nor
energy density radically change; instead, as the matter approaches the crossover region, the strong
interactions among baryons temper the growth of the baryon density at increasing µB. In this respect,
the distinction between strongly interacting hadronic and quark matter is more difficult than that
between a hadron resonance gas and a quark gluon plasma. It may be appropriate to characterize
the hadron–quark crossover in terms of the quark–hadron duality, or in the context of quarkyonic
matter [32–35] that has the quark Fermi sea but baryonic Fermi surface; hence, it naturally interpolates
the hadronic and quark matter. To get qualitative insights for the quarkyonic matter, we refer to the
studies of QCD in (1+1) dimensions [36] where analytic insights are available.

Figure 6. The speed of sound square c2
s around the finite temperature crossover from hadron resonance

gas to quark gluon plasma, on the possible first order chiral restoration line, and around the possible
low temperature crossover from hadron to quark matter. While the finite temperature crossover has
a dip in c2

s , the low temperature crossover has a peak.

Finally, we present a conjecture concerning the crossover in the gauge dynamics, namely from a
confining phase to a Higgs phase with colored diquark condensates ∼φ = |φ|eiθ . This question must
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be addressed when we consider the crossover from hadronic to quark matter with diquark condensates.
In the presence of matter fields in the fundamental representations, there are no strict order parameters
based on symmetries, and in fact the two phases can be smoothly connected [37]. On the other hand,
the symmetry concepts are not necessary conditions for phase transitions, as can be seen in liquid–gas
phase transition. Thus, we need to discuss the dynamical aspects. As for the confining vs. Higgs
phases, there are two important elements to distinguish them in qualitative terms. The first is the
strength of the gauge coupling, gs, and the other is the size of Higgs field (diquark) amplitudes, |φ|.
Two extreme limits are relatively easy to imagine: in the strong coupling limit gs � 1 and small Higgs
amplitudes, the strong color fluctuations disfavor the colored objects and the confinement takes place
[38]. Meanwhile, in the weak coupling limit gs � 1 and large Higgs amplitudes, the matter should
look like a Higgs phase as in textbook examples. The important question is how they can be connected
depending on the trajectories of the gs and |φ| as functions of µB.

This question is hard to answer for dense QCD, but some insights can be obtained from the gauge
Higgs models with the fixed Higgs amplitude |φ| [37]. There are two characteristic paths from the
confining to the Higgs phase (see Figure 7). In the first path, we move along the small |φ| region in
the confining phase; move from (gs � 1 , |φ| ∼ 0) to (gs � 1 , |φ| ∼ 0) domain, and then go to the
domain of (gs � 1 , |φ| � 1). In this path, we hit the phase transition increasing the value of |φ| at the
weak coupling region. Indeed, it is difficult to imagine that the Higgs phase at weak coupling, which
apparently looks very different from the confining phase, continuously transforms into the confining
phase. The other path, however, allows the crossover transition: starting again from gs � 1, |φ| ∼ 0,
one can move along the gs � 1 region with increasing |φ|, and reaches the confining phase at large
Higgs fields, or Higgs phase at strong coupling. This regime was not studied as much as the weak
coupling regime in quark matter.

Figure 7. The phase diagram for gauged-Higgs model with the fixed Higgs amplitudes, in the 1/gs−|φ|
plane. At large coupling, the confining and Higgs phases are smoothly connected.

From this example and neutron star constraints, we conjecture that the matter remains strongly
coupled from hadronic to quark matter regimes, so that the Higgs fields develop within the confining
regime and then the system gradually relaxes to the Higgs phase at weak coupling. Gluons remain
non-perturbative until the weak coupling regime is reached at sufficiently high density.

More observational constraints will come in the next 10 years through the timing analyses of
X-rays in the NICER program [39] and the GW detection by currently operating aLIGO, Virgo, GEO [40],
and also KAGRA [41] under construction, which will be ready soon. The electromagnetic counterparts
associated with the GWs give the information about the ejecta, from which one can learn the dynamics
at the coalescence regime. It is desirable to utilize all this information to improve our understanding of
dense QCD matter.
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