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Abstract: The QCD Lagrangian is based on quark and gluonic fields—not squarks nor
gluinos. However, one can show that its hadronic eigensolutions conform to a representation
of superconformal algebra, reflecting the underlying conformal symmetry of chiral QCD.
The eigensolutions of superconformal algebra provide a unified Regge spectroscopy of meson,
baryon, and tetraquarks of the same parity and twist as equal-mass members of the same 4-plet
representation with a universal Regge slope. The predictions from light-front holography and
superconformal algebra can also be extended to mesons, baryons, and tetraquarks with strange,
charm and bottom quarks. The pion qq̄ eigenstate has zero mass for mq = 0. A key tool is the
remarkable observation of de Alfaro, Fubini, and Furlan (dAFF) which shows how a mass scale can
appear in the Hamiltonian and the equations of motion while retaining the conformal symmetry
of the action. When one applies the dAFF procedure to chiral QCD, a mass scale κ appears which
determines universal Regge slopes, hadron masses in the absence of the Higgs coupling. One also
predicts the form of the nonperturbative QCD running coupling: αs(Q2) ∝ e−Q2/4κ2

, in agreement
with the effective charge determined from measurements of the Bjorken sum rule. One also obtains
viable predictions for spacelike and timelike hadronic form factors, structure functions, distribution
amplitudes, and transverse momentum distributions. The combination of conformal symmetry,
light-front dynamics, its holographic mapping to AdS5 space, and the dAFF procedure thus provide
new insights, not only into the physics underlying color confinement, but also the nonperturbative
QCD coupling and the QCD mass scale.

Keywords: quantum chromodynamics; color confinement; superconformal algebra; conformal
symmetry; light-front holography

1. Conformal Invariance of QCD and the Principle of Maximum Conformality

Conformal symmetry is a an underlying symmetry of quantum chromodynamics (QCD). If one
sets the quark masses to zero in the QCD Lagrangian, the theory has no evident mass scale, and it is
manifestly scale invariant. In effect, the classical chiral QCD theory is conformal.

A key tool is the remarkable observation of de Alfaro, Fubini, and Furlan (dAFF) [1] which
shows how a mass scale can appear in the Hamiltonian and the equations of motion of a theory while
retaining the conformal symmetry of the action. When one applies the dAFF procedure to chiral
light-front QCD, a mass scale κ appears which determines universal Regge slopes and hadron masses
in the absence of the Higgs coupling.

Conformal symmetry also leads to a rigorous way to eliminate the renormalization scale
ambiguity [2–4] A primary problem for perturbative QCD analyses is how to set the renormalization
scale of the QCD running coupling in order to achieve precise fixed-order predictions for physical
observables. The Principle of Maximal Conformality (PMC) provides a systematic way to set the
renormalization scales order-by-order for any perturbative QCD process, eliminating the ambiguities
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associated with the conventional renormalization scale-setting procedure. The resulting predictions
are independent of the choice of renormalization scheme, a requirement of renormalization group
invariance. The scales of the QCD couplings and the effective number of quark flavors are set
order-by-order by absorbing the nonconformal β terms in the pQCD series into the running coupling.
The resulting pQCD series then matches the β = 0 conformal series.The PMC generalizes the BLM
procedure to all orders [5] and it reduces to the Gell Mann Low scale setting procedure for Abelian
QED in the NC → 0 limit. The divergent renormalon series does not appear. The PMC satisfies
renormalization group invariance and all of the other self-consistency conditions derived from the
renormalization group. It thus systematically eliminates a major theoretical uncertainty for pQCD
predictions and increases the sensitivity of experiment to new physics beyond the Standard Model.

The Crewther relation [6], which was originally derived for conformal theory, provides a
remarkable connection in conformal theory between two observables when the β function vanishes.
Specifically, it connects the non-singlet Adler function to the Bjorken sum rule coefficient for polarized
deep-inelastic electron scattering at leading twist. The “Generalized Crewther Relation” [6–8] relates
these observables for physical QCD with nonzero β function. The resulting relation is independent
of the choice of the renormalization scheme at any finite order, and the dependence on the choice of
the initial scale is negligible. Similar scale-fixed “commensurate scale relations” also connect other
physical observables at their physical momentum scales, thus providing new convention-independent
precision tests of QCD.

2. The Origin of the QCD Mass Scale and the dAFF Principle

A fundamental question for QCD is the origin of the mass of the proton and other hadrons when
the quark masses are zero.

It is often stated that the mass scale ΛM̄S of the renormalized perturbative theory generates the
nonperturbative QCD mass scale; however, this “dimensional transmutation” solution is problematic
since the perturbative scale is renormalization-scheme dependent, whereas hadron masses cannot
depend on a theoretical convention. It is conventional to measure hadron masses in MeV units;
however, QCD has no knowledge of units such as electron-volts. Thus QCD at mq = 0 can at
best only predict ratios of masses such as mρ/mp and other dimensionless quantities. It is often
argued that the QCD mass scale reflects the presence of quark and gluon condensates in the QCD
vacuum state. However, such condensates lead to a cosmological constant a factor of 1042 larger than
measured. In fact, nontrivial vacuum structure does not appear in QCD if one defines the vacuum
state as the eigenstate of lowest invariant mass of the QCD light-front (LF) Hamiltonian. In fact, in
Dirac’s boost invariant “front form” [9], where the time variable is the time x+ = t + z/c along
the light-front, the light-front vacuum |0 >LF is both causal and frame-independent; one thus has
< 0LF|Tµν|0LF >= 0 [10] and zero cosmological constant [11,12]. In the case of the Higgs theory,
the traditional Higgs vacuum expectation value (VEV) is replaced by a “zero mode”, in the LF
theory, analogous to a classical Stark or Zeeman field [13]. The Higgs LF zero mode [13] has no
energy-momentum density, so it also gives zero contribution to the cosmological constant.

The remarkable work of de Alfaro, Fubini, and Furlan (dAFF) [1] provides a novel solution for the
origin of the hadron mass scale in QCD. dAFF have shown that one can introduce a nonzero mass scale
κ into the Hamiltonian of a conformal theory without affecting the conformal invariance of the action.
The essential step is to add to the Hamiltonian H a term proportional to the dilation operator and/or
the special conformal operator. In the case of one-dimensional quantum mechanics, the resulting
Hamiltonian acquires a confining harmonic oscillator potential; however, after a redefinition of the
time variable, the action remains conformal.

The same principle can be applied to relativistic quantum field theory using light-front (LF)
quantization [14]. The application of dAFF then leads in fact to a color-confining LF harmonic oscillator
potential, where again the action remains conformal. In fact, De Téramond, Dosch, and I [15] have
shown that a mass gap and a fundamental color confinement scale also appear when one extends the
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dAFF procedure to light-front (LF) Hamiltonian theory in physical 3 + 1 spacetime. The LF equation
for qq̄ bound states for mq = 0 can be systematically reduced to a differential equation in a single LF
radial variable ζ:

[− d
dζ2 −

(1− 4L2)

4ζ2 + U(ζ2)]ψ(ζ) = M2ψ(ζ)

where ζ2 = b2
⊥x(1− x) is the radial variable of the front form and L = max |Lz| is the LF orbital angular

momentum [16]. This is in analogy to the non-relativistic radial Schrödinger equation for bound states
such as positronium in QCD. Thus in the case of QCD(3 + 1)—using the causal, frame-independent
light-front Hamiltonian formalism—the LF potential has the unique form κ4ζ2, where ζ is the radial
variable of the light-front form : ζ2 = b2

⊥x(1− x) where x = k+
P+ = k0+k3

P0+P3 is the boost invariant
momentum fraction.

3. Light-Front Holography

As noted by Maldacena [17], anti-deSitter space in five space-time dimensions (AdS5) provides
a geometrical representation of the conformal group. Thus AdS5 can be used as a starting point
for a conformal theory such as chiral QCD. In fact AdS5 is holographically dual to gauge theory
quantized at fixed light-front time, Dirac’s front form. Exclusive hadron amplitudes, such as elastic
and transition form factors are given in terms of convolutions of light-front wavefunctions [18].
The light-front Drell-Yan-West formulae for electromagnetic and gravitational form factors is identical
to the Polchinski-Strassler [19] formula for form factors in AdS5. This identification (light-front
holography also provides a nonperturbative derivation of scaling laws [20,21] for form factors at
large momentum transfer. Additional references and reviews of Light-Front Holography may be found
in refs. [22–26].

Remarkably, the identical LF potential and the same LF equation of motion are obtained in AdS5

when one identifies the fifth coordinate z with the LF radial coordinate ζ and introduces a specific
modification of the AdS5 metric—the “dilaton" eφ(z) = e+κ2z2

. This dilaton also leads to Gaussian
functional form of the nonperturbative QCD running coupling: αs(Q2) ∝ exp−Q2/4κ2, in agreement
with the effective charge determined from measurements of the Bjorken sum rule. The soft wall dilaton
e+κ2z2

modification of the conformal AdS5 action is selected so that the resulting bound state equation
in the AdS fifth dimension yields the κ4z2 confining potential and thus the κ4ζ2 potential in the LF
Schrödinger equation, as in the dAFF modification of a conformally-invariant Hamiltonian. Thus this
dilaton conforms with the dAFF procedure which shows how a mass scale κ can appear in a bound
state equation while retaining the conformal invariance of the action.

Deur, de Teramond, and I [27–29] have also shown how the parameter κ, which determines
the mass scale of hadrons and Regge slopes in the zero quark mass limit, can be connected to the
mass scale Λs controlling the evolution of the perturbative QCD coupling. The high momentum
transfer dependence of the coupling αg1(Q2) is predicted by pQCD. The matching of the high and
low momentum transfer regimes of αg1(Q2)—both its value and its slope—then determines a scale
Q0 = 0.87± 0.08 GeV which sets the interface between perturbative and nonperturbative hadron
dynamics. This connection can be done for any choice of renormalization scheme, such as the MS
scheme, The mass scale κ underlying hadron masses can thus be connected to the parameter ΛMS in
the QCD running coupling by matching its predicted nonperturbative form to the perturbative QCD
regime. The result is an effective coupling αs(Q2) defined at all momenta.

This identification of AdS5 with the light-front Hamiltonian theory automatically introduces an
extra spin-dependent constant term 2κ2(L + S− 1) in the LF Hamiltonian, where L = max Lz, S =

max Sz with Jz = Lz + Sz are the LF spins. The resulting prediction from AdS/QCD is the single
variable “LF Schrodinger Equation” in ζ, where U(ζ2) = κ4ζ2 + 2κ2(L + S− 1) and ζ2 = b2

⊥x(1− x).
The synthesis of AdS/QCD with superconformal algebra and the dAFF ansatz is illustrated in Figure 1.
The eigenvalues for the meson spectrum are M2(L, n) = 4κ2(n + J+L

2 ). The mesonic spectrum of
qq̄ bound states is thus described as Regge trajectories in both the radial variable n and the orbital
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angular momentum L with the same slope 4κ2. Color confinement is a consequence of the light-front
potential U(ζ2). Remarkably, the pion (n = 0, J = L = 0) is massless: mπ = 0 for mq = 0. Thus
light-front holography explains another fundamental question in hadron physics – how a zero mass
qq̄ pseudoscalar pion bound state can emerge, despite its composite structure. The eigensolutions
generate both the mass spectrum and the light front wavefunctions ψM(x, k⊥, λ) for all qq̄ meson
bound state.

Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

Conformal Symmetry 
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Light-Front Schrödinger Equation Unique 
Confinement Potential!

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!• Fubini, Rabinovici: 

e'(z) = e+2z2

Single variable  ζ

⇥
� d2

d⇣2 � 1�4L2

4⇣2 + U(⇣)
⇤
 (⇣) = M2 (⇣)

�
� d2

d2�
+ V (�)

⇥
= M2⇥(�)

�
� d2

d�2
+ V (�)

⇥
= M2⇥(�)

�2 = x(1 � x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥zi = 1
2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Figure 1. The convergence of theoretical methods for generating a model of hadron spectroscopy and
dynamics with color confinement and meson-baryon supersymmetric relations.

Nonzero quark masses appear in the “LF kinetic energy" (LFKE) ∑i
k2
⊥+m2

xi
contribution to the LF

Hamiltonian—the square of the invariant mass of the constituents: M2 = (∑i pµ
i )

2. One can identify

the the m2

x contribution to the LFKE as arising in the Higgs theory from the coupling m
x ×m of each

quark to the background zero-mode Higgs field [13] which replaces the usual VEV of the standard
time “instant form”. In the heavy quark limit, one recovers the usual σr confining potential for heavy
quarkonium [30].

4. Superconformal Algebra and Supersymmetric Hadron Spectroscopy

Another advance in LF holography is the application of superconformal algebra, a feature of the
underlying conformal symmetry of chiral QCD. The conformal group has an elegant 2× 2 Pauli
matrix representation called superconformal algebra, originally discovered by Haag, Lopuszanski,
and Sohnius [31] (1974) The conformal Hamiltonian operator and the special conformal operators can
be represented as anticommutators of Pauli matrices H = 1/2[Q, Q†] and K = 1/2[S, S†]. As shown by
Fubini and Rabinovici, [32], a nonconformal Hamiltonian with a mass scale and universal confinement
can then be obtained by shifting Q→ Q + ωK, the analog of the dAFF procedure. In effect, one has
obtained generalized supercharges of the superconformal algebra [32]. This ansatz extends the
predictions for the hadron spectrum to a “4-plet” —consisting of mass-degenerate quark-antiquark
mesons, quark-diquark baryons, and diquark-antidiquark tetraquarks, as shown in Figure 2. The 4-plet
contains two entries Ψ± for each baryon, corresponding to internal orbital angular momentum L and
L + 1. This property of the baryon LFWFs is the analog of the eigensolution of the Dirac-Coulomb
equation which has both an upper component Ψ+ and a lower component Ψ− =

~σ·~p
m+E−V Ψ+.

LF Schrödinger Equations for baryons and mesons can be derived from superconformal algebra.
The baryonic eigensolutions correspond to bound states of 3C quarks to a 3̄C spin-0 or spin-1
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qq diquark cluster; the tetraquarks in the 4-plet are bound states of diquarks and anti-diquarks.
The quark-diquark baryons have two amplitudes LB, LB + 1 with equal probability, a feature of “quark
chirality invariance”. The proton Fock state component ψ+ (with parallel quark and baryon spins)
and ψ− (with anti-parallel quark and baryon spins) have equal Fock state probability—a feature of
“quark chirality invariance”. Thus the proton’s spin is carried by quark orbital angular momentum
in the nonperturbative domain. Predictions for the static properties of the nucleons are discussed in
Ref. [33]. The predicted spectrum, M2(n, L) = 4κ2(n + L) for mesons and M2(n, L) = 4κ2(n + L + 1)
for baryons, is remarkably consistent with observed hadronic spectroscopy. The Regge-slopes in n
and L are identical. The predicted meson, baryon and tetraquark masses coincide if one identifies a
meson with internal orbital angular momentum LM with its superpartner baryon or tetraquark with
LB = LM − 1. Superconformal algebra thus predicts that mesons with LM = LB + 1 have the same
mass as the baryons in the supermultiplet. An example of the mass degeneracy of the ρ/ω meson
Regge trajectory with the J = 3/2 ∆-baryon trajectory is shown in Figure 3. The value of κ can be set
by the ρ mass; however, only ratios of masses are predicted.

The combination of light-front holography with superconformal algebra thus leads to the novel
prediction that hadron physics has supersymmetric properties in both spectroscopy and dynamics.
The excitation spectra of relativistic light-quark meson, baryon and tetraquark bound states all lie on
linear Regge trajectories with identical slopes in the radial and orbital quantum numbers. Detailed
predictions for the tetraquark spectroscopy and comparisons with the observed hadron spectrum are
presented in ref. [34].

Superconformal Algebra
2X2 Hadronic Multiplets

&%
'$ue &%

'$e ee
�M , LB + 1  B+, LB

-R†
�

&%
'$e ee
 B�, LB + 1

&%
'$e eu u
�T , LB

-R†
�

Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2 ⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, JP = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m2 =
Pn

i=1
m2

i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e�
1
2�

�m2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.

12

Meson Baryon

TetraquarkBaryon

Bosons, Fermions with Equal Mass!

Proton: |u[ud]> Quark + Scalar Diquark
Equal Weight: L=0, L=1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! [qq]

3̄C ! 3̄C

Figure 2. The 4-plet representation of mass-degenerate hadronic states predicted by superconformal
algebra [15]. Mesons are qq̄ bound states, baryons are quark—antidiquark bound states and tetraquarks
are diquark-antidiquark bound states. The supersymmetric ladder operator R†

λ connects quarks and
anti-diquark clusters of the same color.

5. Supersymmetric Hadron Spectroscopy for Heavy Quarks

The predictions from light-front holography and superconformal algebra have been extended
to mesons, baryons, and tetraquarks with strange, charm and bottom quarks in Refs. [35,36].
Although conformal symmetry is strongly broken by the heavy quark mass, the basic underlying
supersymmetric mechanism, which transforms mesons to baryons (and baryons to tetraquarks) into
each other, still holds and gives remarkable connections and mass degeneracy across the entire
spectrum of light, heavy-light and double-heavy hadrons. The excitation spectra of the heavy quark
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meson, baryon and tetraquark bound states continue to lie on universal linear Regge trajectories with
identical slopes in the radial and orbital quantum numbers, but with an increased value for the slope.
For example, the mass of the lightest double-charm baryon |c[cq] >, where the |[cq] is a scalar diquark,
is predicted to be identical to the mass of the L = 1 orbital excitation of the |cc̄ > ( the 1++ h′c(L = 1) )
and also the mass of the |[cq][c̄q̄] > double-charm tetraquark. In fact, the mass of the hc(3525) matches
the mass of the double-charm baryon Ξ+

ccd(3520) identified by SELEX and a tetraquark candidate the
Ξcc(3415). For more details, see refs. [34,37]. The effective supersymmetric properties of QCD can be
used to identify the structure of the heavy quark mesons, baryons and tetraquark states [34].
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Figure 3. Comparison of the ρ/ω meson Regge trajectory with the J = 3/2 ∆ baryon trajectory.
Superconformal algebra predicts the degeneracy of the meson and baryon trajectories if one identifies
a meson with internal orbital angular momentum LM with its superpartner baryon with LM = LB + 1.
See Refs. [38,39].

Thus one predicts supersymmetric hadron spectroscopy – bosons and fermions with the same
mass and twist- not only identical masses for the bosonic and fermionic hadron eigenvalues, but also
supersymmetric relations between their eigenfunctions– their light-front wavefunctions. The baryonic
eigensolutions correspond to bound states of 3C quarks to a 3̄C spin-0 or spin-1 qq diquark cluster;
the tetraquarks in the 4-plet are bound states of diquarks and anti-diquarks. In the case of a nucleon,
the overlap of the L = 0 and L = 1 LF wavefunctions in the Drell-Yan-West formula is required to
have a non-zero Pauli form factor F2(Q2) and anomalous magnetic moment [18]. The existence of both
components is also necessary to generate the pseudo-T-odd Sivers single-spin asymmetry in deep
inelastic lepton-nucleon scattering [40].

6. Summary

The combination of conformal symmetry, light-front dynamics, its holographic mapping to AdS5

space, and the dAFF procedure provide new insights, not only into the physics underlying color
confinement, but also the nonperturbative QCD coupling and the QCD mass scale. A comprehensive
review is given in Ref. [25]. The QCD Lagrangian is not supersymmetrical; however its hadronic
eigensolutions conform to a fundamental 4-plet supersymmetric representation of superconformal
algebra, reflecting the underlying conformal symmetry of semi-classical QCD for massless quarks.
The resulting “Light-Front Schrödinger equations” derived from LF holography incorporates color
confinement and other essential spectroscopic and dynamical features of hadron physics, including
a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial
quantum number n and internal orbital angular momentum L for mesons, baryons, and tetraquarks.
LF holography gives a remarkable first approximation to hadron spectroscopy and the hadronic
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LFWFs. A new method for solving nonperturbative QCD “Basis Light-Front Quantization” (BLFQ) [41],
uses the eigensolutions of a color-confining approximation to QCD (such as LF holography) as the basis
functions, rather than the plane-wave basis used in DLCQ, thus incorporating the full dynamics of QCD.
This approach predicts novel supersymmetric relations between mesons, baryons, and tetraquarks of
the same parity as members of the same 4-plet representation of superconformal algebra. Empirically
viable predictions for spacelike and timelike hadronic form factors, structure functions, distribution
amplitudes, and transverse momentum distributions have also been obtained [42]. One can also
observe features of superconformal symmetry in the spectroscopy and dynamics of heavy-light
mesons and baryons. The combination of light-front holography with superconformal algebra thus
leads to the novel prediction that hadron physics has supersymmetric properties in both spectroscopy
and dynamics. One can test the similarities of their wavefunctions and form factors in exclusive
reactions such as e+e− → πT where T is a tetraquark [43].
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