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Abstract: To study the kinetic properties of dense quantum plasma, a new quantum dynamics
method in the Wigner representation of quantum mechanics has been developed for extreme
conditions, when analytical approximations based on different kinds of perturbation theories cannot
be applied. This method combines the Feynman and Wigner formulation of quantum mechanics
and uses for calculation the path integral Monte-Carlo (WPIMC) in phase space and quantum
generalization of the classical molecular dynamics methods (WMD) allowing to solve the quantum
Wigner–Liouville-like equation. The Fermi–Dirac statistical effects are accounted for by the effective
pair pseudopotential depending on coordinates and momenta and allowing to avoid the famous
“sign problem” due to realization of the Pauli blocking of fermions. Significant influence of the
interparticle interaction on the high energy asymptotics of the momentum distribution functions have
been observed. According to the quantum Kubo formula, we also study the electron conductivity of
dense plasma media.
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1. Introduction

The main advantage of the Wigner formulation of the quantum mechanics in the phase space
is that it allows obtaining more information on the quantum system than can be done by any other
quantum description. This is important in many fields such as the quantum information processing,
quantum electronics, quantum chemistry, signal processing, dynamical properties of many body
quantum systems and many others. Moreover, this approach allows treating the entanglement that
can occur in quantum systems (for review, see [1]).

In this paper, we apply the Wigner formulation of the quantum simulation of strongly coupled
low-temperature two-component plasma (about 10,000–100,000 K). This allows us to avoid the problem
that the thermal radiation [2] causes substantial energy loss in weakly coupled high-temperature
plasmas [3–5] such as thermal nuclear fusion plasmas. For instance, the well-known Lawson condition
is derived from the condition that the fusion energy compensates the thermal bremsstrahlung emission
loss. During the last decades, many papers have been devoted to studying the thermodynamic and
kinetic properties of strongly coupled plasmas. A two component plasma is quantum mechanical even
at high temperature and low density since the Heisenberg uncertainty principle is necessary to keep
the electrons from collapsing into ions. Some of the most powerful numerical methods for simulation
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of quantum systems are the Monte-Carlo methods (PIMC), based on the path integral formulation of
quantum mechanics [6]. The main difficulty for the PIMC studies of Fermi systems results from the
requirement of anti-symmetrization of the density matrix [6]. As a result, all thermodynamic quantities
are presented as the sum of terms with alternating sign related to even and odd permutations and
are equal to the small difference of two large numbers, which are the sums of positive and negative
terms. The numerical calculation in this case is severely hampered. This difficulty is known in the
literature as the “sign problem”. To overcome this issue, many approaches have been developed (for
example, [7,8]).

The second main disadvantage of the PIMC method is that it cannot cope with the problem
of calculation of average values of arbitrary quantum operators in phase space and momentum
distribution functions, while this problem may be central in treatment of thermodynamic and kinetic
properties of matter. The main results of this work can be formulated as follows: to overcome
disadvantages of the standard PIMC methods in configuration space, we use a new numerical
approach (WPIMC) based on combining the path integral and the Wigner formulation of quantum
mechanics [9,10]; to account for the Fermi–Dirac statistical effects in explicit formm the effective
pair pseudopotential depending on coordinates and momenta has been used, thus avoiding the
famous “sign problem” due to realization of the Pauli blocking of fermions in phase space at the finite
temperature; the high energy asymptotics of the momentum distribution functions has been studied
under strong interparticle Coulomb interaction; and, according to the quantum Kubo formula, the
electron conductivity of strongly-coupled hydrogen plasma has been calculated using the Wigner
generalization of the standard classical molecular dynamics method.

2. Wigner Quantum Dynamics

As example of Coulomb system of particles, we consider a 3D two-component mass asymmetric
electron–hole plasma consisting of Ne electrons and Nh heavier holes in equilibrium (Ne = Nh =

N) [11]. The Hamiltonian of the system Ĥ = K̂ + Ûc contains the kinetic energy K̂ and the
Coulomb interaction energy Ûc = Ûc

hh + Ûc
ee + Ûc

eh contributions. Our starting point is the canonical
ensemble-averaged time correlation function [12]

CFA(t) =
〈

F̂(0)Â(t)
〉
= Z−1Tr

{
F̂eiĤt∗c /h̄ Âe−iĤtc/h̄

}
, (1)

where F̂ and Â are operators of arbitrary observables, tc = t − ih̄β/2 is the complex time, β =

1/kBT and Z = Tr
{

e−βĤ
}

is the partition function. The Wigner representation of Equation (1) in a
υ-dimensional space is

CFA(t) = (2πh̄)−2υ
∫ ∫

dpq dp̃q F(pq) A( p̃q)W(pq; p̃q; t; β), (2)

where ν = 12N, A(pq) and F( p̃q) denote the Weyl’s symbols of the operators and W(pq; p̃q; t; β) is the
spectral density (the Wigner–Liouville-like function) expressed as

W(pq; p̃q; t; β) =
1
Z

∫ ∫
dξ̄dξ̃ei p̄ξ̄

h̄ ei p̃ξ̃
h̄

〈
q̄ +

ξ̄

2

∣∣∣eiĤt∗c /h̄
∣∣∣ q̃− ξ̃

2

〉 〈
q̃ +

ξ̃

2

∣∣∣e−iĤtc/h̄
∣∣∣ q̄− ξ̄

2

〉
.

As has been proved in [13–15], W obeys the following integral equation:

W (pq; p̃q; t; β) =
∫

dp0q0 dp̃0q0 G (pq, p̃q, t; p0q0, p̃0q0, 0) W(p0q0; p̃0q0; t = 0, β)

+
1
2

∫ t

0
dt′
∫

ds
∫

dp′q′ dp̃′q′ G
(

pq, p̃q, t; p′q′, p̃′q′, t′
)

×
[
W(p′ − s, q′; p̃′q′; t′; β)ω(s, q′)−W(p′q′; p̃′ − s, q̃′; t′; β)ω(s, q̃′)

]
, (3)
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with the Green function

G
(

pq, p̃q, t; p′q′, p̃′q′, t′
)
= δ

(
p− p(t; p′q′, t′)

)
δ
(

q− q(t; p′q′, t′)
)

×δ
(

p̃− p̃(t; p̃′q′, t′)
)

δ
(

q̃− q̃(t; p̃′q′, t′)
)

,

describing propagation of the spectral density along classical trajectories in positive time direction

dp(t; p′q′, t′)
dt

=
1
2

F(qt),
dq(t; p′q′, t′)

dt
=

1
2

v[p(t; p′q′, t′)], (4)

and in the reverse time direction

dp̃(t; p̃′q′, t′)
dt

= −1
2

F(q̃t),
dq̃(t; p̃′q′, t′)

dt
= −1

2
ṽ[ p̃(t; p̃′q′, t′)], (5)

where (q̃t) = [q̃(t; p̃′q′, t′)] and, similarly for bared quantities, while vectors F = −∇Uc

and v symbolize the forces and particle velocities, respectively, ω(s, q) = 4
(2πh̄)υ/2 h̄

∫
dq′Uc(q −

q′) sin
(

2sq′
h̄

)
+ F(q)∇δ(s) and δ(s) is the Dirac delta function. This happens because of the presence

of the direct time (e−iĤtc/h̄) and reverse time (eiĤtc/h̄) evolution operators in the definition of the
time-correlation function.

These equations of motion are supplemented by initial conditions at time t = 0

p(0; p0q0, 0) = p0, q(0; p0q0, 0) = q0,

p̃(0; p̃0q0, 0) = p̃0, q̃(0; p̃0q0, 0) = q̃0, (6)

and by initial conditions at time t = t′

p(t′; p′q′, t′) = p′, q(t′; p′q′, t′) = q′.

p̃(t′; p̃′q′, t′) = p̃′, q̃(t′; p̃′q′, t′) = q̃′. (7)

In fact, Equation (4) are Hamiltonian equations of motion but written for half-time (t/2). Similarly,
Equation (5) are half-time Hamiltonian equations of motion reversed in time. The time correlation is
taken between instants in the past and the future with the initial conditions fixed in between these
instants, i.e., at t = 0 the spectral density is W(pq0; p̃q0; t = 0, β) = W0

(pq0; p̃q0; β). The right-hand
sides of Equations (4) and (5) include interparticle interaction, which can be arbitrary strong.

The solution of the integral in Equation (3) can be represented by an iteration series

Wt = Wt
+ Kt

τWτ = Kt
0W0

+ Kt
τ1

Kτ1
0 W0

+ . . . ,

where Wt is the initial quantum spectral densities evolving classically during time intervals [0, t],
whereas Kτi+1

τi are operators that govern the propagation from time τi to τi+1 such as the first term in
Equation (3) and momentum jumps due to the convolution structure of Equation (3) (see, e.g., [13–15]).
Thus, the time correlation function becomes

CFA(t) =
(
φ|Wt) = (φ|Wt

)
+
(

φ|Kt
τ1

Kτ1
0 W0

)
+ . . . (8)

where φ(pq; p̃q) ≡ F(pq)A( p̃q) and the parentheses (. . . | . . . ) denote integration over the phase spaces
{p0q0; p̃0q0}, {dp′q′ dp̃′q′} and so on. To compute the electron–electron conductivity, we calculate the
electron time correlation function Cvv(t) and then apply the Kubo formula which contains the Fourier
transform of Cvv(t) at ω = 0.
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The iteration series for CFA(t) can be efficiently computed using MC methods. We have developed
a MC scheme which provides domain sampling of the terms giving the main contribution to the
iteration series (cf. [13–15]). For simplicity, in this work, we take into account only the first term of
iteration series, which is related to the propagation of the initial quantum distribution W0 according to
forward and backward in time the Hamiltonian equations of motion. This term, however, does not
describe pure classical dynamics but accounts for quantum effects [13] and, in fact, contains arbitrarily
high powers of the Planck’s constant:

W (pq; p̃q; t; β) '
∫

dp0q0 dp̃0q0 G (pq, p̃q, t; p0q0, p̃0q0, 0)

×W0(pq0; p̃q0; β). (9)

3. The Initial Wigner Function for Canonical Ensemble

Of course, the exact matrix elements of density matrix of interacting quantum systems is not
known (particularly for low temperatures and high densities), but they can be constructed using a
path integral approach based on the operator identity e−βĤ = e−εĤ · e−εĤ . . . e−εĤ , where ε = β/M.

The anti-symmetrized Wigner function can be written in the form:

W0(pq; β) =
1

Z(β)Ne!Nh! ∑
σ

∑
Pe

∑
Ph

(±1)κPe+κPhS(σ, P̂e P̂hσ′)
∣∣
σ′=σ

×
∫

dξeiξ p/h̄〈q− ξ/2|
M−1

∏
m=0

e−εÛc
m e−εK̂m |P̂e P̂h(q + ξ/2)〉 (10)

Here, σ = {σe, σh} and q = {qe, xh} (qa = {q1,a . . . ql,a . . . qNa ,a} with a, b = e, h and l, t =

1, . . . , Na) are spin degrees of freedom and the spatial coordinates of electrons and positive particles,
respectively. Index m = 0, . . . , M− 1 labels the off-diagonal high-temperature density matrices; each
high temperature factor can be presented in the form 〈q(m)|e−εĤ |q(m+1)〉 ≈ 〈q(m)|e−εÛc |q(m+1)〉ρ(m+1)

0

(ρ(m+1)
0 = 〈q(m)|e−εK̂|q(m+1)〉) with the error of order 1/M2 arising from neglecting commutator

ε2 [K, Uc] /2. In the limit M→ ∞, the error of the whole product of high temperature factors is equal
to zero (∝ 1/M) and we have the exact path integral representation of the Wigner function.

The spin gives rise to the spin part of the density matrix (S) with exchange effects accounted for
by the permutation operators P̂e and P̂h acting on the electron and hole coordinates q(M) and the spin
projections σ′. The sum is over all permutations with parity κPe and κPh .

Accounting for only identical and pair permutations, the final expression for the Wigner function
can be obtained in the form of the path integral over all closed trajectories and can be presented in the
form [2]:

W0(pq; β) ≈ C(M)

Z(β)Ne!Nh!

∫
dq(1) . . . dq(M−1)

× exp

{
−

M−1

∑
m=0

[
π|q(m) − q(m+1)|2 + εU(q + q(m))

]}

× exp

{
M
4π

(
ip +

ε

2

M−1

∑
m=0

(M− 2m)

M
∂U(q + q(m))

∂q

)2}
∑
σ

exp(−β ∑
l<t

ve
lt) exp(−β ∑

l<t
vh

lt) (11)

where

va
lt ≈ −kT ln

{
1− δσl,aσt,a exp

(
−2π|ql,a − qt,a|2

)
exp

(
−
|( p̃l,a − p̃t,a)|2

(2π)2α2

)}

p̃t,a = pt,a +
ε

2

M−1

∑
m=0

∂U(q + q(m))

∂qt,a
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while α is small parameter. The constant C(M) cancels out when we calculate the average values of
operators. We imply that momenta and coordinates are dimensionless variables such as pl,aλ̃a/h̄ and

ql,a/λ̃a, where λ̃a =
√

2πh̄β
ma M . The Pauli blocking of fermions is accounted for in Equation (11) by the

exchange pseudopotential in phase space va
lt and provides agreement of the momentum distribution

for ideal fermions with analytical Fermi–Dirac distribution in the wide ranges of degeneracy and
momenta, where decay of the distribution functions covers at least five orders of magnitude [2].

Here, each particle is represented by a discrete trajectory consisting of a set of M points (“beads”)
and the whole configuration of the particles is represented by a 3(Ne + Nh)M-dimensional vector
q̃ ≡ {q(0)1,e , . . . q(M−1)

1,e , q(0)2,e . . . q(M−1)
2,e , . . . q(M−1)

Ne ,e ; q(0)1,h . . . q(M−1)
Nh ,h }. When ε → 0, this multiple integral

tends to the exact representation of the Wigner function W(pq; β) in the form of path integral with
continuous dimensionless “imaginary time” τ [6], which corresponds to m/M in discrete case. In
addition, the set of independent variables q(m) tends into closed trajectory q(τ). This trajectory starts
and ends in 0 when τ = 0 and 1. Let us note that integration here is related to the integration over
the Wiener measure of all closed trajectories q(τ) [16]. In fact, a particle is presented by the trajectory

with characteristic size of order λa =
√

2πh̄β
ma

in coordinate space. This is a manifestation of the
uncertainty principle.

In Equation (11) , U = Uhh +Uee +Ueh denotes the sum of all interaction energies, each consisting
of the corresponding sum of pair interactions given by the well known Kelbg potential Φab defined by
the following expression [17,18]:

M−1

∑
m=0

Φab(qm
lt ; ε) =

M−1

∑
m=0

eaeb
λabqm

lt

[
1− e−(q

m
lt )

2) +
√

πqm
lt (1− erf(qm

lt ))
]

, (12)

where ea and eb are charges of particles, qm
lt = |q

m
l,a− qm

t,b|/λab, λab =
√

h̄2ε/(2mab), mab = mamb/(ma +

mb) is the reduced mass of the (ab)-pair of particles and the error function is defined by erf(x) =
2√
π

∫ x
0 dte−t2

. Here, coordinates are written in the natural units.

4. Results of Numerical Calculations

The plasma density is characterized by the Brueckner parameter rs defined as the ratio of the
mean interparticle distance of electrons d = ( 3

4πne
)1/3 to the Bohr radius aB (ne is the electron densities).

To estimate the importance of interaction and degeneracy effects, we use the degeneracy χ = neλ3
e and

the coupling Γ = e2/(rsaBkBT) parameters, where λe = 2πh̄2/(mekBT) and me is the electron mass.
The momentum distribution functions: We define the momentum distribution function for

holes (a = h) and electrons (a = e) by the following expressions:

wa(|p|) =
∫
V

dpdx δ(p1,a − p)W(p, x; β) (13)

where δ is delta function.
The momentum distribution function wa(|p|) gives a probability density for particle of type

a to have momentum p. For classical systems of particles, due to the commutativity of kinetic
and potential energy operators, we have the Maxwell distribution function (MD) proportional to
exp(−(pλa)2/4πh̄2), even under the strong coupling. Quantum ideal systems of particles, due to the
quantum statistics, have the Fermi–Dirac (FD) or Bose–Einstein momentum distribution functions.
Interaction of a quantum particle with its surroundings restricts the volume of configuration space,
which can affect the shape of momentum distribution function due to the uncertainty relation.
Through these effects in frameworks of some models and perturbation theories, the momentum
distribution functions have the power-law “tails” (const/p8) even under conditions of thermodynamic
equilibrium [19–25]. In particular, it is shown that the momentum distribution in the asymptotic region
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of large momenta p may be described by the sum of the Maxwell distribution (MD) and quantum
correction proportional to const/p8 (we use short notation as P8) or sum of the MD and product of
const/p8 and the Maxwell distributions with effective temperature that exceeds the temperature of
medium (short notation - P8MDEF) [25]. Reliable analytical calculations of numerical parameters in
these asymptotic is problematic.

The WPIMC calculations for the electron and hole momentum distribution functions in electron -
hole plasma are presented in Figure 1 (left panel) by Lines 1 and 4 for electrons and holes, respectively.
Here, the parameter of electronic degeneracy is equal to four (T/EF = 0.261), while the hole mass is
two times larger than the electron mass. Figure 1 also presents several related analytical dependencies:
FD (Lines 2 and 5), MD (Lines 3 and 6), P8 (Lines 7 and 8), and P8MDEF (Lines 9 and 10).

Here, the constant in P8 and the effective temperature in P8MDEF have been used as the
adjustable parameters to fit the WPIMC momentum distribution functions in the large momentum
asymptotic regions.

Transport coefficients: A natural way to obtain transport coefficients is making use of the
quantum Green–Kubo relations [12]. These relations give the transport coefficients in terms of
integrals of equilibrium time-dependent correlation functions. According to Equation (8), the electron
conductivity σ is the integral of the velocity–velocity autocorrelation function

σe = e2neβ lim
t→∞

1
3

∫ t

0
dτ〈v(0) · v(τ)〉e

〈v(0) · v(τ)〉e = (2πh̄)−2ν
∫

dpq dp̃qW(pq; p̃q; τ; β) ve (p(τ)) · ve ( p̃(τ)) , (14)

where the scalar product of 3D-velocities is

ve (p(τ)) · ve ( p̃(τ)) =
1

Ne

Ne

∑
i=1

pi(τ) · p̃i(τ)

m2
i

, (15)

and the trajectories in positive (bared) and inverse (tilded) time directions are defined by Equations (4)
and (5), respectively.

Calculations of autocorrelation functions are performed in canonical ensemble and include
combination of the Monte-Carlo sampling of initial conditions pq0 and p̃q0 for trajectories and
solving the system of dynamic Hamiltonian Equations (4) and (5). The initial conditions pq0 and
p̃q0 for the trajectories are sampled by Monte-Carlo method according to the modulus of probability
W0(pq0; p̃q0; β), while sign of the W0(pq0; p̃q0; β) is accounted for as a wieght function at calculations
average values [2].

First, we discuss the velocity–velocity autocorrelation function (VVACF). Figure 1 (central panel)
shows examples of the velocity–velocity autocorrelation functions and its antiderivatives. The initial
Wigner distribution W0, due to the path integral representation, accounts for momentum–coordinate
principle uncertainty. Consequently, the initial momenta are to a great extent independent form each
other and the VVACF approach to zero. Some time later, correlation of the VVACF starts to grow
due to strong interaction with surrounding particles. This happens as Γe ≤ 1, |q0 − q̃0| ∼ λe and
λe ≤ βe2 ≤ rsaB and the virtual trajectories pq and p̃q are approximately continuations of each other
independently from initial conditions. Subsequent decay of the VVACF results from interaction with
far particles at distances larger than rs. According to Figure 1, the damping time of the VVACF turns
out to be strongly affected by the variations of density and temperature.

Let us discuss now the conductivity of a strongly coupled Coulomb system. Figure 1 (right)
presents comparison of our conductivity isochores with those obtained from the interpolation formula
for conductivity of fully ionized hydrogen plasma derived in [26,27]. This figure demonstrates
agreement of both data at low densities and high temperatures. Let us stress that Line 6 restricts
approximately from above the region of conductivity sharp drop due to arising bound states of many
particle clusters.
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Figure 1. (Color online) (Left) The momentum distribution functions wa(|p|) for interacting electrons
and two times heavier holes. The electronic momentum distributions are presented by Lines 1, 2, 3, 7,
and 9, while analogous results for holes are presented by Lines 4, 5, 6, 8, and 10. The physical meaning
of these lines is given in text. Degeneracy of electrons is equal to 4 (T/EF = 0.261, kFλe = 4.91),
while rs and the plasma classical coupling parameter is equal to 2. (Central) The velocity–velocity
autocorrelation function (Line 1) and its antiderivative function (Line 2) versus time in atomic units
(τ0 = h̄/Ha) for rs = 6, T = 1.27Ha. (Right) Electrical electron conductivity as function of the coupling
parameter Γe for different fixed densities of two component Coulomb system. Empty scatters 1–5
show results of this work for the fixed rs = 6, 4, 3, 2, 1, respectively, while related lines present results
of interpolation formula for conductivity of fully ionized hydrogen plasma [26,27]. Line 6 restricts
approximately from above the region of conductivity sharp drop due to arising bound states of many
particle clusters.

5. Discussion

In this work, we use the generalization of the classical molecular dynamics methods allowing
to take into account quantum effects. We use the Feynman and Wigner formulations of quantum
mechanics combining with Monte Carlo methods for numerical treatment of the kinetic properties
of dense quantum plasma media. The Wigner–Liouville-like equation is solved by a combination of
Wigner molecular dynamics (WMD) and by Monte-Carlo method in phase space (WPIMC) methods.
The initial Wigner-like function has been presented in the form of path integrals. Fermi statistical
effects are accounted for by effective pair pseudopotential depending on coordinates, momenta and
degeneracy parameter of particles and taking into account Pauli blocking of fermions. WPIMC allows
calculating thermodynamic quantities and pair distribution functions in a wide range of density and
temperature.

Comparison of the classical Maxwell–Boltzmann and quantum Fermi–Dirac distribution shows
the significant influence of the interparticle interaction on the high energy asymptotics of the
momentum distribution functions resulting in appearance of the power-law quantum “tails”. To study
the influence of the interparticle interaction on the dynamic properties of dense plasmas, we also
compute the temporal correlation functions of quantum operators. According to the quantum Kubo
formula, we determined the electron conductivity and compared obtained results with available
theories. Our results show a strong dependence on the plasma parameters and for fully ionized plasma
are in a agreement with available theories, simulations, experimental data and interpolation formula
obtained by Esser, Redmer and Röpke. Appearance of bound states and many particle clusters in
plasma results in sharp drop of electron conductivity.
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Abbreviations

The following abbreviations are used in this manuscript:

PIMC Monte Carlo methods based on the path integral formulation of quantum mechanics
WPIMC Path integral Monte Carlo method in phase space
WMD Quantum generalization of the classical molecular dynamics methods
MD Maxwell distribution function
FD Fermi–Dirac momentum distribution function
P8 Quantum correction to the momentum distribution function proportional to const/p8

P8MDEF Quantum correction multiplied on Maxwell distributions with effective temperature
VVACF Velocity-velocity auto correlation function
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