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Abstract: We review various methods for finding exact solutions of higher spin theory in
four dimensions, and survey the known exact solutions of (non)minimal Vasiliev’s equations.
These include instanton-like and black hole-like solutions in (A)dS and Kleinian spacetimes.
A perturbative construction of solutions with the symmetries of a domain wall is also described.
Furthermore, we review two proposed perturbative schemes: one based on perturbative treatment
of the twistor space field equations followed by inverting Fronsdal kinetic terms using standard
Green’s functions; and an alternative scheme based on solving the twistor space field equations
exactly followed by introducing the spacetime dependence using perturbatively defined gauge
functions. Motivated by the need to provide a higher spin invariant characterization of the exact
solutions, aspects of a proposal for a geometric description of Vasiliev’s equation involving an infinite
dimensional generalization of anti de Sitter space are revisited and improved.
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1. Introduction

Higher spin (HS) theory in four dimensions, in its simplest form and when expanded about
its (anti-)de Sitter vacuum solution, describes a self-interacting infinite tower of massless particles
of spin s = 0, 2, 4 .... The full field equations, proposed long ago by Vasiliev [1–3] (for reviews,
see [4,5]), are a set of Cartan integrable curvature constraints on master zero-, one- and two-forms
living on an extension of spacetime by a non-commutative eight-dimensional twistor space. The latter
is fibered over a four-dimensional base, coordinatized by a Grassmann-even SL(2,C)-spinor oscillator
ZA = (zα, z̄α̇), and the fiber is coordinatized by another oscillator YA = (yα, ȳα̇); the master fields
are horizontal forms on the resulting twelve-dimensional total space, valued an infinite-dimensional
associative algebra generated by YA, that we shall denote by A, and subject to boundary conditions on
the base manifold.

A key feature of Vasiliev’s equations is that they admit asymptotically (anti-)de Sitter solution
spaces, obtained by taking the HS algebra A to be an extension of the Weyl algebra, with its Moyal star
product, by involutory chiral delta functions [6,7], referred to as inner Klein operators, relying on a
realization of the star product using auxiliary integration variables [4]. Introducing a related class of
forms in Z-space, that facilitates a special vacuum two-form in twistor space, the resulting linearized
master fields can be brought to a special gauge, referred to as the Vasiliev gauge, in which their symbols
defined in a certain normal order are real analytic in twistor space, and the master zero- and one-forms
admit Taylor expansions in Y at Z = 0 in terms of Fronsdal fields on the mass shell and subject to
physical boundary conditions.
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Although the Vasiliev equations take a compact and elegant form in the extended space, their
analysis in spacetime proceeds in a weak field expansion which takes an increasingly complicated
form beyond the leading order. Indeed, they have been determined so far only up to quadratic
order. In performing the weak field expansion, a number of challenges emerge. Firstly, obtaining
these equations requires boundary conditions in twistor space, referring to the topology of Z space
and the classes of functions making up A [2,8,9]. The proper way of pinning down these aspects
remains to be determined. Second, the cosmological constant, Λ, which is necessarily nonvanishing in
Vasiliev’s theory (as the transvection operators of the isometry algebra are realized in A as bilinears
in Y), appears in the effective equations to its first power via critical mass terms, but also to arbitrary
negative powers via non-local interactions [4,10]. Thus, letting φ denote a generic Fronsdal field,
it follows that ∂φ ∼

√
|Λ|φ on-shell, and hence interactions with any number of derivatives are of

equal relevance (at a fixed order in weak field amplitudes). This raises the question of just how badly
nonlocal are the HS field equations, the attendant problem of divergences arising even at the level
of the amplitudes [11,12], and what kind of field redefinitions are admissible. One guide available is
the holographic construction of the bulk vertices [13–15]. Clearly, it would be desirable to find the
principles that govern the nonlocal interactions, based on the combined boundary conditions in twistor
space as well as spacetime, such that an order by order construction of the bulk vertices can proceed
from the analysis of Vasiliev equations. The simple and geometrical form of Vasiliev equations, in turn,
may pave the way for the construction of an off-shell action that will facilitate the computation of the
quantum effects.

In an alternative approach to the construction of HS equations in spacetime, it has been proposed
to view Vasiliev’s equations as describing stationary points of a topological field theory with a path
integral measure based on a Frobenius-Chern-Simons bulk action in nine dimensions augmented by
topological boundary terms, which are permitted by the Batalin-Vilkovisky formalism, of which only
the latter contribute to the on-shell action [16,17].

This approach combines the virtues of the on-shell approach to amplitudes for massless particles
flat spacetime with those of having a background independent action, in the sense that the on-shell
action is fixed essentially by gauge symmetries and given on closed form, which together with the
background independence of Vasiliev’s equations provides a machinery for perturbative quantum
computations around general backgrounds.

In this context, it is clearly desirable to explore in more detail how the choice of boundary
conditions in the extended space influences the classical moduli space of Vasiliev’s equations,
with the purpose of spelling out the resulting spaces, computing HS invariant functionals on-shell,
and examining how the strongly coupled spacetime nonlocalities are converted into physical
amplitudes using the aforementioned auxiliary integral representation of star products in twistor space.

The aim of this article is to review three methods that have been used to find exact solutions of the
Vasiliev equations, and to describe two schemes for analyzing perturbations around them. In particular
we will describe the gauge function method [18,19] for finding exact solutions and summarize the first
such solution found in [20], as well as its generalization to de Sitter spacetime studied in [21] together
with the solutions of for a chiral version of the theory with Kleinian (2, 2) signature. As we shall see,
this method uses the fact that the spacetime dependence of the master fields can be absorbed into
gauge functions, upon which the problem of finding exact solutions is cast into a relatively manageable
deformed oscillator problem in twistor space. The role of different ordering schemes for star product
as well as gauge choices to fix local symmetries in twistor space will also be discussed.

Next, we will describe a refined gauge function method proposed in [22], where the twistor
space equations are solved by employing separation of twistor variables and holomorphicity in the
Z space in a Weyl ordering scheme and enlarging the Weyl algebra in the fiber Y space by inner
Kleinian operators. This approach provides exact solution spaces in a particular gauge, that we refer
to as the holomorphic gauge, after which the spacetime dependence is introduced by means of a
sequence of large gauge transformations, by first switching on a vacuum gauge function, taking the
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solutions to what we refer to as the L-gauge, where the configurations must be real analytic in Z space,
which provides an admissibility condition on the initial data in holomorphic gauge. The solutions can
then be mapped further to the Vasiliev gauge, where the linearized, or asymptotic, master fields, are
real analytic in the full twistor space and obey a particular gauge condition in Z space which ensures
that they consist of decoupled Fronsdal fields in a canonical basis; the required gauge transformation,
from the L gauge to the Vasiliev gauge, can be constructed in a perturbation scheme, which has so far
been implemented mainly at the leading order. We will describe a black hole-like solution in some
detail and mention other known solutions obtained by this method so far, including new solutions
with six Killing symmetries [23].

We shall also outline a third method, in which the HS equations are directly tackled without
employing gauge functions. In this method, solving the deformed oscillators in twistor space also
employs the projector formalism, though the computation of the gauge potentials does not rely on the
gauge function method. The black hole-like solution found in this way in [24] will be summarized.

We shall also review two approaches to the perturbative treatment of Vasiliev’s equations. One of
them, which we refer to as the normal ordered scheme, is based on a weak field expansion around
(anti-)de Sitter spacetime [3,4,25]. It entails nested parametric integrals, introduced via a homotopy
contraction of the de Rham differential in Z space used to solve the curvature constraints that have
at least one form index in Z space, followed by inserting the resulting perturbatively defined master
fields into the remaining curvature constraints with all form indices in spacetime. In an alternative
scheme, the equations are instead solved exactly in the aforementioned L-gauge, and a perturbatively
realized large HS gauge transformation is then performed to achieve interpretation in terms of Fronsdal
fields in asymptotically (anti-)de Sitter spacetimes in Vasiliev gauge [7]. The advantages of the latter
approach in describing the fluctuations around more general HS backgrounds will be explained.

A word of caution is in order concerning the usage of ‘black hole’ terminology in describing certain
types of exact solutions to HS equations. This terminology is, in fact, misleading in some respects since
the notion of a line interval associated with a metric field is not HS invariant. Indeed, the apparent
singular behaviour at the origin may in principle be a gauge artifact. This point is discussed in more
detail in Section 4.2. Moreover, given the nonlocal nature of the HS interactions, the formulation of
causality, which is crucial in describing the horizon of a black hole, is a challenging problem without
any proposal for a solution yet in sight; in fact, a more natural physical interpretation of the black
hole-like solutions may turn out to be as smooth black-hole microstates [7,26]. Another aspect of
the known black hole-like solution in HS theory is that they activate fields of all possible spins, and
apparently it is not possible to switch of all spins except one even in the asymptotically AdS region.

So, what is meant by a black hole solution in HS theory? Firstly, the SO(3)× SO(2) symmetry of
the solution (which is part of an infinite dimensional extended symmetry forming a subgroup of the
HS symmetry group) is in common with the symmetry group arising in the asymptotically AdS BH
solution of ordinary AdS gravity. Second, the solution contains a spin-two Weyl tensor field which
takes the standard Petrov type D form, with a singularity at the origin; more generally, the spin-s Weyl
tensors are of a generalized Petrov type D form, given essentially by the s-fold direct products of a
spin-one curvature of the Petrov type D form. The BH terminology is thus used in the context of HS
theory with the understanding that it is meant to convey these properties, albeit they do not constitute
a rigorous definition of a black hole in HS theory.

The use of HS invariants for exact solutions to capture their physical characteristics has been
considered and in some cases they have been computed successfully. These particular invariants alone
do not, however, furnish an answer to the question of whether it makes any sense to think about event
horizons in HS theory at all, and if so, how to define them; in fact, their existence rather supports
the aforementioned microstate proposal, wherein the HS invariants can be interpreted as extensive
charges defining HS ensembles.

Motivated by the quest for giving a physical interpretation of the exact solution in the context of
underlying HS symmetries, a geometrical approach to HS equations was proposed in [27]. We shall
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summarize this proposal in which the HS geometry is based on an identification of an infinite
dimensional structure group in a fibre bundle setting, and the related soldering phenomenon that
leads to a HS covariant definition of classes of (non-unique) generalized vielbeins and related metrics,
and as such an infinite dimensional generalization of AdS geometry. In doing so, we will improve the
formulation of [27] by dispensing with the embedding of the relevant infinite dimensional coset space
into a larger one that involves the extended HS algebra that includes the twistor space oscillators.

Finally, we are not aware of any exact solutions of HS theories in dimensions D > 4 [28,29],
while in D = 3, assuming that the scalar field is coupled to HS fields, we can refer to [8,30,31] for
the known solutions. Purely topological HS theory, which has no dynamical degrees of freedom,
and which allows a more rigorous definition of black holes, is known to admit many exact solutions
whose description goes beyond the scope of this review.

2. Vasiliev Equations

2.1. Bosonic Model in (A)dS

Vasiliev’s theory is formulated in terms of horizontal forms on a non-commutative fibered space
C with four-dimensional non-commutative symplectic fibers and eight-dimensional base manifold
equipped with a non-commutative differential Poisson structure. On the total space, the differential
form algebra Ω(C) is assumed to be equipped with an associative degree preserving product ?, a
differential d, and an Hermitian conjugation operation †, that are assumed to be mutually compatible.
The base manifold is assumed to be the direct product of a commuting real four-manifold X4 with
coordinates xµ, and a non-commutative real four-manifold Z4 with coordinates ZA; the fiber space
and its coordinates are denoted by Y4 and YA, respectively. The non-commutative coordinates are
assumed to obey

[YA, YB]? = 2iCAB , [ZA, ZB]? = −2iCAB , [YA, ZB]? = 0 , (2.1)

where CAB is a real constant antisymmetric matrix. The non-commutative space is furthermore
assumed to have a compatible complex structure, such that

YA = (yα, ȳα̇) , ZA = (zα, z̄α̇) , (2.2)

(yα)† = ȳα̇ , (zα)† = −z̄α̇ , (2.3)

where the complex doublets obey [yα, yβ]? = 2iεαβ and [zα, zβ]? = −2iεαβ. The horizontal forms can be
represented as sets of locally defined forms on X4 ×Z4 valued in oscillator algebras A(Y4) generated
by the fiber coordinates glued together by transition functions, that we shall assume are defined locally
on X4, resulting in a bundle over X4 with fibers given by Ω(Z4)⊗A(Y4). The algebra A(Y4) can be
given in various bases; we shall use the Weyl ordered basis, and the normal ordered basis consisting
of monomials in a± = Y ± Z with a+ and a− oscillators standing to the left and right, respectively.
We assume that the elements in Ω(Z4)⊗A(Y4) have well-defined symbols in both Weyl and normal
order. The normal order reduces to Weyl order for elements that are independent of either Y or Z,
and in the cases where depend on both Y and Z, they can be composed using the Fourier transformed
twisted convolution formula in normal ordered scheme as

( f ? g)(Z; Y) =
1

(2π)4

∫
R4×R4

d4Ud4V f (Z + U; Y + U) g(Z−V; Y + V) eiVAUA . (2.4)

The model is formulated in terms of a zero-form Φ, a one-form

A = dxµWµ + dzαVα + dz̄α̇V̄α̇ , (2.5)
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and a non-dynamical holomorphic two-form

J := − ib
4

dzα ∧ dzα κ , (2.6)

with Hermitian conjugate J = (J)†, where b is a complex parameter and

κ := κy ? κz , κy := 2πδ2(y) , κz := 2πδ2(z) , (2.7)

are inner Klein operators obeying κy ? f ? κy = πy( f ) and κz ? f ? κz = πz( f ) for any zero-form f ,
where πy and πz are the automorphisms of Ω(Z4)⊗A(Y4) defined in Weyl order by

πy(x; z, z̄; y, ȳ) = (x; z, z̄;−y, ȳ) , πz(x; z, z̄; y, ȳ) = (x;−z, z̄; y, ȳ) . (2.8)

It follows that dJ = 0, J ? f = π( f ) ? J and π(J) = J, idem J, with

π := πy ◦ πz , π̄ := πȳ ◦ πz̄ . (2.9)

It is useful to note that the inner Kleinian takes the following forms in different ordering schemes:

κ =

{
eiyαzα in normal ordering scheme

(2π)2δ2(y)δ2(z) in Weyl ordering scheme
(2.10)

The nonminimal and minimal models with all integer spins and only even spins, respectively,
are obtained by imposing the conditions

Non-minimal model (s = 0, 1, 2, 3, ...) : π ◦ π̄(A) = A , π ◦ π̄(B) = B , (2.11)

Minimal model (s = 0, 2, 4, ...) : τ(A) = −A , τ(B) = π̄(B) , (2.12)

where τ is the anti-automorphism

τ(xµ; YA, ZA) = f (xµ; iYA,−iZA) , τ( f ? g) = τ(g) ? τ( f ) , (2.13)

It follows that τ(J, J̄) = (−J,− J̄). Models in Lorentzian spacetimes with cosmological constants
Λ are obtained by imposing reality conditions as follows [21]:

ρ(B†) = π(B) , ρ(A†) = −A , ρ :=

{
π , Λ > 0
Id , Λ < 0

(2.14)

Basic building blocks for Vasiliev equations are the curvature and twisted-adjoint covariant
derivative defined by

F := dA + A ? A , DB := dB + [A, B]π , (2.15)

respectively, where the π-twisted star commutators is defined as

[ f , g]π := f ? g− (−1)| f ||g|g ? π( f ) , (2.16)

and
d := dx + dZ , dx = dxµ∂µ , dZ = dzα∂α + dz̄α̇∂̄α̇ . (2.17)

Vasiliev equations of motion are given by

F + B ? (J − J) = 0 , DB = 0 , (2.18)
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which are compatible with the kinematic conditions and the Bianchi identities, implying that the
classical solution space is invariant under the following infinitesimal gauge transformations:

δA = Dε := dε + [A, ε]? , δB = −[ε, B]π , (2.19)

for parameters obeying the same kinematic conditions as the connection.
It remains a challenging problem to determine if these equations can be derived from a suitable

tensionless, or critical tension, limit followed by a consistent truncation of string field theory on a
background involving AdS4. It will be very interesting to also determine if these equations follow
from a consistent quantization of a topological string field theory. For a more detailed discussion and
progress in this direction, see [32,33]. The component fields of VA do not transform properly under the
Lorentz transformations generated by ( 1

4i (y
αyβ − zαzβ)− h.c). To remedy this problem and achieve

manifest Lorentz covariance, one introduces the field-dependent Lorentz generators [4,25]

Mαβ = M(0)
αβ + S(α ? Sβ) , M(0)

αβ := y(α ? yβ) − z(α ? zβ) , (2.20)

and their complex conjugates, where

Sα = zα − 2iVα , S̄α̇ = z̄α̇ − 2iV̄α̇ . (2.21)

Next one defines
W ′µ = Wµ −

1
4i

(
ω

αβ
µ Mαβ + ω̄

α̇β̇
µ M̄α̇β̇

)
, (2.22)

where (ω
αβ
µ , ω

α̇β̇
µ ) is the canonical Lorentz connection.

It is defined up to tensorial shifts [27] that can be fixed by requiring that the projection of W ′ onto
M(0)

αβ and its complex conjugate, vanish at Z = 0, that is

∂2

∂yα∂yβ
W ′|Y=Z=0 = 0 ,

∂2

∂ȳα̇∂ȳβ̇
W ′|Y=Z=0 = 0 . (2.23)

The above redefinitions ensure that under the Lorentz transformations with parameters

εL =
1
4i

Λαβ Mαβ , ε
(0)
L =

1
4i

Λαβ M(0)
αβ , (2.24)

the master fields transform properly under the Lorentz transformations as [25]

δLB = [ε
(0)
L , B]? , (2.25)

δLSα = [ε
(0)
L , Sα]? + Λα

β Sβ , idem S̄α̇ , (2.26)

δLW ′µ = [ε
(0)
L , W ′µ]? +

1
4i

(
∂µΛαβ Mαβ + h.c.

)
. (2.27)

Using (2.21), the component form of Vasiliev equations reads

dxW + W ? W = 0 , (2.28)

dxB− [W, B]π = 0 , (2.29)

dxSα + [W, Sα]? = 0 , dxS̄α̇ + [W, S̄α̇]? = 0 , (2.30)

[Sα, B]π = 0 , [S̄α̇, B]π = 0 , [Sα, S̄β̇]? = 0 , (2.31)

[Sα, Sα]? = 4i(1− bB ? κ) , [S̄α̇, S̄α̇]? = 4i(1− b̄B ? κ̄) . (2.32)
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This is the form of the equations typically used to seek exact solutions as it displays the role of the
deformed oscillator algebra in the last two equations. Here one may exploit the technology developed
in the study of noncommutative field theories and the construction of projection operators in a suitably
defined oscillator space.

2.2. The Nonminimal Chiral Model in Kleinian Space

In this model the spinor oscillators are now representations of SL(2,R)L × SL(2,R)R, and as such
their hermitian conjugates are now given by

(yα)† = yα , (zα)† = −zα , (ȳα̇)† = ȳα̇ , (z̄α̇)† = −z̄α̇ . (2.33)

The field equations are now given by

F = J ? B , DB = 0 , J := − i
4

dzα ∧ dzα κ , (2.34)

with reality conditions A† = −A and B† = π(B), and kinematical conditions

Minimal model (s = 0, 2, 4, ...) : τ(A) = −A , τ(B) = π̄(B) , (2.35)

Non-minimal model (s = 0, 1, 2, 3, ...) : π ◦ π̄(A) = A , π ◦ π̄(B) = B . (2.36)

The field equations in components take the same form as in (2.28)–(2.32), but now with

b = 1 , b̄ = 0 . (2.37)

These models are referred to as chiral in view of the half-flatness condition on the twistor space
curvature, namely F̄α̇β̇ = 0. These models admit the coset space H3,2 = SO(3, 2)/SO(2, 2) as a vacuum
solution, which has the Kleinian signature (2, 2). For a detailed description of these spaces, including
the curved Kleinian geometries, see [34]. Our motivation for highlighting this case is due to the fact
that the first exact solution of the Vasiliev equation in which all HS fields are nonvanishing was found
for this model [21], and that the Kleinian geometry is relevant to N = 2 superstring as well as to
integrable models.

3. Gauge Function Method and Solutions

3.1. The Method

In order to construct solutions to Vasiliev’s equations, one may consider the approach [19] in
which they are homotopy contracted in simply connected spacetime regions U to deformed oscillator
algebras in twistor space at a base point p ∈ U; the constraints

Fµν = 0 , Fµα = 0 , DµB = 0 , (3.1)

are thus integrated in U using a gauge function g = g(Z, Y|x) obeying

g|p = 1 , (3.2)

and initial data
B′ = B|p , S′A = SA|p , (3.3)



Universe 2018, 4, 5 8 of 35

subject to

[S′α, B′]π = 0 , [S̄′α̇, B′]π = 0 , [S′α, S̄′
β̇
]? = 0 , (3.4a)

[S′α, S′α]? = 4i(1− bB′ ? κ) , [S̄′α̇, S̄′α̇]? = 4i(1− b̄B′ ? κ̄) . (3.4b)

The fields in U can then be expressed explicitly as

Wµ = g−1 ? ∂µg , SA = g−1 ? S′A ? g , B = g−1 ? B′ ? π(g) , (3.5)

after which the Lorentz covariant HS gauge fields can be obtained from (2.22) subject to (2.23),
which serves to determine the spin connection ωµab. Thus, the deviations in the spacetime HS gauge
fields away from the topological vacuum solution, that is the solution with Wµ = 0, thus come from
the gauge function g as well as the non-linear shift on the account of achieving manifest Lorentz
covariance. The deformed oscillator algebra requires a choice of topology for Z4, initial data for B′ and
a flat background connection. In what follows, we shall assume that Z4 has the topology of R4 with
suitable fall-off conditions at infinity [7,17], and impose

C′(Y) = B′|Z=0 , S′A|C′=0 = ZA; (3.6)

for nontrivial flat connections on Z4, that are not pure gauge, see [21]. The gauge function represents a
gauge transformation that is large in the sense that it affects the asymptotics of gauge fields so as to
introduce additional physical degrees of freedom to the system, over and above those contained in the
twistor space initial data and flat connection; strictly speaking, in order to define such transformations,
one should first introduce a set of classical observables forming a BRST cohomology modulo a set of
boundary conditions on ghosts, after which a large gauge transformation is a gauge transformation
that does not preserve all the classical observables. In particular, in order to describe asymptotically
maximally symmetric, or Weyl flat, solutions, one may take

g|B′=0 = L , (3.7)

where L = L(Y|x) is a metric vacuum gauge function, to be described below. In order to obtain exact
solutions, we shall choose g = L for all C′, that we refer to as the L-gauge. However, in order to extract
Fronsdal fields in the asymptotic region, one has to impose a gauge condition in twistor space to the
leading order in the weak field expansion in the asymptotic region, which introduces a dressing of the
vacuum gauge function by an additional perturbatively determined gauge function; see Section 6.

3.2. Vacuum Solutions

In order to obtain solutions containing locally maximally symmetric asymptotic regions,
one may take the gauge function L(Y|x) to be corresponding coset representatives. In what
follows, we shall focus on the spaces AdS4 = SO(3, 2)/SO(3, 1), dS4 = SO(4, 1)/SO(3, 1) and
H3,2 := SO(3, 2)/SO(2, 2), which can be realized as the embeddings

XAXBηAB ≡ −(X0)2 + (X1)2 + (X2)2 + (X3)2 + ε(X5)2 = −λ−2 , (3.8)

where (
ε,

λ2

|λ2|

)
=


(−,+) for AdS4

(+,−) for dS4

(−,−) for H3,2

(3.9)
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These spaces can be conveniently described in a unified fashion using the stereographic
coordinates xa

±(a = 0, 1, 2, 3) obtained by means of the parametrization

XM|U± ≈
(

2xa
±

1− λ2x2
±

,±`
1 + λ2x2

±
1− λ2x2

±

)
, −1 ≤ λ2x2

± < 1 , (3.10)

x2
± := xa

±xb
±ηab , ηab = diag(ε, λ2/|λ2|,+,+) , ` = |λ|−1 , (3.11)

where U± denotes the two stereographic coordinates charts, each covering one half of the space (3.9);
on the overlap one has λ2x2

± = −1, and the coordinate transition function

xa
± = Ra(x∓) , λ2x2

± < 0 , (3.12)

where the reflection map

Ra(v) := − va

λ2v2 . (3.13)

The boundary is given by λ2x2
± = 1, which has the topology of S2 × S1 in the case of AdS4 and

H3,2, and S3 ∪ S3 in the case of dS4. Instead of covering the vacuum manifold with two charts, one may
extend either one of the charts to R4 \ {xa : λ2x2 = 1}, which provides a global cover using a single
chart, with the understanding that {xa : λ2x2 = 1−} ∪ {xa : λ2x2 = 1+} provides a two-sheeted cover
of the boundary. The induced line element ds2

0 = dXAdXBηAB|λ2X2=−1 is given by

ds2
0 =

4dx2

(1− λ2x2)2 . (3.14)

On |λ2|x2 < 1, the corresponding vacuum gauge function

L =
2h

1 + h
exp(−iyαaα

α̇ȳα̇) , (3.15)

where
aαα̇ =

λxαα̇

1 + h
, xαα̇ = (σa)αα̇xa , h =

√
1− λ2x2 . (3.16)

W0 ≡ e0 + ω0 = L−1 ? dL =
1
4i

[
ω0

αβyαyβ + ω̄0
α̇β̇ȳα̇ȳβ̇ + 2e0

αα̇yαȳα̇

]
, (3.17)

where

e0
αα̇ = −λ(σa)αα̇dxa

h2 , ω0
αβ = −λ2(σab)αβdxaxb

h2 . (3.18)

A global description can be obtained using two gauge functions L± = L(Y|x±) defined on U±;
the Z2-symmetry implies that if Φ±|p± = C′, where p± := x−1

± (0), then the two locally defined
solutions on U± can be glued together using the gauge transition function T+

− := L−1
+ ? L− = 1 defined

on the overlap region where λ2x2
± = −1.

For later purposes, it is convenient to introduce alternative coordinate systems which are defined
by the embeddings (with |λ|2 = 1)

AdS4 : x2 > 0 : X0 = sinh τ sinh ψ , Xi = ni cosh τ sinh ψ , X5 = cosh ψ ,

x2 < 0 : X0 = sin τ cosh ψ , Xi = ni sin τ sinh ψ , X5 = cos τ ,
(3.19)

dS4 : x2 > 0 : X0 = sinh τ sin ψ , Xi = ni cosh τ sin ψ , X5 = cos ψ ,

x2 < 0 : X0 = sinh τ cosh ψ , Xi = ni sinh τ sinh ψ , X5 = cosh τ ,
(3.20)
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The metrics for (A)dS in these coordinate systems are given in (3.41)–(3.44). In the case of H3,2,
we will find the following coordinate system to be useful (with |λ2| = 1)

X0 = r sin t , Xi = ni
√

1 + r2 , X5 = r cos t , (3.21)

where ninjδij = 1, 0 ≤ r < ∞ and 0 ≤ t ≤ 2π.

3.3. Instanton Solutions of Minimal Model in (anti) de Sitter Space

Having obtained a vacuum gauge function, the next task is to solve the deformed oscillator
problem (3.4) subject to the initial data in twistor space. To this end, it is helpful to constrain the primed
configurations further by assuming that they preserve a nontrivial amount of HS symmetries. This can
be achieved by imposing symmetry conditions by seeking a subspace k′ of HS gauge parameters ε′

that are unbroken, i.e.,
δε′B

′ = 0 , δε′S
′
α = 0 , (3.22)

for all ε′ ∈ k′; upon switching on the gauge function g, the resulting full solution is invariant under
gauge parameters in the space k = g−1 ? k′ ? g. For example, one may require that an n-dimensional
subalgebra gn of the maximal finite dimensional subalgebra g10 of the HS algebra remains unbroken,
which implies that k′ is given by the intersection of Env(gn) and the HS algebra. In particular,
taking n = 10 yields the vacuum solution

W ′ = W0 , SA = zA , B = 0 , (3.23)

which preserves the HS algebra itself. Taking n < 10, the first distinct cases with nontrivial Weyl
zero-form arise for n = 6; the space k′ is then given exactly, as we shall describe below for a particular
realization of g6, or perturbatively. In the latter case the g6 will be realized as a subalgebra of the HS
algebra in the leading order.

In [20], asymptotically anti-de Sitter solutions with g6 = o(1, 3) were constructed by taking k to be
generated by the full Lorentz generators Mαβ from (2.20). Thus, in the primed basis, the corresponding
symmetry conditions read

[M′αβ, B′]π = 0 , [M′αβ, S′γ]? = 0 , [M′αβ, S̄′γ̇]? = 0 , (3.24)

and complex conjugates, where M′αβ = M(0)
αβ + S′(α ? S′

β), which are given by yαyβ plus perturbative
corrections, and whose star product commutators close modulo Lorentz transformations acting on
the component fields; thus, consistency of the invariance conditions implies that all canonical Lorentz
tensors that are not singlets must vanish. Alternatively, it is possible to use other embeddings of o(1, 3)
into the algebra of primed HS gauge transformations; for example, one can simply take yαyβ, as we
shall comment on in Section 5, though it remains an open problem whether the resulting solutions
are gauge equivalent to those that will be presented below. Taking gn to be generated by unperturbed
functions of Y is useful, however, in considering unbroken symmetry algebra involving transvection
operators, as we shall spell out in further detail in Section 5 in the case of domain walls and related
time dependent solutions.

Turning to (3.24), the simplest possible ansatz for B′ is a constant, viz.,

B′ = ν , (3.25)
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which leads to a deformed oscillator problem with exact solutions closely related to those of the 3D HS
theory constructed by Prokushkin and Vasiliev [8]. Adapting to the 4D Type A model, for which b = 1,
the following solution for the twistor space connection was found in [20]

S′α = zα + zα

∫ 1

−1
dt q(t) exp

(
i
2
(1 + t) u

)
, u := yαzα , (3.26)

q(t) = −ν

4

(
1F1

[
1
2

; 2;
ν

2
log

1
t2

]
+ t 1F1

[
1
2

; 2;−ν

2
log

1
t2

])
. (3.27)

Expanding exp(itu/2) results in integrals of the degenerate hypergeometric functions times
positive algebraic powers of t, which improve the convergence at t = 0. Thus Vα is a power series
expansion in u with coefficients that are functions of ν that are well-behaved provided this is the case
for the coefficient of u0. This is the case for ν in some finite region around ν = 0, as discussed in detail
in [20,35]. Indeed, as we shall see below after carrying out the integration over t, ν must lie in the
interval −3 ≤ ν ≤ 1.

The solution in spacetime is obtained in the two regions λ2x2 < 1 and λ2 x̃2 < 1 using the
stereographic gauge functions L ≡ L(x|Y) and L̃ ≡ L(x̃|Y) where x and x̃ are related by the reflection
map in the overlap region where λ2x2 < 0 and λ2 x̃2 < 0. From (3.16), one finds [20]

B = ν(1− λ2x2) exp
[
−iλxαα̇yαȳα̇

]
. (3.28)

This shows that the physical scalar field is given in the xa-coordinate chart by

φ(x) = B|Y=Z=0 = ν(1− λ2x2) , λ2x2 < 1 , (3.29)

while the Weyl tensors for spin s = 2, 4, . . . vanish. Using instead L̃, the physical scalar field in the
x̃a-coordinate chart is given by

φ̃ = ν(1− λ2 x̃2) , λ2 x̃2 < 1 . (3.30)

As a result, the two scalar fields are related by a duality transformation in the overlap region

φ̃(x̃) =
νφ(x)

φ(x)− ν
, λ2x2 = (λ2 x̃2)−1 < 0 . (3.31)

Thus, if the transition takes place at λ2x2 = λ2 x̃2 = −1, then the amplitude of the physical scalar
never exceeds 2ν.

The master fields SA and W ′µ are obtained from (3.5) and (2.22). The generating functional for the
spacetime gauge fields is given by [20] 1

W ′|Z=0 = W0 −
1
4i

Qωµ
αβ
[
(1 + a2)2yαyβ + 4(1 + a2)aα

α̇yβȳα̇ + 4aα
α̇aβ

β̇ȳα̇ȳβ̇

]
− h.c. , (3.32)

1 An Euclidean version of this solution has been obtained in [21], and as the spin connection plays an eminent role in
this solution and assuming that the action, as proposed in [17], is finite on this solution, we use the terminology of
“instanton solution”.
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subject to (2.23), which serve to determine the spin connection, and where aαα̇ is defined in (3.16), and

a2 := aαα̇aαα̇ =
1−
√

1− λ2x2

1 +
√

1− λ2x2
, −1 ≤ a2 ≤ 1 , (3.33)

Q = −1
4
(1− a2)2

∫ 1

−1
dt
∫ 1

−1
dt′

q(t)q(t′)(1 + t)(1 + t′)
(1− tt′a2)4 . (3.34)

This gives [20]

Q = − (1− a2)2

4

∞

∑
p=0

[
(2p+3

2p )

(√
1− ν

2p+1 −
√

1 + ν
2p+3

)2
a4p (3.35)

−(2p+4
2p+1)

(√
1− ν

2p+3 −
√

1 + ν
2p+3

)2
a4p+2

]
,

exhibiting branch cuts for Re ν ≤ −3 and Re ν ≥ 12. For ν � 1, and in the interval −1 ≤ a2 ≤ 1,
this function can be approximated by [20]

Q ' ν2(1− a2)2

48a4

[
1− 2a2

(1− a2)2 +
(1− a2)2

2a2 log
1− a2

1 + a2

]
. (3.36)

Using (2.23), one determines ωαβ and eαα̇ from (3.32), while the HS Fronsdal potentials φµa1 ... as

vanish for s > 2:

φµ
a1...as−1 =

∂2s−2

∂yα1 · · · ∂yαs−1 ∂̄ȳα̇1 · · · ∂̄ȳα̇s−1
W ′|Z=Y=0 = 0 , s > 2 . (3.37)

Even though the HS fields vanish, it is to be noted that the solution of the metric and scalar field
constitute a solution of a highly nonlinear system of equations in which all higher derivatives play
a role. One can reverse engineer a two derivative action describing the coupling of gravity to scalar
field that admits the same solution [20] but such an action is clearly of limited use in the context of
HS theory.

An advantage of presenting the solutions in stereographic coordinates is that it facilitates their
unified description for (A)dS. In these coordinates the solution for the scalar field is given by (3.29)
and the metric by

ds2 =
4Ω2(d(g1x))2

(1− λ2g2
1x2)2

, (3.38)

Ω =
(1− λ2g2

1x2) f1

2g1
, g1 = exp

(
1
2

∫ x2

1

f2(t) dt
f1(t)

)
, (3.39)

where

f1(x2) =
2 f
h2

[
1 + (1− a2)2Q

]
, f2(x2) =

16Q f
h2(1 + h)2 ,

f (x2) =
[
1 + (1 + 6a2 + a4)Q

]−1
, (3.40)

2 The unitary representations of Wigner’s deformed oscillator algebra can obtained starting from the standard Fock space and
factoring out ideals that depend on integer part of (1 + ν)/2, that is, the ideal jumps for odd values of ν [36–39]. It would
be interesting to examine to what extent it is possible to extend the solution to general ν properly taking into account the
branch points in Q at odd ν.
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and it is understood that the integration variable in (3.39) is t = x2.
It is also convenient to give the result in the coordinate system defined in (3.19). In these

coordinates, the solution takes the form [35]

AdS4 : x2 > 0 : ds2 = dψ2 + η2 sinh2 ψ
(
−dτ2 + cosh2 τ dΩ2

)
, (3.41)

φ = ν sech2 ψ

2
,

x2 < 0 : ds2 = −dτ2 + η2 sin2 τ
(

dψ2 + sinh2 ψ dΩ2

)
, (3.42)

φ = ν sec2 τ

2
,

dS4 : x2 > 0 : ds2 = dψ2 + η2 sin2 ψ
(
−dτ2 + cosh2 τ dΩ2

)
, (3.43)

φ = ν sec2 ψ

2
,

x2 < 0 : ds2 = −dτ2 + η2 sinh2 τ
(

dψ2 + sinh2 ψ dΩ2

)
, (3.44)

φ = ν sech2 τ

2
,

where we have set |λ|2 = 1 and

η =
f1h2

2
=

1 + (1− a2)2Q
1 + (1 + 6a2 + a4) Q

. (3.45)

AdS4 : a2 =

{
tanh2 ψ

4 for x2 > 0

− tan2 τ
4 for x2 < 0

dS4 : a2 =

{
− tan2 ψ

4 for x2 > 0

tanh2 τ
4 for x2 < 0

(3.46)

In addition to the SO(3, 1) symmetry generated by M′αβ, the solution is also left invariant by
additional transformations with rigid HS parameters

ε′ =
∞

∑
`=0

ε′` , (3.47)

where the `’th level is given by [20]

ε′` = ∑
m+n=2`+1

Λα1 ...α2m ,α̇1 ...α̇2n M′α1α2
? · · · ? M′α2m−1α2m

? M̄′α̇1α̇2
? · · · ? M̄′α̇2n−1α̇2n

− h.c. , (3.48)

with constant Λα1 ... α2m ,α̇1 ... α̇2n . The full symmetry algebra is thus a higher-spin extension of
SO(3, 1) ' SL(2,C), that we shall denote by

hsl(2,C; ν) ⊃ sl(2,C) , (3.49)

where sl(2,C) is generated by M′αβ and its hermitian conjugate, and we have indicated that in general
the structure coefficients may depend on the deformation parameter ν.

Turning back to the solutions given above, a holographic and cosmological interpretation of (3.41)
has been discussed in [35], where a bouncing cosmology scenario was observed, and its comparison
with a similar phenomenon occurring supergravities [40,41] was made. In this context, it is useful to
examine the behaviour of the solutions, both with AdS and dS asymptotics, near the boundary as well
as distant future.



Universe 2018, 4, 5 14 of 35

For |ν| � 1 and near the boundary, where λ2x2 → 1, or equivalently a2 → 1, the scale factors η

and Ω behaves as3

λ2x2 → 1 =⇒ η → 1

1− ν2

3

, Ω→ 1 , (3.50)

which means that the solutions are asymptotically maximally symmetric spacetimes with
undeformed radius.

Another interesting limit to consider is η → 0; for |ν| � 1 this takes place for a2 + 1� 1, that is,
for a2 close but not equal to −1, which corresponds to τ → ±τcrit in the AdS case, and ψ→ ψcrit in the
dS case. In the former case, we have4

AdS4 : η ' ν2

6

[
exp

(
3

2ν2

)]
(τcrit − τ) , τcrit ' sin−1

[
2 exp

(
−3
2ν2

)]
. (3.51)

In the Einstein frame5, it takes infinite proper time to reach the critical surface, which means that
one may interpret the future region of the solution as a singularity free SO(3, 1) invariant cosmology
with a finite asymptotic scalar field, as

φ→ φcrit ' 4ν exp
(

3
ν2

)
. (3.52)

In the dS case, one may instead interpret the critical limit as a domain wall at an infinite proper
space-like distance from the center of the solution.

3.4. Solutions of the Non-Minimal Chiral Model in Kleinian Space

In obtaining the solutions described above, symmetries on the master fields were imposed. In [21]
projection operators were used as well. In the case of the non-minimal chiral model6 in Kleinian space,
it is possible to use projectors to build solutions with non-vanishing Weyl zero-form and HS fields.
They are

B′ = (1− P) ? κ , S′α = zα ? P , S̄′α̇ = z̄α̇ ? (1− 2P̄) , (3.53)

where

P ? P = P , P̄ ? P̄ = P̄ , [P, P̄]? = 0 , (3.54)

and satisfy the conditions π ◦ π̄(P, P̄) = (P, P̄). The projectors P and P̄ are independent. Consider the
simplest case in which

P = 2e−2uv = 2eyby , P̄ = 0 , (3.55)

where, in terms of constant spinors (λα, µα) we have defined

u = λαyα , v = µαyα , bαβ = 2λ(αµβ) , λαµα =
i
2

. (3.56)

3 The result for the limits of η and Ω given here correct Equations (4.67) and (4.68) in [20].
4 The expression for η and τcrit corrects a factor of two in [35].
5 This is the (torsion-free) frame obtained by rescaling the vielbein as ea → η−1ea.
6 The solution can be constructed for the minimal model as well by working with a convenient integral presentation of the

projection operators.
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Upon the L-dressing, and expanding the result in Y-oscillators, the following component results
are found in [21]:

φ = −1 , Cα1...α2s = 0 , (3.57)

while the anti-self-dual Weyl tensors take the form

C̄α̇1···α̇2s = −22s+1(2s− 1)!!
(

h2 − 1
h2

)s

ū(α̇1
· · · ūα̇s v̄α̇s+1 · · · v̄α̇2s)

, (3.58)

where
ūα̇ =

xa
√

x2
(σ̄aλ)α̇ , v̄α̇ =

xa
√

x2
(σ̄aµ)α̇ . (3.59)

In stereographic coordinates, the Kleinian space is covered in two charts with 0 ≤ h2 ≤ 2,
and hence the Weyl tensors blow up in the limit h2 → 0 preventing the solution from
approaching H3,2 in this limit. In coordinate system introduced in (3.21), the metric reads
ds2 = −(dr2 + r2dt2) + (1 + r2)dΩ2

2, and the pre-factor in this solution reads(
h2 − 1

h2

)s

= 2−s(1− r cos t)s . (3.60)

which, indeed, diverges at the boundary r → ∞ as noted above. In [21], it was also found that

ea
µ =

−2
(h2 + 2h−2)

[
(1 + 2h−2)δa

µ + 2λ2h−4xµxa +
6λ2

h4 − 4
(Jx)µ(Jx)a

]
, (3.61)

where
Jab = (σab)

αβ bαβ , Ja
c Jc

b = −δb
a . (3.62)

For the spin connection, the result is

ωαβ =
1

1− 4h−4

[
ω

αβ
0 − 8h−4(b ω0 b)αβ

]
+

4h−4

(1− 2h−4)(1− 4h−4)
bαβ bγδ ω

γδ
0 ,

ω̄α̇β̇ = ω̄
α̇β̇
0 + 4(1 + h)2h−4

[
−(āba)α̇β̇bγδ + 2(āb)α̇γ(āb)β̇δ

]
ωγδ .

(3.63)

Note that in the last term of the second equation the full spin connection ωγδ arises. The metric
gµν = ea

µeb
ν ηab takes the form

gµν =
4

(h2 + 2h−2)2

[
(1 + 2h−2)2ηµν + 4h−4

(
(1− h2)h−4 + (1 + 2h−2)

)
xµxν

+
12

1− 4h−4

(
3(1− h2)

1− 4h−4 + (1 + 2h−2)

)
(Jx)µ(Jx)ν

]
, (3.64)

The vierbein has potential singularities at h2 = 0 and h2 = 2. The limit h2 → 0 is a boundary
at which eµ

a ∼ h−2xµxa, i.e., a scale factor times a degenerate vierbein. In the limit h2 → 2 one
approaches the boundary of a coordinate chart. Also in this limit, the vierbein becomes degenerate,
viz., eµ

a ∼ h−2(Jx)µ(Jx)a.

3.5. Perturbative Construction of Domain-Wall Solution

As mentioned earlier, if we wish to construct a solution of the HS equations that has a symmetry
group that includes any translation generators Pa, given that there is no known realization of these
generators that would form a closed algebra with the full Lorentz generators Mαβ, the symmetry
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conditions (3.22) need to be imposed in terms of the undeformed generators that are bilinear in the
oscillators. The deformation of this symmetry to accommodate nonlinear corrections can then be
computed perturbatively in a weak field expansion scheme. This is the framework which was pursued
in considerable detail in [20], where the perturbative construction of solutions with 3, 4 and 6 parameter
isometry subgroups of the AdS group were considered. Here we shall outline the key aspects of this
constructions by describing the example of a domain-wall solution having ISO(2, 1) symmetry and its
appropriate HS extension [20].

The ISO(2, 1) algebra is generated by

ISO(2, 1) : Mij , Pi = (αMabLb + βPa)La
i , α2 − β2 = 0 , (3.65)

where α and β are real parameters and (La
i , La) is a representative of the coset SO(3, 1)/SO(2, 1), obeying

LaLa = ε = ±1 , La
i La = 0 , La

i Lja = ηij = diag(+,+,−) , (3.66)

and the generators are taken form the oscillator realization of SO(3, 2) algebra given by

Mab = −1
8

[
(σab)

αβyαyβ + (σ̄ab)
α̇β̇ȳα̇ȳβ̇

]
, Pa =

1
4
(σa)

αβ̇yαȳβ̇ , (3.67)

In particular [Pi, Pj] = i(β2 − α2)Mij vanishes for α2 = β2, as required for ISO(2, 1).
Thus, the symmetry conditions to be imposed are

[Mij, C′] = 0 , [Pi, C′]π = 0 . (3.68)

As shown in [20], these conditions are solved by

C′(P) = (µ1 + µ2P)e4iP , P :=
1
4

La(σa)αα̇yαȳα̇ . (3.69)

Denoting the ISO(2, 1) transformations discussed above by ε′(0), we can seek its nonlinear
deformation by expanding

ε′ = ε′(0) + ε′(1) + ε′(2) + · · · , (3.70)

where ε′(n) is constant in spacetime but may depend on Y and Z. The symmetry condition at first order
is satisfied by C′ given in (3.69). To establish the symmetry at second order, we need to satisfy(

[ε′(1), C′]π + [ε′(0), B′(2)]π
)

Z=0
= 0 , (3.71)

where B′(2) is obtained from the normal ordered perturbative scheme (see Section 6 below) to be [20]

B′(2) = f + τπ̄ f + π( f + τ f̄ )† ,

f := −zα
∫ 1

0
dt(V′(1)α ? C′)Z→tZ ,

V′(1)α = − i
2

zα

∫ 1

0
tdtB′(−tz, ȳ)κ(tz, y) . (3.72)

This condition (3.71) is solved in [20] where it is found that

ε′(1) = −
∫ 1

0
dt
∫ 1

0
t′dt′

(
itt′

2
λαβzαzβ + λαβ̇zα∂̄β̇

)
C′(−tt′z, ȳ)eitt′yz − h.c. , (3.73)
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where λαβ, λαβ̇ are arbitrary constant parameters. For a more detailed discussion of the procedure
outlined above, see [20].

3.6. Other Known Solutions

The solutions described in Section 3.3 were generalized in [21] to find new Lorentz-invariant
vacuum solutions, in which, in addition to the continuous parameter ν, an infinite set of independent
and discrete parameters θk = {0, 1}, each turning on a Fock-space projector Pn(u), were activated.
Should they be proved to be gauge-inequivalent to AdS4, as they seem to be, they would represent
monodromies of flat but non-trivial connections (Vα, V̄α̇) on Z . An interesting limit of this solution
arises upon setting ν = 0 and (θk − θk+1)

2 = 1, leading to the degenerate metric

ds2 =
4(xadxa)2

λ2x2(1− λ2x2)
. (3.74)

The methods above can also be extended to the Prokushkin-Vasiliev theory in D = 3, giving rise
to Lorentz-invariant instanton solutions (with additional twisted sectors of the theory excited, and the
characteristic extra deformation parameter λ that allows to vary the mass of the scalar), as well as to
the above projector vacua [31].

Finally, in [42] a different class of exact solutions was constructed by means of the gauge function
method coupled with a different choice of gauge in twistor space, there referred to as axial gauge.
As for the perturbative construction of solutions, it is worth mentioning the plane wave solution
of [4,19], whose elevation to an exact solution remains to be investigated, to our best knowledge.

4. Factorization Method and Solutions

4.1. The Method

The method developed in [6,7,22] for finding exact solutions of Vasiliev equations also exploits the
gauge function method to solve for (B, V, W) in terms of (B′, V′) from (3.5) and (2.22), which, in turn,
are to be determined by solving (3.4). It is here that the method differs from the method described
above, by making the following factorized ansatz for (B′, V′):

B′(Z, Y) = νΨ(y, ȳ) ? κy , (4.1)

V′α(Z, Y) = V′α(z; Ψ) = ∑
n≥1

V(n)
α (z) ? Ψ?n . (4.2)

Note that this ansatz for V′α is holomorphic in z, and in the following we shall refer to the solution
in this form as given in holomorphic gauge [7]. In this section we shall consider the nonminimal model
in which we recall that conditions (2.35) apply. It is shown in [7] that this ansatz solves the fully
non-linear Equation (3.4) provided that

πz(V
(n)
α (z)) = −V(n)

α (z) , (4.3)

and that
sα := zα − 2i ∑

n≥1
V(n)

α (z)νn , (4.4)

obeys the deformed oscillator algebra

[sα, sβ]? = −2iεαβ(1− νκz) , κz ? sα = −sα ? κz . (4.5)
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Note that only the first power of ν in (4.4) survives in the commutator (4.5). One class of solutions
is given by [6]

∑
n≥1

V(n)
α (z)νn = − iν

2
zα

∫ +1

−1

dt
(t + 1)2 exp

(
i
t− 1
t + 1

z+
(0)z
−
(0)

)
1F1(

1
2 ; 1; bν log t2) , (4.6)

where the constant spinors v±
(0)α are used to defined the projected oscillators

v+α
(0)v

−
(0)α = 1 , z±

(0) = v±α
(0)zα . (4.7)

The presence of z+z− term breaks manifest Lorentz covariance, which will be restored when we
consider the field dependent gauge transformation in Section 7 that is needed to cast the results into a
form that can be interpreted in terms of Fronsdal fields that obey the standard boundary conditions.

At this point, B′ and V′α are determined, with Ψ(Y) representing an arbitrary initial datum.
One can proceed to compute (B, V, W ′) from (3.4), (3.5) and (2.22). However, one needs to ensure that
the star products involving Ψ are well defined. The analyticity properties of the resulting (B, V, W ′)
also require special care. The strategy adopted in [6,7,22] is to employ projection operators with well
defined group theoretical origin, and easily deducible symmetry properties. We shall illustrate aspects
of this procedure below with a relatively simple example, namely the black hole-like solution [7]
closely related to that of [24], which we shall also describe in a subsequent section below.

4.2. Black Hole Solution

We are seeking an exact solution of Vasiliev’s equations which has the symmetries of 4D static black
hole solution that is asymptotically AdS4, namely spatial rotations and time translations generated by

SO(3)× SO(2) : Mrs (r, s = 1, 2, 3) , and M05 = E =
1
4
(σ0)αα̇ yαȳα̇ . (4.8)

The first instance of such a solution was found in [24] in a different approach that will be
summarized later. In both approaches the following projector plays an important role:

Ψ = νP′ , P′ ? P′ = P′ , (4.9)

where P′ is given by
P′ = 4e−4E , (4.10)

and the reality conditions dictate that
ν = iM , (4.11)

with M ∈ R. This projector clearly has the desired symmetry property since [Mrs, P′]? = 0 and
[E, P′]? = 0. In performing the L-dressing, we need the result

P = L−1 ? 4e−4E ? L = 4 exp
(
−1

2
KABYAYB

)
, (4.12)

where KAB are the Killing parameters taking the form

KAB =

(
uαβ vαβ̇

v̄α̇β ūα̇β̇

)
. (4.13)
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In terms of the x-dependent eigenspinors of uαβ, these parameters can be expressed as

uαβ = 2r u+
(α

u−
β)

, vαβ̇ =
√

1 + r2
(

u+
α ū+

β̇
+ u−α ū−

β̇

)
,

u−1
αβ =

2
r

u+
(α

u−
β)

, 2u−
[α

u+
β]
= εαβ . (4.14)

The Kerr-Schild vector kαα̇ associated with E is obtained via a projection of vαα̇ with the
eigenspinors of uαβ, ūα̇β̇, and can be written as7

kαα̇ =
1√

1 + r2
u+

α ū+
α̇ . (4.15)

In obtaining the above results, the computation is first done in stereographic coordinates, and
then a coordinate change is made to go over to the spherical (global) coordinate system in which the
AdS metric reads ds2 = −(1 + r2)dt2 + (1 + r2)−1dr2 + r2dΩ2

2.
From the point of view of the factorized Ansatz (4.1)–(4.2), the fact that Ψ is proportional to a

projector can be seen as a way of enforcing the Kerr-Schild property of a black-hole solution, as it
effectively causes a collapse of all non-linear correction in V′α, V̄′α̇ down to the linear order, at least from
the point of view of the oscillator dependence. Coupled with the gauge freedom on Sα this allows
to effectively reach a gauge in which the full solution only contains first order deformations in ν [6].
Another noteworthy fact is that, due to the factorized dependence on Y and Z, one can effectively
separately rotate the two oscillators by means of a factorized gauge function

g = L(x, Y) ? L̃(x, Z) . (4.16)

As discussed in [6,7,22], turning on the second factor is useful since by choosing it appropriately
one can achieve collinearity between the spin-frame (v+, v−)(x) on Z (which is obtained by pointwise
rotation of v(0) given in (4.7) by L̃) and the eigenspinors (u+

α , u−β ) of uαβ in order to remove singularities
that appear in the solution for the master one-form, that are gauge artifacts. We note that the factor
L̃(x, Z), being purely Z-dependent, does not affect B and only acts non-trivially on Vα, V̄α̇.

Thus, dressing the primed fields given above by the gauge function g defined in (4.16),
the following results have been obtained [6]

B =
4M

r
exp

[
1
r2

(
1
2 yαuαβyβ + 1

2 ȳα̇ūα̇β̇ȳβ̇ + iyαuαβvβ
α̇ȳα̇
)]

, (4.17)

Sα = zα + 8Paα

∫ 1

−1

dt
(t + 1 + ir(t− 1))2 j(t) exp

[
i(t− 1)

t + 1 + ir(t− 1)
a+a−

]
, (4.18)

W ′ = W0 + L̃−1 ? dx L̃−
{

ω−−
[
y+y+ + 8P( f1 − f2)a+a+

]
(4.19)

+ω++
[
y−y− + 8P( f1 − f3)a−a−

]
− 2ω−+

[
y+y− − 8P( f1 + f4)a+a− − r( f5 + f6)

] }
,

where y± = uα±yα, and similarly(a±, ω++, ω−−, ω−+) are projections of aα, ωαβ with uα±, and the
function j(t) is defined as

j(t) = −ν

4 1F1

[
1
2

; 2;
ν

2
log

1
t2

]
. (4.20)

7 In stereographic coordinates these read [7] uαβ = 2xi(σi0)αβ/(1− x2) and vαβ̇ = (σ0)αβ̇ − 4x[0xi(σi])αβ̇/(1− x2).



Universe 2018, 4, 5 20 of 35

The modified oscillators (aα, āα̇) are defined as

Z̃A := (aα, āα̇) = ZA + iKA
BYB , [Z̃A, Z̃B] = 4iεAB . (4.21)

Furthermore, we have defined the functions

f1 =
∫ 1

−1
dt q(t)(t + 1)ξ3 exp

[
i(t− 1)ξa+a−

]
, (4.22a)

f2 =
∫ 1

−1

∫ 1

−1
dt dt′ j(t)j(t′) 2t ξ̃3 exp

[
i(tt′ − 1)ξ̃ a+a−

]
, (4.22b)

f3 =
∫ 1

−1

∫ 1

−1
dt dt′ j(t)j(t′) 2t′ ξ̃3 exp

[
i(tt′ − 1)ξ̃ a+a−

]
, (4.22c)

f4 =
∫ 1

−1
dt q(t)ξ2 exp

[
i(t− 1)ξa+a−

]
, (4.22d)

f5 =
∫ 1

−1

∫ 1

−1
dt dt′ j(t)j(t′) (tt′ + 1) ξ̃3 exp

[
itt′ ξ̃a+a−

]
, (4.22e)

f6 =
∫ 1

−1

∫ 1

−1
dt dt′ j(t)j(t′) ξ̃2 exp

[
i(tt′ − 1)ξ̃a+a−

]
, (4.22f)

and
ξ :=

1
t + 1 + ir(t− 1)

, ξ̃ :=
1

tt′ + 1 + ir(tt′ − 1)
. (4.23)

The modified oscillators aα appear naturally in Vα as a consequence of the factorized form of (4.2)
with Ψ?n ∝ P, and of the fact that zα ? P = aαP (analogously for āα̇ in V̄α̇). A consequence of the
modified oscillator appearing in the solution is that V′α does not obey the standard Vasiliev gauge
ZAVA = 0.

As noted earlier, this solution is closely related to that of Didenko and Vasiliev [24]. Indeed,
the solution for B is the same, while the relationship between the solutions for (SA, W ′) is more subtle
and it will be discussed in the next section.

Note that B does not depend on Z. Thus, B|Z=0 = B = C(Y), and its holomorphic components
give the Petrov type -D Weyl tensors

Cα1 ...α2s =
4M
rs+1 u+

(α1
. . . u+

αs u−αs+1
. . . u−

α2s)
, (4.24)

and similarly for the anti-holomorphic components giving C̄α̇1 ...α̇2s . The singularity of individual Weyl
tensors does not necessarily imply a physical singularity in HS gravity for the following reasons. At the
level of the master fields, r = 0 also appears as the only point at which Vα, as well as W ′, acquire a
pole on a plane in Z × Y defined by aα|r=0 = zα + i(σ0ȳ)α = 0, due to the zero at t = −1 that the
denominator of the integrand in (4.18) develops at r = 0. The master-field curvature is however given
by B ? κ and one can argue that at the master-field level, which is the only sensible way to look at
such solution in the strong-field region, B remains, in fact, regular at r = 0. Qualitatively this can be
understood as follows. r appears in (4.17) as the parameter of a delta sequence: away from the origin
one has a smooth Gaussian function, approaching a Dirac delta function on Y as r goes to zero [6].
However, unlike the delta function on a commutative space, the delta function in noncommutative
twistor space, thought of as a symbol for an element of a star product algebra, is smooth. Indeed, it is
possible to show [6] that by changing ordering prescription one can map the delta function to a regular
element, and the smoothness of such change of basis manifests itself in the fact that the solution of
the deformed oscillator problem obtained in the new ordering can be mapped back smoothly to the
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solution above. In this sense, the singularity in r = 0 may be an artifact of the ordering choice for the
infinite-dimensional symmetry algebra governing the Vasiliev system.

In order to extract the x-dependence of even just the spin-2 component of W ′, one still needs to
evaluate the complicated parametric integrals in (4.22a). However, as the Weyl-tensors take the simple
form in x-space given in (4.24), we expect that a suitable gauge transformation exists that will give the
metric in the standard Kerr-Schild form, namely gµν = gAdS

µν + 2Mkµkν/r.
Finally, let us note that the basic black hole-like solution reviewed above has a generalization

in which infinite sets of projection operators Pn and twisted projection operators P̃n are introduced8.
The twisted projectors P̃n are invariant under SO(3)× SO(2) discussed above while the projectors Pn

are invariant under SO(3) and the (B′, S′A) sector of the solution takes the form [6,7,22]

B′ = ∑
n=±1,±2,...

(
νn P̃′n + ν̃nP′n

)
, P̃′n = P′n ? κy , (4.25)

S′A = zA − 2i ∑
n=±1,±2,...

(
Vn,A ? P′n + Ṽn,A ? P̃′n

)
, (4.26)

with

P′n(E) = 2(−1)n− 1+ε
2
∮

C(ε)

dη

2πi

(
η + 1
η − 1

)n
e−4ηE , ε := n/|n| , (4.27)

P̃′n(E) := P′n(E) ? κy = 4π(−)n− 1+ε
2
∮

C(ε)

dη

2πi

(
η + 1
η − 1

)n
δ2(y− iησ0ȳ) , (4.28)

where the contour integrals are performed around a small contour C(ε) encircling ε. The expressions
for (Vn,A, Ṽn,A), and their g = L ? L̃ dressing can be found in [7]. It turns out that the solutions with
only νn parameters switched on correspond to black hole-like solutions, of which the case summarized
above arises for n = 1. Solutions with only nonvanishing ν̃n parameters correspond to massless
particle modes, and surprisingly black hole modes as well entering from second order onwards in
a perturbative treatment of the solution; for a detailed description of this phenomenon see [7,26].
Note that the SO(3) invariant projectors are associated with spin-0 modes. To extend this construction
to spin-s particle modes, one needs the spin-s generalization of the projectors P′n discussed above.
A particular presentation of such projectors can be found in [43].

4.3. Other Known Solutions

By means of the same factorized Ansatz (4.1)–(4.2) black-hole-like solutions with biaxial symmetry
have also been found [6,22,44], some of which being candidate HS generalizations of the Kerr black
hole [44]. The separation of variables in holomorphic gauge was also instrumental to finding solutions
with g6 isometries of cosmological interest, that we shall present in a forthcoming paper [23].

5. Direct Method and the Didenko-Vasiliev Solution

While, as we have seen so far, the gauge function method is in general of great help in constructing
exact solutions, it is sometimes possible to attack the equations directly, by virtue of some other
simplifying Ansatz or gauge condition. We shall generically refer here to any method which does
not rely on the use of gauge function as direct method. One such solution has been found so far in
this way by Didenko and Vasiliev [24], which has nonvanishing HS fields, and which contains the
Schwarzschild black hole solution in the spin 2 sector.

8 Even though P̃′n ? P̃′n = P′n, we refer to P̃′ as twisted projector to emphasize the fact that it is related to the projector P′n by the
relation P̃′n = P′n ? κy.
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Indeed, motivated by the phenomenon that solutions of Einstein equations that can be put in
Kerr-Schild form solve the linearized as well as the nonlinear form of the equations, the Authors
of [24] thought of an Ansatz that would generalize some distinctive features of black hole solutions in
gravity. First, it is based on an AdS timelike Killing vector, in the sense that the Weyl tensor will be a
function of some element KAB as (4.13). More precisely, if f (K) satisfies the Killing vector equation,
a proper ansatz for a solution of the linearized twisted adjoint equation will be given by f (K) ? κy .
Second, they chose f (K) in such a way that the Ansatz linearize the Vasiliev equations. For the latter
purpose it is important that the function f (K) is a projector—in fact, a Fock-space vacuum projector
that coincides with (4.12). Such choice in particular reduces Equations (2.31) and (2.32) to two copies
of the 3D (anti)holomorphic deformed oscillator problem that arises in Prokushkin-Vasiliev HS theory
in 3D [8] in terms of the oscillators in (4.21)9.

The ansatz [24]

B = MP ? κy , Sα = zα + P fα(a|x) , S̄α̇ = z̄β̇ + P f̄α̇(ā|x) , (5.1)

where M is a constant and ( fα, f̄α̇) are functions to be determined, indeed reduces the Equations (2.31)
and (2.32) to two deformed oscillator problems in terms of the latter functions. A specific gauge choice
on the ( fα, f̄α̇), while bringing about a further breaking of the manifest Lorentz covariance, effectively
linearizes their equations, which are then solved by means of the standard perturbative methods of
Section 6. A further ansatz [24]

W = W0 + P [g(a|x) + ḡ(ā|x)] , (5.2)

where g is another function to be determined is then employed to deal with the remaining equations
that involve W, namely (2.28), (2.29) and (2.30). The resulting exact solution is given by [24]

B =
4M

r
exp

[
1
r2

(
1
2 yαuαβyβ + 1

2 ȳα̇ūα̇β̇ȳβ̇ + yαuαβvβ
α̇ȳα̇
)]

, (5.3a)

S+ = z+ + MP
a+

r

∫ 1

0
dt exp

(
t
r

a+a−
)

, idem S̄+ , (5.3b)

S− = z− , idem S̄− , (5.3c)

W = W0 +
1
2r

MP
[

dτ−−a+α a+β

∫ 1

0
dt(1− t) exp

(
t
r

a+a−
)
+ h.c.

]
+

1
8r

MP
[
uαβ ω

αβ
0 + h.c. + 2(vαα̇ + kαα̇) eαα̇

0

]
, (5.3d)

where

ταβ =
uαβ

r
, τ−− = uα−uα−ταβ , z± = uα±zα , a± = uα±aα ,

dταβ = −1
r

ω0(α
γ uβ)γ +

1
r

eγγ̇
0

(
εγ(α vβ)γ̇ +

1
2r3 vγ̇

δuαβuγδ

)
.

(5.4)

Note also that SA does not satisfy the Vasiliev gauge S(Z, Y)|Z=0 = 0, and that W above has not
been redefined as in (2.22). Nonetheless, it has been noted in [24] that a HS transformation of the form

9 In this section we shall use the conventions of [24] which differ form ours.
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δW = D0ε(1) with ε(1) =
(
− 1

2

∫ 1
0 dtzαSα|z→tz + h.c. + f (Y|x)

)
and arbitrary f (Y|x) maps W to Wphys

given by

Wphys =
4M

r
eαα̇

0 kαα̇ exp
(
−1

2
kββ̇yβȳβ̇

)
, (5.5)

whose spin 2 component gives the frame field and the associated metric

ea
µ = eµ

a(AdS) +
M
r

kµka , gµν = gAdS
µν +

2M
r

kµkν , (5.6)

where kµ = eαα̇
0 kαα̇. This is the metric of a black hole of mass M in AdS4 in Kerr-Schild form.

The terminology of black hole in HS context requires caution as discussed in the introduction.
In addition to the SO(3) × SO(2), the solution summarized above has been shown to also have
1/4 of theN = 2 supersymmetric HS symmetry of the model, and their infinite dimensional extension
thereof [24].

The solution (5.3) differs from (4.17)–(4.19) both in the form of the internal connection (V±, V̄±)
and in that of the gauge field generating functions. As for the internal connection, the difference can
be ascribed to the two choices employed in [6] and [24] for solving the deformed oscillator problem
(referred to as “symmetric” and “most asymmetric”, respectively, in [6,22]). One can show that the
resulting internal connections can be connected via a gauge transformation (see [6]), although the
small or large nature of this transformation is yet to be investigated. The comparison of W ′ in (4.19)
and W in (5.3) is technically more complicated, as the two differ also by the shift of the Lorentz
connection (2.22), and it will be postponed to a future work, but we note that having the same B
identical in both solutions strongly suggests that the physical gauge fields should be equivalent, and
in particular equivalent to (5.5).

It is worth mentioning that even by working without the gauge function method, with a specific
choice of gauge the Didenko-Vasiliev solution can be simplified in such a way that the W connection is
reduced to the vacuum one W0. This simplification was studied in [45], along with the embedding of
the solution in the N = 2 and N = 4 supersymmetric extensions of the bosonic Vasiliev equations.

6. Perturbative Expansion of Vasiliev Equations

In this Section, we shall summarize the standard perturbative expansion of the Vasiliev equations,
benefiting from [4,6,12,25,27,46] (for more recent treatments, see [47,48]).

In the normal order, defined by the star product formula (2.4), the inner Klein operators become
real analytic in Y and Z space, viz.,

κ = κy ? κz = exp(iyαzα) , κ̄ = κȳ ? κz̄ = exp(iȳα̇ z̄α̇) . (6.1)

Assuming that the full field configurations are real-analytic onZ4 for generic points inX4, one may
thus impose initial conditions

B|Z=0 = C , Wµ|Z=0 = aµ , (6.2)

where the x-dependence is understood. In order to compute the Z-dependence of the fields one
may choose VA|C=0, which is a trivial flat connection, to vanish, and a homotopy contractor for the
de Rham differential on Z4, which entails imposing a gauge condition on VA. One may then solve
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the constraints on DAB, FAB and FAµ on Z4 in a perturbative expansion in C. This procedure gets
increasingly complex with increasing order in the expansion, which schematically can be written as

B = ∑
n>1

B(n) , B(1)(C) ≡ C , (6.3)

V = ∑
n>1

V(n) , (6.4)

W = ∑
n>0

W(n)(aµ) , W(0)(aµ) ≡ aµ , (6.5)

where B(n), V(n) and W(n)(aµ) are n-linear functionals in C, and W(n)(aµ) is a linear functional in aµ.
These quantities, which are constructed using the homotopy contractor on Z4, depend on Z, and are
real-analytic in Y4 × Z4 provided that C and aµ are real analytic in Y-space and all star products
arising along the perturbative expansion are well-defined. As for the remaining equations, that is, that
Fµν = 0 and DµB = 0, it follows from the Bianchi identities that they are perturbatively equivalent to
Fµν|Z=0 = 0 and DµB|Z=0 = 0, which form a perturbatively defined Cartan integrable system on X4

for C and aµ.
To Lorentz covariantize, one imposes

W ′|Z=0 = w , (6.6)

with W ′ from (2.22), that is

aµ = wµ +
1
4i

(ω
αβ
µ Mαβ + ω̄

α̇β̇
µ M̄α̇β̇)

∣∣∣
Z=0

, (6.7)

where w does not contain any component field proportional to yαyβ and ȳα̇ȳβ̇ in view of (2.23).

Upon substituting the above relation into W(n)(aµ; C, . . . , C), it follows from the manifest Lorentz
covariance that the dependence of Fµν|Z=0 and DµB|Z=0 on the Lorentz connection arises only via the
Lorentz covariant derivative ∇ and the Riemann two-form (rαβ, rα̇β̇). Thus, the resulting equations in
spacetime take the form [6]

∇w + w ? w +
1
4i

(
rαβyαyβ + h.c.

)
+ i ∑

n1 + n2 > 1
n1,2 > 0

(
rαβV(n1)

α ? V(n2)
β + h.c.

) ∣∣∣
Z=0

+ ∑
n1 + n2 > 1

n1,2 > 0

W(n1)(w) ? W(n2)(w)
∣∣∣
Z=0

= 0 , (6.8)

∇C + ∑
n1 + n2 > 1

n1 > 0, n2 > 1

[W(n1)(wµ), B(n2)]π
∣∣∣
Z=0

= 0 , (6.9)

where

∇w := dxw + [ω(0), w]? , ∇C := dxC + [ω(0), C]? , ω(0) =
1
4i

ωαβ M(0)
αβ − h.c. , (6.10)

rαβ := dωαβ −ωαγ ∧ωγ
β , r̄α̇β̇ := dω̄α̇β̇ − ω̄α̇γ̇ ∧ ω̄γ̇

β̇ . (6.11)
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Alternatively, in order to stress the perturbation expansion around the maximally symmetric
background, including the spin-two fluctuations, it is more convenient to work in terms of the original
one-form aµ. The perturbative expansion up to 3rd order in Weyl curvatures reads

da = a ? a + V(a, a, C) + V2(a, a, C, C) +O(C3) , (6.12)

dC = a ? C− C ? π(a)−U (a, C, C) +O(C3) , (6.13)

where (V ,V2,U ) are functionals that can be determined from (6.8) and (6.9). One next assumes that
the homotopy contraction in Z-space is performed such that

zAVA = 0 , (6.14)

which we refer to as the Vasiliev gauge, and expands

a = W0 + a1 + a2 + · · · , C = C1 + C2 + · · · . (6.15)

where W0 is the maximally symmetric background; a1 a and C1 are linearized fields; an and Cn are nth
order fluctuations. The resulting linearized field equations on X-space provide an unfolded description
of a dynamical scalar field

φ = C1 |Y=0 , (6.16)

and a tower of spin-s Fronsdal fields

φa(s) =

(
eµa

0

(
(σa)

αα̇ ∂2

∂yα∂ȳα̇

)s−1

a1,µ

) ∣∣∣∣∣
Y=0=Z

, (6.17)

where we use the convention that repeated indices are symmetrized. Computing the functional
V(W0, W0, C), the linearized unfolded system is given by [4]

D0a1 = − i
4

Hαβ∂α∂βC1(y, 0)− i
4

H̄α̇β̇∂̄α̇∂̄β̇C1(0, ȳ) (6.18)

D0C1 = 0 , (6.19)

where

D0a1 := dxa1 + {W0, a1}? , D0C1 := dxC + [W0, C1]? , (6.20)

hαα̇ := e0
αα̇ , Hαβ := hαγ̇ ∧ hβ

γ̇ , H̄α̇β̇ := h̄α̇γ ∧ h̄β̇
γ . (6.21)

The oscillator expansion of (6.18) furnishes the definition of the spin−s Weyl tensors, and gives the
field equations for spin-s fields which remarkably do not contain higher than second order derivatives,
and indeed they are the well known Fronsdal equations for massless spin s-fields in AdS. As for (6.19),
its oscillator expansion gives the AdS massless scalar field equation in unfolded form.

Perturbative expansion around AdS at second order is rather complicated but still manageable.
Schematically the equations take the form

D0a2 − V(W0, W0, C2) = a1 ? a1 + 2V(W0, a1, C1) + V(W0, W0, C1, C1) , (6.22a)

D0C2 = [a1, C1]π + U (W0, C1, C1) . (6.22b)

Even though these terms have been known in the form of parametric integrals for some time, their
detailed structure and consequences for the three point functions were considered much later in [11,49],
where the field equation for the scalar field was examined, and used for computing the three-point
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amplitude for spins 0− s1 − s2. If s1 6= s2, only the first source term in (6.22b) contributes and gives a
finite result, in agreement with the boundary CFT prediction. However, if s1 = s2, only the second
source term in (6.22b) contributes and gives a divergent result [11,49]. This divergence was confirmed
later in [12,50] where the divergence in the three point amplitude for spins s− 0− 0, resulting from
the last term in (6.22a). Soon after, it was shown that a suitable redefinition of the master zero-form
cures this problem [48,51], as has been also confirmed with the computation of relevant three-point
amplitudes [52,53]. A similar redefinition in the one-form sector has also been determined so that the
divergence problem arising in the last term in the first equation above has also been removed [54].

In determining the higher order terms in the perturbative expansions of Vasiliev equations,
it remains to be established in general what field redefinitions are allowed in choosing the appropriate
basis for the description of the physical fields. In wrestling with this problem, the remarkable simplicity
of the holographic duals of this highly nonlinear and seemingly very complicated interactions may
provide a handle by means of their holographic reconstruction. Such reconstruction has been achieved
for the three and certain four-point interactions [13–15]. Putting aside the analysis and interpretation
of the nonlocalities [14,55,56], which are present, and nonetheless in accordance with holography by
construction, the issue of how to extract helpful hints from them with regard to the nature of the
allowed field redefinitions in perturbative analysis of Vasiliev equation remains to be seen.

Of course, ultimately it would be desirable to have a direct formulation of the principles that
govern the nonlocal interactions, based on the combined boundary conditions in twistor space as well
as spacetime, as we shall comment further below.

7. A Proposal for an Alternative Perturbation Scheme

In what follows, we shall show that for physically relevant initial data Ψ(Y) given by particle and
black hole-like states, the solutions obtained using the factorization method can be mapped to the
Vasiliev gauge used in the normal ordered perturbation scheme at the linearized level. Whether the
Vasiliev gauge is compatible with an asymptotic description in terms of Fronsdal fields to all orders in
perturbation theory, or if it has to be modified, possibly together with a redefinition of the zero-form
initial data, is an open problem. In finding the proper boundary conditions in both spacetime and
twistor space it may turn out to be necessary to require finiteness of a set of classical observables
involving integration over these spaces.

One can define formally the aforementioned map to all orders of classical perturbation theory by
applying a gauge function

G = L ? H , (7.1)

to the holomorphic gauge solution space, where H = 1 + ∑n>1 H(n) is a field dependent gauge
function to be fixed as to impose the Vasiliev gauge in normal ordering. To begin with, let us consider
fluctuations around AdS for which Ψ(Y) consists of particle states, focusing, for concreteness, to the
case of scalar particle states worked out in [7]. Upon switching on the gauge function L, the field
V(L)

α := L−1 ? V′α ? L develops non-analyticities in the form of poles in Y-space in the particle sector [7].
Applying H removes these poles and expresses the results in terms of Fronsdal fields (at the same time
restoring the manifest Lorentz covariance, as we shall see), at least in the leading order. This can be see
as follows. We want to obtain V(G)

α such that

zαV(G)
α + h.c. = z+V(G)− − z−V(G)+ + h.c. = 0 . (7.2)

The leading order gauge transformation reads

V(G)(1)
α = V(L)(1)

α + ∂αH(1) . (7.3)
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Contracting by zα and using the fact that by definition ZAV(G)
A = 0, one finds

H(1) = −
(

1
zβ∂β

zAV(L)(1)
A + h.c.

)
. (7.4)

In particular, activating only the scalar ground state (and its negative-energy counterpart) via the
parameters ν̃±1 in the projector ansatz for B (see (4.25)), this was computed in [7] with the result

H(1) = − i
4

1− x2

1− 2ix0 + x2
1

ỹ+ỹ−
ỹ+z− + ỹ−z+

ũ

(
eiũ − 1

)∣∣∣∣
η=+1

+ idem|η=−1 , (7.5)

where we have set b = ν̃1 = ν̃−1 = 1, and

ũ := ỹαzα = ỹ+z− − ỹ−z+ , ỹα = yα + Mα
β̇(x, η)ȳβ̇ . (7.6)

The matrix Mα
β̇(x, η) can be found in Section 5.2.1 of [7].

This result for H(1) is regular in Z but has a pole in Y .
It follows that

V(G)(1)
α = −1

2
1− x2

1− 2ix0 + x2
zα

ũ

[
eiũ − eiũ − 1

iũ

]
+ idem|η=−1 , (7.7)

B(Y|x) =
4(1− x2)

1− 2ix0 + x2 eiyα Mα
β̇ ȳβ̇

∣∣∣∣
η=+1

+ idem|η=−1 . (7.8)

We observe that V(G)(1)
α is now real-analytic everywhere on C.

Furthermore, it was shown in [7] that the above expressions for (B, Vα) lead to the relation

V(G)(1)
α = zα

∫ 1

0
dt t B(−tz, ȳ) eityαzα (7.9)

in agreement with the result obtained in the standard perturbative analysis of Vasiliev equations
at leading order. The emergence of zα in (7.7) shows that manifest Lorentz covariance is restored,
in comparison with the expression for V(L)(1)

α . The prefactor in (7.7) is a consequence of the fact that we
are considering the lowest mode alone in the solution for Fronsdal equation the scalar field, as opposed
to summing all the full set of modes.

Expressing the exact solutions obtained in holomorphic gauge in terms of Fronsdal fields amounts
to setting up an alternative perturbation scheme in which one constructs the higher orders of the
gauge function H(n) subject to dual boundary conditions, that is, to conditions restricting the both the
twistor-space dependence of the master fields and their spacetime asymptotic behaviour. Indeed,
one requires that after having switched on H, the master fields have symbols in normal order that
are real-analytic at Y = Z = 0, and symbols in Weyl order that belong to a (associative) star-product
subalgebra with well-defined classical observables defined by traces over twistor space and integrations
over cycles in spacetime. The proposal is that this problem admits a non-trivial solutions, and that it
fixes H(n) up to residual small HS gauge transformations and the initial data for the master zero-form
B to all orders in classical perturbation theory. It would be interesting to see whether these type of
field redefinitions are related to those recently proposed by Vasiliev in order to obtain a quasi-local
perturbation theory in terms of Fronsdal fields [51,54]. An important related issue is whether the gauge
function G is large in the sense that it affects the values of the HS zero-form charges, which are special
types of classical observables given by traces over twistor space defining zero-forms in spacetime that
are de Rham closed [20,27,57].
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A nontrivial test of the factorization approach is first to show that the solution is finite after
performing the higher order H(n) gauge transformations, and second, to show that the resulting
n-point correlators are in agreement with the result expected from holography. The corrections beyond
the leading order remain to be determined, while the computation of correlators has been performed in
which the second order solution in standard perturbative scheme has been used. It has been shown that
a naive computation of B(2) in the standard perturbative scheme leads to divergences [11,12], and later
it was shown that these divergences can be removed by a suitable redefinition of C(Y|x) [48,51].
Whether there exists a principle based on any notion of quasi-locality in spacetime that governs the
nature of such redefinitions to all orders in perturbation is not known, to our best knowledge.

An advantage of the factorization method is that here we start from a full solution to Vasiliev’s
theory, defined as a classical field theory on the product of spacetime and twistor space (not referring
a priori to the conventional perturbative approach). This provides a convenient framework for the
description of the solutions with particles fluctuating around nontrivial backgrounds. The key principle
here is that linear superposition principle holds for the zero-form initial data Ψ(Y). For example, if we
want to describe the solution to Vasiliev equations for particles propagating around BH solution of
Section 4, one simply takes Ψ = νnPn + ν̃n P̃n. The exact solution for the combined system is obtained in
this way, but in small fluctuations of a particle propagating in a fixed and exact black hole background,
one may treat the parameter ν̃n and νn as small and large, respectively. A very interesting open problem
is thus to combine this scheme with the aforementioned proposal for dual boundary conditions in
order to work out new types of generating functions for HS amplitudes.

8. Aspects of Higher Spin Geometry

HS theory has been mostly studied at the level of the field equations and in terms of locally defined
quantities in ordinary spacetimes or twistor space extensions thereof. It is clearly desirable to develop a
globally defined framework for the classical theory, in order to provide geometric interpretations of the
exact solutions, and shed further light on the important issue of the choice of boundary conditions on
the master fields on the total space required for Vasiliev’s equations to produce physically meaningful
anti-holographic duals of boundary conformal field theories. An attempt at a global description of
HS theory was made in [27] where bundle structures based on different choices of structure groups,
soldering forms and classical observables were considered10. Here, we shall highlight a particularly
interesting choice of structure group, and the resulting infinite dimensional coset description involving
tensorial coordinates, and associated generalized frame field and resulting metrics.

8.1. Structure Group

Noting that Vasiliev equations are Cartan integrable in arbitrary number of commuting
dimensions, yet without changing the local degrees of freedom associated to the zero-forms (more on
this below), we consider the formulation of Vasiliev’s theory in terms of the master fields (W, B, Sα, S̄α̇)

thought of as horizontal forms on a noncommutative fibered space C with eight-dimensional fibers
given by Y4 ×Z4 and base given by an infinite-dimensional commuting real manifoldM, consisting
of charts coordinatized by XM. In each chart, the one-form field W = dXMWM thus takes its values in
the HS Lie algebra

ĥs(4) :=
{

P̂(Y, Z) : τ(P̂) = (P̂)† = − P̂
}

, (8.1)

and the deformed oscillators (Sα, S̄α̇) and the deformation field B are thought of as zero-forms on
M, valued in representations of the HS Lie algebra as described in Section 2, where the τ-map is
also defined. The extended equations of motion are given by Equations (2.28)–(2.32), with the only
difference being that the manifold χ4 is replaced byM.

10 We refer the reader to [27] for considerable amount of details albeit using a a considerably different notation.
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In order to define the theory globally onM, we glue together the locally defined master fields
using transition functions from a structure group, which by its definition is generated by a structure
algebra h given by a subalgebra of hs(4). One interesting choice is [27]

h = ĥs+(4)⊕ sl(2,C) , ĥs+(4) :=
1
2
(1 + π)ĥs(4) , (8.2)

where sl(2,C) is the algebra of canonical Lorentz transformations. The corresponding connection,
also referred to as the generalized Lorentz connection, is given by

Ω := W+ ⊕ω , W± :=
1
2
(1 ± π)W ′ , (8.3)

where ω is the canonical Lorentz connection, while the projection

E := W− , (8.4)

is assumed to form a section11. The Vasiliev equations and gauge transformations in terms of these
master fields are spelled out in [27].

8.2. Soldering Mechanism

The horizontal differential algebra on C, which is quasi-free in the sense that the curvature
constraints are cartan integrable modulo zero-form constraints, can be projected to a free horizontal
differential algebra on the reduced total space C|Z=0. To this end, one first solves the constraints on Z
given initial data

w(Y|X) ≡ dXMwM = dXM Ŵ ′M
∣∣∣
Z=0

, C(Y|X) = B
∣∣∣
Z=0

, (8.5)

where w(Y|X) belongs to the reduced HS algebra

hs(4) := ĥs(4)
∣∣∣
Z=0

, (8.6)

and C(Y|X) belongs to its twisted adjoint representation. Next, defining

Γ⊕ω := Ω
∣∣∣
Z=0
∈ hs+(4)⊕ sl(2,C) , E := E

∣∣∣
Z=0
∈ hs(4) / hs+(4) , (8.7)

where hs+(4) := 1
2 (1 + π)hs(4), we assume thatM is soldered by E, that is, the tangent space ofM is

assumed to be identified with the coset hs(4) / hs+(4) via E. Thus, expanding

E = dXMEA
MPA , π(PA) = −PA , (8.8)

where PA is a basis for the π-odd elements of hs(4), and denoting the inverse of the frame field EM
A

by EM
A, the local translations with gauge parameters ξ = ξ APA can be identified by usual means [27]

as infinitesimal diffeomorphisms generated by globally defined vector fields ~ξ = ξAEM
A~∂M combined

with local generalized Lorentz transformations with parameters (ı~ξ Γ, ı~ξ ω).

11 It is worth noting that in [27], the form E was considered to be a soldering form on a manifoldM with tangent space
isomorphic to the coset ĥs(4)/ĥs+(4) and containingM as a submanifold. We have simplified the geometrical framework
here by formulating the system directly onM.
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8.3. Elimination of Tensorial Coordinates

The framework described above can be used to write the zero-form constraint onM×{Z = 0},
up to leading order in C, as

DA(Γ, ω)C + {PA, C}? = 0 , (8.9)

where D(Γ, ω) = ∇+ adΓ with ∇ representing the Lorentz covariant derivative. This constraint can
be analyzed by decomposing PA =

{
PA`

}∞
`=0 into levels of increasing tensorial rank, viz.,

PA`
=
{

Pa(2`+1),b(2k)

}`
k=0

=
{

M{a1b1
? · · · ? Ma2kb2k

? Pa2k+1 ? · · · ? Pa2`+1}

}`
k=0

, (8.10)

where (Mab, Pa) are the generators of SO(3, 2) and Pa(2`+1),b(2k) is a Lorentz tensor of type (2`+ 1, 2k).
The zeroth level of the zero-form constraint reads

Da(Γ, ω)C + {Pa, C}? = 0 , a = 1, ..., 4 , (8.11)

where the translation generator is given by the twistor relation Pa = (σa)αα̇yαȳα̇/4, which implies that
Cα(n+2s),α̇(n) is identifiable as the nth order symmetrized covariant vectorial derivative of the primary
spin-s Weyl tensor Cα(2s) [25]. On the other hand, the `th level of the zero-form constraint implies

Da(2`+1)(Γ, ω)C + {Pa(2`+1), C}? = 0 , (8.12)

where the higher translation generator is now given by the enveloping formula

Pa(2`+1) = P{a1
? · · · Pa2`+1} . (8.13)

As a result, the tensorial derivatives ∇a(2`+1)(Γ, ω) factorize on-shell into multiple vectorial
derivatives; for example, the tensorial derivative of the physical scalar φ = C|Y=0 factorizes into

Da(2`+1)(Γ, ω)φ ∝ D{a1
(Γ, ω) · · ·Da2`+1}(Γ, ω)φ . (8.14)

It follows that no new strictly local degrees of freedom are introduced due to the presence of the
tensorial coordinates ofM.

8.4. Generalized Metrics

Taking traces of ?-products of generalized vielbeins E = dXMEM and adjoint operators on twistor
space, one can construct structure group invariants that are tensor fields on M [27]; in particular,
we may consider symmetric rank-r tensor fields

G(r) := dXM1 · · · dXMr Tr
[
K ?

(
EM1 ? V

k1,k̄1
λ1,λ̄1

)
? · · · ?

(
EMr ? V

kr ,k̄r
λr ,λ̄r

)]
, (8.15)

where K ∈ {1, κκ̄} and

V k,k̄
λ,λ̄ :=

{
exp?

[
i(λαSα + λ̄α̇S̄α̇)

]}
? (B ? κ)?k ? (B ? κ̄)?k̄ , k, k̄ ∈ N , (8.16)

where (λα, λ̄α̇) are auxiliary twistor variables, and

Tr [ f (Z, Y)] :=
∫
Y×Z

d4Yd4Z
(2π)4 f (Z, Y) . (8.17)

Given a (compact) p-cycle [Σ] in the homology of M, one can consider the formally
defined minimum

Amin[Σ, G(r)] := min
Σ′∈[Σ]

A[Σ′, G(r)] , (8.18)
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of the area functional

A[Σ′, G(r)] :=
∫

Σ′
dpσ

εm1[p] · · · εmr [p] ( f ∗G)m1 ...mr · · · ( f ∗G)m1 ...mr︸ ︷︷ ︸
p times


1/r

, (8.19)

defined using the totally anti-symmetric tensor density εm1 ... mp and induced metric

( f ∗G)m1 ... mr = ∂m1 XM1 · · · ∂mr XMs GM1 ... Mr
, (8.20)

on Σ′ equipped with local coordinates σm. The area functional is structure group invariant, and
its minimum, if well-defined, is Diff(M) invariant, hence serving as a classical observable for the
HS theory. Clearly, the dressings by the vertex operator-like operators result in a large number of
inequivalent metrics for each r, but this is not a novelty in HS theory, as it is possible to consider
similar dressings of the Einstein frame metric in ordinary gravity. The tensorial calculus pertinent to
examining the variational principles for r = 2 is well understood, whereas for r > 2 it remains to be
investigated further. In particular, one may ask whether there exists any principle for singling out a
preferred metric (possibly of rank two), using, for example, calibrations based on abelian p-forms of
the type that will be discussed below. The application of these ideas to a geometrical characterization
of the exact solutions of HS theory remains to be investigated.

8.5. Abelian p-Form Charges

Another type of intrinsically defined classical observables facilitated by the introduction of
soldering one-forms are the charges of on shell closed abelian p-forms, viz.,

Q[Σ, H] =
∮

Σ
H(E , B, Sα, S̄α̇, rαβ, r̄α̇β̇) , (8.21)

where Σ are closed p-cycles in M or open p-cycles with suitable boundary conditions, and H are
globally defined differential forms that are cohomologically nontrivial on shell, namely dH = 0 and
δΛ H = 0 (Λ ∈ h), and H is not globally exact. We also recall that rαβ is defined in (6.11). The abelian
p-forms were considered in [27]

H[p] = Tr
[
(E ? E + r(S)+)?(p/2) ? κ

]
, p = 2, 4, 6, ... (8.22)

where
r(S)+ =

1
8i
(1 + π)rαβSα ? Sβ − h.c. (8.23)

The conservation of these charges can be checked directly by replacing the exterior derivative
by the structure group covariant derivative D(Ω) inside the trace and using the fact that
D(Ω)(E ? E + r(S)+) = 0 on shell.

8.6. On-Shell Actions

Actions have been proposed that imply the Vasiliev equations [16,17] upon applying the
variational principle. Their on-shell evaluations involve subtleties stemming from their global
formulation and the crucial role played by the boundary conditions. Thus, it remains unclear whether
these actions vanish on-shell. Nonetheless, one can still employ the abelian p-form charges discussed
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above as off-shell topological deformations. To this end, one set of candidates that have been considered
are [27]

Stop[Σ2] = Re
{

τ2

∮
Σ2

Tr [κ ? R]
}

Stop[Σ4] = Re
{∮

Σ4

Tr
[

κ ?

(
τ4R ? R + τ̃4

(
(E ? E + r(S)+) ? R +

1
2
(E ? E + r(S)+)?2

))]}
,

(8.24)

where τ2, τ4 and τ̃4 are complex constants, Σ2,4 are submanifolds ofM (where Lagrange multipliers
vanish), and

R := ∇W+ + W+ ? W+ +
1
4i
(ωαβ M(0)

αβ + ω̄α̇β̇ M̄(0)
α̇β̇

) , (8.25)

which is the curvature of Ω. Using the field equation [27]

R + E ? E + r(S)+ = 0 , (8.26)

we can express Stop[Σ4] on-shell as

Stop[Σ4] ≈ Re
{
(τ4 −

1
2

τ̃4)
∮

Σ4

H[4]

}
, (8.27)

where H[4] given in (8.22). Infinities arise from the integration over Σ4 as well as twistor space.
Assuming that the divergence from the AdS vacuum has a definite reality property, such that it can
be removed by choosing τ4 appropriately, one is left with an integral over perturbations that may in
principle be finite modulo a prescription for integration contours; for related discussions, see [49,58].
Provided that one considers perturbations corresponding to boundary sources, it would be natural to
interpret Stop[Σ4] as the generating functional for the boundary correlation functions.

One may also construct topological two-forms given on-shell by

Stop[Σ2] ≈ − Re
{

τ2

∮
Σ2

H[2]

}
, (8.28)

with H[2] given in (8.22). One application of this surface operator is to wrap Σ2 around a point-like
defect or singularity such as the center of the rotationally symmetric and static solution of [24]. In this
case, the leading order contribution, which comes from the AdS vacuum, is a divergent integral
over twistor space. If the divergence has a definite reality property, one can cancel it by choosing τ2

appropriately. One would then be left with an integral over the perturbations. As the latter involve
nontrivial functions in twistor space, the integral may be finite. It would be interesting to seek an
interpretation of the resulting value of Stop[Σ2] as some form of entropy of the black hole solutions
reviewed above.

An alternative framework in which certain 2- and 4-forms in x-space, referred to as the Lagrangian
forms, are introduced was proposed in [59], where their possible application for the computation of HS
invariant charges and generating functional for the boundary correlations functions were discussed;
see also [60] for the computation of such HS charges on black-hole solutions at the first order in the
deformation parameters. Asymptotic charges in HS theories have also been described in [61–63].
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Their relation to the HS charges12 and their evaluation on certain exact solutions will be discussed
elsewhere [26].
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