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Abstract: In this paper, we present a method to probe the vacuum decay hypothesis by searching
for deviations of the uncoupled dark matter density evolution formula. The method consists of
expanding the dark matter density in a Taylor series and then comparing the series coefficients
obtained from the observational analysis with its uncoupled values. We use the growth rate data to
put constraints on the series coefficients. The results obtained are consistent with the ΛCDM model,
but it is shown that the possibility of vacuum decay cannot be ruled out by current growth rate data.
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1. Introduction

Since observations of type Ia Supernovae (SNe Ia) revealed that the Universe is expanding
at an accelerated rate [1,2], a wide variety of proposals has been put forward to explain such an
unexpected discovery. In the context of general relativity, this observation can be explained if the fluid
pervading the Universe violates the strong energy condition, i.e.,

ρ + 3p < 0. (1)

This implies that the total pressure must be negative; since for matter (baryonic and dark) pm = 0
and for radiation pγ = ργ/3, the Universe must also contain some unknown fluid with a pressure
sufficiently negative to ensure the validity of (1). This additional component was dubbed dark
energy. A universe dominated by a negative pressure fluid may be achieved if we add a cosmological
term Λ to the Einstein field equations. The Λ−term acts in the field equations like a fluid with a
pressure pΛ = −ρΛ, which can be associated with the zero point energy of all fields existing in the
Universe [3,4]. Due to its simplicity and strong theoretical appeal, the cosmological constant (or
vacuum energy) becomes the main candidate to explain the acceleration of the Universe. In fact, this
vacuum-dominated model of the Universe, the so-called ΛCDM model, has been favored by a large
amount of observational data. Unfortunately, the value of the vacuum energy required to explain the
present accelerated phase differs from the value predicted by the Quantum Field Theory (QFT) by at
least 60 orders of magnitude [5] (see also [6] for a review). This huge discrepancy between theory and
observation has challenged physicists’ imagination, and many proposals to solve this problem have
appeared in the literature [7–15]. Since the QFT estimate of vacuum energy density is obtained in a flat
space-time, the energy-momentum tensor in the Einstein equations should be zero since the Einstein
tensor is zero in a flat space-time. Therefore, the vacuum energy density must be canceled by a bare
cosmological constant. However, in curved space-time, it is expected that the vacuum contribution
depends on the curvature, so that a renormalized vacuum energy density should be time dependent
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[16]. An evolving vacuum energy density is possible if vacuum energy is not conserved separately, but
is coupled with the dark matter1 [22–26], i.e.,

ρ̇dm + 3Hρdm = −ρ̇Λ, (2)

where ρdm and ρΛ are the energy densities of dark matter and quantum vacuum, respectively, H ≡ ȧ/a
is the Hubble function and the dot denotes the time derivative. In order to solve the conservation
Equation (2), it is common to guess specific functions for ρΛ or ρdm (see, e.g., [27] for a list of vacuum
decay models). Although seemingly arbitrary, most of these guesses have some physical motivation,
and the diversity of vacuum decay scenarios existing in the literature is due to the diversity of aspects
that we wish to study beyond the coupling itself. Obviously, such a diversity of decay models cannot
provide a model-independent view of the vacuum decay hypothesis, significant insights can be
obtained from some models such as, for instance, the Wang–Meng model [28], which assumes that
the interaction between the dark fluids leads to a dilution of the dark matter density slower than the
standard uncoupled one. Thus, clues of a possible vacuum decay can be found if the dark matter
density evolution presents deviations from the separately-conserved case.

In this paper, a simple method to test the vacuum decay hypothesis is proposed. The approach is
based on the series expansion method. In order to search for deviations from the separately-conserved
case, the dark matter density is expanded in a power series. Since the interaction implies that
ρdm 6= ρdm,0(1+ z)3, the series coefficients should present deviations from the uncoupled case. In order
to search for these deviations, the growth rate data are used. Since no specific interaction model is
assumed, this approach provides completely general results that must be satisfied by any reliable
vacuum decay model.

This paper is organized as follows: in Section 2, the basic equations employed in the analysis
are developed. In Section 3, the constraints on the parameters that quantify the deviations from the
standard uncoupled dark matter density evolution equation are obtained from current growth rate
data. Section 4 contains the conclusions and final comments.

2. The Method

Let us start expanding the dark matter density in a Taylor series around the redshift z = 0,

ρdm(z) = ρdm
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If dark matter and vacuum energy are separately conserved, the series coefficient are:
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(4)

However, if the dark matter density is not conserved separately, deviations from the values in (4)
should be observed. The following analysis is restricted to the third-order approximation. There are
two reasons for this. The first one is that the third-order approximation contains the minimum number
of terms required to get the uncoupled case as a special case. The second one is that, even if the dark
fluids interact, the contribution of terms at orders higher than three must be negligible, at least in
the redshift range covered by the available observational data. Otherwise, the ΛCDM model, which

1 Although it is possible, coupling with baryons implies a variation of baryonic particles masses, which are tightly constrained
by Big Bang nucleosynthesis. Furthermore, solar system experiments [17,18], bounds on the variation of fundamental
constants [19,20] and even background tests [21] constrained a possible coupling with baryons to be very small and
despicable in front of dark matter coupling.
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assumes that the dark matter density is a third-order polynomial, would be unable to provide a good
description of the observed Universe. Thus, to detect a possible interaction in the dark sector, it is
sufficient to restrict our attention up to the third order terms.

In order to make the comparison between the uncoupled and coupled cases clearer, it is useful to
rewrite the series coefficients as:

dρdm
dz

∣∣∣
z=0
≡ 3(ρdm,0 + ρ1,0);

1
2

d2ρdm
dz2

∣∣∣
z=0
≡ 3(ρdm,0 + ρ2,0);

1
6

d3ρdm
dz3

∣∣∣
z=0
≡ ρdm,0 + ρ3,0,

(5)

where ρi,0 (i = 1, 2, 3) are constants with the same dimensions as ρdm, which quantify the deviation
from the uncoupled case. In terms of these new constants, the power series (3) becomes,

ρdm(z) = ρdm,0(1 + z)3 + 3ρ1,0z + 3ρ2,0z2 + ρ3,0z3. (6)

Thus, clues of a possible vacuum decay can be found if any ρi,0 6= 0. There are two ways to
search for values of ρi,0 6= 0. The first is to take also a third order approximation for ρΛ and to use
the conservation Equation (2) to relate the series coefficients of ρΛ with the series coefficients of ρdm.
The second one is to substitute Equation (6) into Equation (2) and to solve it directly to obtain ρΛ. Here,
we will follow these two routes.

2.1. Approach I

The starting point is performing a third order Taylor approximation for the vacuum energy density,

ρΛ(z) = ρΛ
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Then, we rewrite (2) in terms of the redshift, i.e.,
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+ 3
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(8)

and use the above equation as a recurrence formula to write the derivatives of ρΛ at z = 0 in terms of
ρdm derivatives, so that:
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From Equation (6), we get:
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Finally, replacing the above coefficients in the series (7) and performing a bit of algebra to write
ρΛ in terms of powers of 1 + z, we have:

ρΛ(z) = ρΛ,0 − 3ρ1,0z− 3ρ2,0z2 − ρ3,0z3 + 3(ρ2,0 − ρ1,0)(1 + z)3 +

+
9
2
(3ρ1,0 − 2ρ2,0)(1 + z)2 + 9(ρ2,0 − 2ρ1,0)(1 + z) +

3
2
(5ρ1,0 − 2ρ2,0). (11)

Since we are assuming that the baryonic matter density is conserved separately, i.e., ρb(z) =

ρb,0(1 + z)3, the Friedmann equation takes the form:

H2
I =

( ȧ
a
)2

= H2
ΛCDM + ∆H2

I (12)

where:
H2

ΛCDM ≡ H2
0
[
Ωγ,0(1 + z)4 + Ωm,0(1 + z)3 + Ωk,0(1 + z)2 + ΩΛ,0

]
(13)

is the Friedmann equation for the ΛCDM model and:

∆H2
I ≡ H2

0

[
3(Ω2,0 −Ω1,0)(1 + z)3 +

9
2
(3Ω1,0 − 2Ω2,0)(1 + z)2 +

+ 9(Ω2,0 − 2Ω1,0)(1 + z) +
3
2
(5Ω1,0 − 2Ω2,0)

]
. (14)

is the deviation from the ΛCDM model caused by a possible interaction between dark matter and
vacuum energy in this approach. In the above equations, Ωγ,0 = ργ,0/ρc,0, Ωm,0 = ρm,0/ρc,0 and
ΩΛ,0 = ρΛ,0/ρc,0 are, respectively, the density parameters of radiation, matter (baryonic plus dark) and
quantum vacuum, Ωk,0 = −kc2/(a0H0)

2 is the curvature parameter and Ωi,0 = ρi,0/ρc,0 (i = 1, 2, 3)
with ρc,0 = 3H2

0 c2/8πG. It is interesting to note that the parameter Ω3,0 does not appear in the
Friedmann equation.

2.2. Approach II

Now, substituting (6) in the continuity Equation (2) (or equivalently, Equation (8)), it is found,
after integration and some algebraic manipulations, that the vacuum energy density evolves as:

ρΛ(z) = ρΛ,0 − 3ρ1,0z− 3ρ2,0z2 − ρ3,0z3 + 9(ρ1,0 − 2ρ2,0 + ρ3,0)(1 + z) +
9
2
(ρ2,0 − ρ3,0)(1 + z)2 +

+ ρ3,0(1 + z)3 − 3(3ρ1,0 − 3ρ2,0 + ρ3,0) ln(1 + z)− 1
2
(18ρ1,0 − 27ρ2,0 + 11ρ3,0). (15)

By following this approach, the Friedmann equation takes the form:

H2
II = H2

ΛCDM + ∆H2
II (16)

where:

∆H2
II ≡ H2

0

[
9(Ω1,0 − 2Ω2,0 + Ω3,0)(1 + z) +

9
2
(Ω2,0 −Ω3,0)(1 + z)2 + Ω3,0(1 + z)3 −

− 3(3Ω1,0 − 3Ω2,0 + Ω3,0) ln(1 + z)− 1
2
(18Ω1,0 − 27Ω2,0 + 11Ω3,0)

]
(17)

is the deviation from the ΛCDM due to the interaction between dark fluids in this new scenario.
Note that the perturbations in the ΛCDM model will depend on the route followed. Furthermore,
note that terms that evolve like cosmic strings, (1 + z)2, and domain wall, (1 + z), arise naturally in
the Friedmann equation if vacuum decay is allowed. Motivated by the recent results of thecosmic
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microwave background (CMB) power spectrum [29–32], we assume spatial flatness in the following
analyses.

3. Observational Constraints

3.1. Dark Energy Equivalence

Before we proceed with the observational analysis, it must be stressed that the Hubble
functions (12) and (16) can be equivalently obtained from dark energy models. This can be seen
by remembering that for a dark energy fluid, the parameter of the equation of state, neglecting the
contributions of curvature and radiation, can be written as:

w =
1
3

2(1 + z)ηη′ − 3η2

η2 −Ωm,0(1 + z)3 , (18)

where η = H/H0, and the prime denotes a differentiation with respect to z. This implies that from
geometric probes as, for instance, SN Ia distance and baryon acoustic oscillation (BAO) measurements,
it is impossible to distinguish between dark energy and vacuum decay scenarios, at least looking only
at deviations in the standard dark matter density formula. Therefore, to avoid misleading conclusions,
we use the growth rate data, which depend on the matter density expression.

3.2. Growth Function

In the linear regime, the matter density perturbations δ = δρm/ρm for dynamical vacuum models
satisfy2 [34]:

δ̈ + (2H − γ)δ̇− (2Hγ + γ̇ + 4πGρm)δ = 0, (19)

where γ = ˙ρΛ/ρm and G is the Newton constant. By defining the growth factor f ≡ d ln δ/ ln a, this
second order time differential equation is reduced to:

f ′ + f 2 +
(

1− q− γ

H

)
f − 2

γ

H
− γ̇

H2 −
3
2

Ωm = 0, (20)

where f ′ = d f /d ln a, q = −ä/(aH2) is the deceleration parameter and:

Ωm =
1

η2
I(I I)

[
Ωm,0a−3 + 3Ω1,0

(1
a
− 1
)
+ 3Ω2,0

(1
a
− 1
)2

+ Ω3,0

(1
a
− 1
)3]

, (21)

with ηI(I I) ≡ HI(I I)/H0.

3.3. Constraints

In order to discuss the observational constraints on the parameters Ω1,0, Ω2,0 and Ω3,0, we use
the data listed in Table 1, which were obtained from the redshift distortion parameter β = f /b (b is
the bias) measurements or from power spectrum amplitudes of Lyman-α forest data (see the original
references listed in Table 1 for more details). Thus, in the present analyses, we minimize the function:

χ2 =
17

∑
i=1

( f obs
i − f theo

i )2

σ2
i

, (22)

2 The vacuum energy is assumed homogeneous since, in the scales considered in this paper (subhorizon), the matter
perturbations dominates over the vacuum energy density perturbations, which can be neglected [33].
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where f obs
i is the observed value of the growth function at redshift zi, σi its uncertainty and f theo

i the
value of f (zi) provided theoretically. In agreement with recent studies involving SN Ia, (BAO), CMB
and H0 [35], we also add the constraint Ωm,0 = 0.303± 0.007.

Table 1. Currently available data for growth rates used here.

z f σ f Ref.

0.15 0.49 0.14 [36]
0.15 0.51 0.11 [37,38]
0.22 0.60 0.10 [39]
0.32 0.654 0.18 [40]
0.34 0.64 0.09 [41]
0.35 0.70 0.18 [42]
0.41 0.70 007 [39]
0.42 0.73 0.09 [43]
0.55 0.75 0.18 [44]
0.59 0.75 0.09 [43]
0.60 0.73 0.07 [39]
0.77 0.91 0.36 [36]
0.78 0.70 0.08 [39]
1.4 0.90 0.24 [45]

2.125 0.78 0.24 [46]
2.72 0.78 0.24 [46]
3.0 0.99 0.24 [47]

In order to obtain f theo
i , we solve the differential Equation (20) by treating the initial condition f0

as a nuisance parameter and marginalizing over f0.
Figure 1 shows the results of the statistical analysis at 68% and 95% confidence levels. Panels I-a)

and II-a) of Figure 1 shows the Ω1,0 − Ω2,0 parametric space obtained from Approaches I and II,
respectively, by marginalizing over Ω3,0, while panels I-b) and II-b) of Figure 1 shows the Ω1,0 −Ω3,0

parametric space obtained, respectively, from Approaches I and II by marginalizing over Ω2,0. For
the sake of comparison, the same scale is used for both approaches. The best fit values are indicated
in Table 2, which also displays χ2

min for the ΛCDM model. These results are clearly compatible with
the ΛCDM model (Ω1,0 = Ω2,0 = Ω3,0 = 0). However, a simple inspection of Figure 1 shows that the
vacuum decaying hypothesis cannot be excluded since, in both approaches, there is enough space
for interacting models. Note that the shape of the corresponding parametric spaces are very similar
for both approaches. However, Approach II is less restrictive than Approach I. This can be due the
integration process, which increases the degeneracy between the parameters.
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Figure 1. The Ω1,0 −Ω2,0 (top) and Ω1,0 −Ω3,0 (bottom) parametric spaces from Approaches I and II.
The contours are drawn for ∆χ2 = 2.30 and 6.17.

Table 2. The best fit values for Ω1,0, Ω2,0 and Ω3,0. The upper and lower limits stand for 2σ errors.

Ω1,0 Ω2,0 Ω3,0 χ2
min

Approach I −0.072+0.198
−0.198 0.004+0.088

−0.064 0.10+0.31
−0.27 1.941

Approach II 0.33+0.29
−0.41 0.11+0.36

−0.14 0.36+0.33
−0.46 1.285

ΛCDM model 0 0 0 2.857

Due to its generality and less restrictive character, the method presented in this paper provides
a fast and easy way to make (over)estimates of the values of the free parameters of many vacuum
decaying models with a smooth analytical function. For instance, for the Wang–Meng model,

ρdm = ρdm,0(1 + z)3−ε, (23)

the parameter ε is related to the parameters Ω1,0, Ω2,0 and Ω3,0 by:

ε + 3
Ω1,0

Ωdm,0
= 0, (24)

ε2 − 5ε− 6
Ω2,0

Ωm,0
= 0 (25)

and:
ε3 − 4ε2 + ε− 6

Ω3,0

Ωm,0
= 0. (26)

By taking the first of these relations and the results of Table 2, we obtain −1.25 < ε < 2.67 for
Approach I and −6.14 < ε < 0.79 for Approach II. Both intervals cover the range provided for this
parameter by recent research works [48–50].
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Finally, for the sake of completeness, it is useful to study the evolution of the deceleration
parameter. In the present analysis, it is easy to show that:

qI(I I)(z) =
H2

ΛCDMqΛCDM + ∆H2
I(I I)∆qI(I I)

H2
I(I I)

, (27)

where:
qΛCDM = −1 + (1 + z)

1
HΛCDM

dHΛCDM

dz
(28)

is the deceleration parameter for the ΛCDM model and ∆qI(I I) is defined as:

∆qI(I I) ≡ −1 + (1 + z)
1

∆HI(I I)

d∆HI(I I)

dz
. (29)

Figure 2 shows the deceleration parameter for the ΛCDM model (solid line), for the best fit point
from Approach I (dotted line) and for the best fit point from Approach II (dashed line). The deviation
of the best fit points from the ΛCDM is clear. The transition redshifts of the best fit of Approach I and
the ΛCDM model is near. However, an early accelerated Universe is compatible with the best fit points
of Approach II. We observe that the best fit of Approach I produces an interacting scenario with the
longest matter dominated era, marked by the q = 0.5 line, and with a transient accelerated phase, in
agreement with recent studies [51–53].

-0.5 0 0.5 1 1.5 2
z

-0.5

0

0.5

q

Figure 2. Deceleration parameter for the ΛCDM model (solid line) and for the best fit points of
Approaches I (dotted line) and II (dashed line). The q = 0 line marks the transition from the decelerated
to accelerated phase, and the q = 0.5 line marks the matter-dominated era.

4. Final Remarks

In this paper, a way to probe the vacuum decaying hypothesis using a Taylor expansion of the
dark matter density around the redshift z = 0 was presented. If vacuum decay is allowed, the series
will not converge to the simple third-order polynomial ρdm = ρdm,0(1 + z)3. Thus, an efficient and
completely general method of probing the vacuum decaying hypothesis is to search for deviations
of the series coefficients of the values provided by the uncoupled case. We note that from geometric
probes as SNe Ia, BAO and CMB, it is impossible to distinguish between quintessence and vacuum
decay scenarios searching only for deviations in the standard dark matter density evolution. Thus,
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we perform an observational search for such deviations using 17 growth function measurements
collected from several references. Since the growth function depends on the matter density expression,
these data should be sensitive to deviations in the standard dark matter density evolution, allowing
detection of a vacuum decay. The results obtained are compatible with the ΛCDM model. However, at
least with the data currently available, it is not possible to rule out the vacuum decaying models. We
claim that the method presented here may prove very useful to detect a possible vacuum decay in the
future when a larger amount of growth function data with a greater accuracy become available.
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