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Abstract: In four space-time dimensions, there exists a special infinite-parameter family of chiral
modified gravity theories. They are most properly described by a connection field, with space-time
metric being a secondary and derived concept. All these theories have the same number of degrees of
freedom as general relativity, which is the only parity-invariant member of this family. Modifications
of general relativity can be arranged so as to become important in regions with large curvature.
In this paper, we review how a certain simple modification of this sort can resolve the Schwarzschild
black-hole and Kasner anisotropic singularities of general relativity. In the corresponding solutions,
the fundamental connection field is regular in space-time.
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1. Introduction

Modification of general relativity theory has long been the subject of many investigations. One of
the simplest examples is the R2 gravity, of relevance as a valid model of inflation [1,2]. This is a
classical example of the scalar-tensor theory, propagating not just the two polarizations of the graviton
but also a scalar. More involved modifications of GR with higher powers of the curvature added
to the Lagrangian propagate more degrees of freedom. It seems impossible to modify metric-based
GR without adding extra propagating DOF. This is the content of several GR uniqueness theorems
available in the literature.

The situation changes dramatically when, instead of metric, one adopts different variables for
describing gravitational degrees of freedom. Thus, it turns out possible to modify GR without adding
new degrees of freedom if one starts from one of its chiral descriptions based on spin connection,
with metric becoming a secondary and derived object. This formulation of GR originated from
the seminal work due to Plebański [3], but its pure-connection form and its modifications with the
mentioned properties are, perhaps, less known. In fact, it gives birth to an infinite-parametric class of
chiral modified gravity theories without new DOF, in which GR is just a special member [4,5].

When studying these modified-gravity theories in some particular setups, we came across their
interesting features in relation to certain anisotropic singularities encountered in general relativity.
Specifically, the black-hole singularity and the Kasner singularity of Bianchi I space-time can, in a sense,
be “resolved” in a class of modified theories under investigation. Although the metric field based
on this solution still contains singularities and experiences changes of signature, the fundamental
connection field is everywhere regular. In this talk, we will review this feature of the theory
under investigation.
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2. Pure-Connection Gravity and Its Modification

2.1. Eddington–Schrödinger Theory

This is historically the first pure-connection formulation of GR. A simple way to get it is to start
from the first-order Palatini formulation, with the affine connection Γµν

ρ and the metric gµν being
independent variables. Integrating the variables Γµν

ρ, one obtains the Hilbert–Einstein action for the
metric. On the other hand, “integrating out” the metric gµν, i.e., solving the field equations for gµν

and substituting the solution back into the action, one obtains a pure-connection theory that contains
only Γµν

ρ. This procedure is only possible in the presence of a non-zero cosmological constant. In the
Eddington–Schrödinger case [6,7], the pure-connection action is

S[Γ] =
1

8πGΛ

∫ √
det

(
Rµν[Γ]

)
d4x , (1)

where the symmetric Ricci tensor Rµν is constructed from Γµν
ρ only. The field equations that result

from action (1) are
∇ρRµν[Γ] = 0 , (2)

where Rµν[Γ] is the inverse of Rµν[Γ]. If one now makes a definition

gµν =
1
Λ

Rµν[Γ] , (3)

then Equation (2) tells that Γµν
ρ is the g-compatible connection. The definition (3) of gµν is then the

vacuum Einstein equation.

2.2. The Chiral Plebański Formulation of GR

In the chiral approach, one starts with the Plebański formulation of GR [3] (see also [8,9]).
This is a first-order formulation, with an so(3) Lie-algebra-valued two-form field and a connection as
independent variables. This formulation is going to be the basis for all constructions below.

The Lie-algebra indices are denoted by lower-case Latin letters i, j, k, . . . = 1, 2, 3. The basic
fields are a Lie-algebra-valued two-form field with components Bi and a connection one-form with
components Ai. There is also a Lagrange multiplier field Ψij, which is symmetric and traceless.
The action of the theory is

S[B, A, Ψ] = i
∫

Bi ∧ Fi − 1
2

(
Ψij +

Λ
3

δij
)

Bi ∧ Bj . (4)

Here, Λ is the cosmological constant, which may be zero. The imaginary unit in front of the
action is needed in order to make it real for fields satisfying the reality conditions as appropriate for
Lorentzian signature (see below).

Let us consider the field equations stemming from action (4). First, varying with respect to Bi,
we get

Fi =

(
Ψij +

Λ
3

δij
)

Bj . (5)

The Euler–Lagrange equation for the connection is

dABi = 0 , (6)

where dA is the covariant exterior derivative with respect to the connection Ai. Finally, there is an
equation obtained by varying with respect to Ψij. Since the matrix-valued field Ψij is constrained to be
symmetric and traceless, variation of action (4) with respect to this field tells that the traceless part of
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the matrix-valued four-form Bi ∧ Bj vanishes. In other words, the matrix Bi ∧ Bj is proportional to the
identity matrix δij, so that we obtain

Bi ∧ Bj =
1
3

δijBk ∧ Bk . (7)

This equation can be understood as telling that Bi “come from a tetrad” in the sense that Bi

satisfying this equation contain no more information than that provided by the metric plus a choice
of an SO(3) frame at every space-time point. This metric is defined by the two-form fields via the
Urbantke formula [10]:

gµν

√
det g ∝ ε̃αβγδεijkBi

µαBj
νβBk

γδ . (8)

Here, ε̃αβγδ is the anti-symmetric tensor density of weight one which in any coordinate
system has components ±1, and the proportionality means equality up to an arbitrary positive
coordinate-dependent scalar factor. To fix the metric completely, it suffices to fix this factor, or to
specify the associated volume form. In the case of GR, in view of relation (7), the associated volume
form Vg is unique up to a constant, which is fixed by the requirement that the Einstein equations are
satisfied with the cosmological constant Λ:

3! iVg = Bi ∧ Bi ≡ Tr B ∧ B . (9)

Equation (6) can be solved for Ai in terms of derivatives of Bi whenever Bi are non-degenerate
(that is, the three two-forms Bi are linearly independent). In particular, Equation (6) can be solved
if the two-forms Bi satisfy Equation (7), in which case the solution Ai can be shown to be just the
self-dual part of the Levi-Civita connection for the metric described by Bi. Equation (5) then becomes a
statement that the curvature of the self-dual part of the Levi-Civita connection of a metric is self-dual
as a two-form. This is equivalent to the Einstein condition, which shows that action (4) is indeed a
description of GR. When all field equations are satisfied, the field Ψij is identified with the self-dual
part of the Weyl curvature. For more details on this formulation, the reader is referred to [9].

2.3. Modified Gravity

A significant feature of the Plebański formulation (4) of general relativity is that it allows for
modifications (or deformations) that do not increase the number of its degrees of freedom [5].
Specifically, it consists in allowing the cosmological constant in action (4) to be an arbitrary
SO(3)-invariant function of the field Ψij :

S[B, A, Ψ] = i
∫

Bi ∧ Fi − 1
2

(
Ψij +

Λ(Ψ)

3
δij
)

Bi ∧ Bj . (10)

It can be shown [11] by the Hamiltonian analysis that this theory continues to propagate just
two degrees of freedom, similarly to GR. At the same time, this is a modified theory of gravity,
in which modification becomes important in space-time regions where the function Λ(Ψ) significantly
deviates from a constant. A particularly simple one-parameter family of modifications is obtained by
considering the function Λ(Ψ) in the form of a quadratic polynomial in Ψij :

Λ(Ψ) = Λ0 −
α

2
Tr (Ψ2) , (11)

where α > 0 is an arbitrary parameter. For this family of modified theories, one expects strong deviations
from GR when the Weyl curvature Ψ becomes of the order of

√
Λ0/α.
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2.4. Pure-Connection Formulation

The pure-connection formulation can be obtained from action (10) by integrating out all variables
except connection. This is possible since the auxiliary fields enter without derivatives in the action.
Eventually, one obtains action in the form

S[A] =
i
2

∫
L(X)V , (12)

where V is an arbitrary volume form, the matrix field Xij is defined by

Fi ∧ Fj = XijV , (13)

and L(X) is a homogeneous SO(3)-invariant function of X. One can see that action (12) is, in fact,
independent of the volume form V . The homogeneous function L(X) is in one-to one correspondence
with the function Λ(Ψ) in action (10), although this correspondence is not easy to find explicitly.
General relativity (with Λ(Ψ) ≡ Λ0) corresponds to [12]

LGR(X) =
1

Λ0

(
Tr
√

X
)2

. (14)

The pure-connection equation of motion for the theory under consideration is the second-order
partial differential equation

dA

(
∂L

∂Xij Fj
)
= 0 . (15)

The volume form of the metric arising in general relativity is specified by Equation (9). It is
proportional to the Lagrangian volume form L (F ∧ F) ≡ L(X)V . For a modified gravity theory
with a general function L(X) as a Lagrangian, it is not clear which metric from the conformal class
determined by Equation (8) should be interpreted as the “physical” one. By analogy with GR, we could
assume that its volume form will remain to be proportional to Tr B ∧ B, or that it will be proportional
to the action density L (F ∧ F). These two options no longer coincide in a modified theory of gravity
and can be regarded as equally plausible.

3. Black-Hole Solution

In [13,14], we obtained and described a complete vacuum solution in theory (10) with spherical
symmetry. It turns out that the solution respects the Birkhoff theorem: it is necessarily static. This is
another manifestation of the absence of new degrees of freedom in the theory. Due to spherical
symmetry, the symmetric traceless field Ψij has the form

Ψij = ψ(r)
(

3
xixj

r2 − δij
)

, (16)

and is described by a single function ψ(r) of the radial coordinate r =
√

∑i(xi)2. The cosmological
function Λ(Ψ) becomes a function of ψ, and its derivative with respect to ψ, which we denote by Λψ,
quantifies the deviation of the theory from GR: The condition

∣∣Λψ

∣∣� 1 implies the validity of GR.
The solution for the gauge field can be found in [13] and is expressed as

A1 = f (r) sin θdφ , A2 = − f (r)dθ , A3 = i
rrg(∞)

rg(r)

[
ψ(r)− Λ(r)

3

]
dt− cos θdφ , (17)
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where Λ(r) ≡ Λ (ψ(r)),

f (r) =

√
1−

rg(r)
r
− 1

3
Λ(r)r2 , ψ(r) =

rg(r)
2r3 , (18)

and the function rg(r) is determined from the equation

rg(r) exp

(∫ rg(r)/2r3

0

Λψ

6ψ
dψ

)
= rg(∞) . (19)

The arising metric, specified by the condition of anti-self-duality of the curvature components Fi

and by the metric volume form Vg ∝ Tr B ∧ B, has the following form:

ds2 =

(
1−Λψ/3
1 + Λψ/6

)[ r2
g(∞)

r2
g(r)

f 2(r)dt2 − f−2(r)dr2

]
− r2dΩ2 . (20)

As long as
∣∣Λψ

∣∣� 1, the solution closely follows the Schwarzschild solution. However, in the
domain where

∣∣Λψ

∣∣ becomes appreciable, it deviates from the Schwarzschild behavior. It turns out to
be more appropriate to describe solution in coordinates (t, ψ) rather than (t, r). In this case, the solution
can be extended with coordinate r being non-monotonic, and bounded from below. For the theory
defined by Equation (11), the corresponding conformal diagram is presented in Figure 1, adopted
from [13]. Although the constructed metric (20) becomes singular on the boundaries between grey
and white regions in the figure, the fundamental gauge field Ai is regular there. It is in this sense that
we can speak about the “resolution” of Schwarzschild black-hole singularity in terms of fundamental
connection variables Ai. Note that the black-hole horizon in the metric exists only in the case [13]

rg(∞) > rc ≡
2
√

α

e (1 + αΛ0/3)3/2 . (21)

In the opposite case, one obtains a solution resembling the Schwarzschild case with negative mass.
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Figure 1. Conformal diagram of the spherically symmetric solution with the Lambda-function (11) and
with the Schwarzschild radius rg(∞) > rc (left image) and rg(∞) < rc (right image), with rc given in
Equation (21). Different regions are numbered in such a way that the coordinate t is timelike in the odd
regions, and spacelike in the even ones. The flow of time is vertical in the white regions and changes to
horizontal in the grey regions. The boundaries between grey and white regions are places where metric
changes signature and, therefore, becomes singular. Thick dashed lines indicate the true singularity,
where r = ∞ and ψ = ∞. The configuration on the left image extends periodically and indefinitely
upward and downward. We are living in one of the regions of type I; the asymptotic spatial infinity in
this region is denoted by i0, and the future and past null infinities are denoted by J+ and J−, respectively.

4. Bianchi I Cosmology

In general relativity, Bianchi I cosmological model is described by a spatially Euclidean metric of
the form

ds2 = dt2 −
[

a1(t)dx1
]2
−
[

a2(t)dx2
]2
−
[

a3(t)dx3
]2

, (22)

where ai(t) are the corresponding scale factors. The so-called Kasner regime is reached as t→ 0:

a2
i ∼ t2pi , ∑

i
pi = 1 , ∑

i
p2

i = 1 , (23)

and describes approach to singularity at t = 0. In this section, we will show how this singular behavior
is “resolved” in the modified theory with the cosmological function (11).

By using the SO(3) gauge invariance of the theory, one can write the Bianchi I ansatz for the
connection in the form

Ak = ihk(τ)dxk (no sum over k) , (24)

where τ is, up to now, an arbitrary time parameter. The corresponding curvature two-form is

Fi = dAi +
1
2

εijk Aj ∧ Ak = iḣidτ ∧ dxi − 1
2

εijkhjhkdxj ∧ dxk , (25)

where an overdot denotes derivative with respect to τ. Calculating the wedge product, we obtain

Fi ∧ Fj = −2iδijXihVc , (26)
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where Vc = dτ ∧ dx1 ∧ dx2 ∧ dx3 is the coordinate volume form, h = h1h2h3, and

Xi =
ḣi
hi

. (27)

If we select the volume form V in Equation (13) to be

V = −2ihVc , (28)

then Xij = diag (X1, X2, X3). With this choice of the volume form, the pure-connection formulation
Equation (15) reduces to the system

d
dτ

(
∂L
∂Xi

)
= L(X)− ∂L

∂Xi
∑

j
Xj , (29)

which is a system of first-order differential equations for Xi. By using time-reparametrisation freedom,
it is always possible to choose the time variable τ in such a way that Lh = const. With this choice, and
using definition (27), one can integrate Equation (29) to obtain an implicit solution for X(τ):

∂L(X)

∂Xi
= L(X) (τ − τi) , (30)

where τi are arbitrary integration constants. Equations (27) and (30) give a complete solution to the
problem for an arbitrary theory from our class. Without loss of generality, one can conveniently shift
and normalize the time variable so that ∑i τi = 0 and ∑i τ2

i = 6.
The canonical metric of this solution with volume form proportional to L(X)V is given by

ds2 =

√∣∣∣∣L(X)∏i Xi
Λ0

∣∣∣∣
[
−dτ2 + ∏

j
X−1

j ∑
k

h2
k Xk

(
dxk
)2
]

. (31)

4.1. Behavior in GR

The general solution for Xi in the general relativity theory (14) is given by

XGR
1 =

(τ − τ2)(τ − τ3)√
3(τ2 − 1)(τ − τ1)

, etc. with permutation of indices . (32)

The quantities XGR
i have simple poles at τ = τi, and all blow up as τ→±1, which corresponds to

the Kasner singularity. This behavior is illustrated in Figure 2.
Integrating Equation (27) in the neighborhood of Kasner singularity and using Equation (31), we

see that the scale factors behave as
a2

i ∼ (τ − 1)pi , (33)

where

p1 = 1− (1− τ2)(1− τ3)

3(τ1 − 1)
, etc . (34)

If we arrange the time constants so that τ3 < τ2 < τ1, we obtain the following picture. As τ → ∞,
we approach the De Sitter solution Xi = 1/

√
3τ. As time decreases, at τ = τ1 we encounter a special

point where X1 has a simple pole, while X2 and X3 vanish. Below this point, all Xi change sign, as does
L(X). The component of the connection h1 vanishes at this point, while the components h2 and h3

remain finite. All components of the canonical metric (31) remain finite at this point. In terms of metric,
this is the point where the Hubble parameter H1 = ȧ1/a1 vanishes, and the scale factor a1 reaches its
minimum value.
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Τ
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X1

Figure 2. Behavior of the variables Xi given by Equation (30) in general relativity. Each variable Xi has
a pole at respective τ = τi. These are just special points of the solution, with all connection and metric
components remaining finite. Furthermore, all variables Xi have common poles at τ =±1. These are the
singular points for both the connection and the metric. The region “between” two Kasner singularities
describes a solution with negative Λ, while the two outer regions describe solutions with Λ > 0.

As τ → 1 in our normalization, we approach the Kasner singularity, with the functions Xi all
negative near the singularity, and all having a simple pole there. The scale factors a2

i exhibit the familiar
Kasner behavior (23), with exponents pi given by Equation (34).

Since the gauge field diverges at the singularity, the domain − 1 < τ < 1 in Equation (32) can only
be treated as another singular solution. The solution in the time interval τ2 < τ < 1 is described by
GR with negative cosmological constant −Λ0. The behavior near τ = 1 is again Kasner. The point
τ2 again is a special point of the solution, in which X2 has a simple pole, while X1 and X3 have
simple zeros. Thus, h2 passes through zero at this point, with h1 and h3 remaining finite and nonzero.
The metric components are all finite and non-zero. As τ→−1, we encounter another Kasner singularity.
Thus, this part of the solution interpolates between two Kasner singularities. There is no asymptotic
anti-De Sitter regime in this case.

For τ < −1, we have another copy of asymptotically De Sitter solution. We note that all Xi
are positive near the singularity in this case, as is L(X). There is a Kasner singularity as τ → −1,
and a special point at τ = τ3 with h3 vanishing and all Xi and L(X) changing sign. As τ → −∞,
we approach another De Sitter region. Since the time change τ → −τ makes the region τ < −1
mathematically equivalent to the asymptotically De Sitter region τ > 1 discussed above, it is clear that
the Kasner exponents near the singularity in the region τ < −1 are obtained from Equation (34) by the
replacement τi →−τi.

4.2. Behavior in Modified Gravity

In the modified theory of gravity described by the function Λ(Ψ) in Equation (10), it is quite
difficult to calculate the corresponding Lagrangian L(X) in order to use the general solution (30).
In fact, this is difficult to do even in the simple case of modification (11). Therefore, to solve for the
gauge-field dynamics, one has to resort to formalism with auxiliary matrix field Ψij together with
the connection Ai—the formalism which is obtained by excluding only the B-field from action (10).
This procedure was followed by in our paper [15], where a general solution for the Bianchi I case was
obtained in the form
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X =
T−2

(
Id− ∂Λ(Ψ)

∂Ψ

)
Tr
[

T−1
(

Id− ∂Λ(Ψ)
∂Ψ

)] , Ψ = Λ(Ψ)

[
T−1

Tr (T−1)
− 1

3
Id
]

. (35)

The last equation is to be solved with respect to Ψ, with the result to be substituted into the first
equation. Here, T = diag {(τ − τi)}, and Id is the identity matrix.

For the modified theory (11), we observe that the singular behavior of the variables Xi and
connection-field components hi around τ = ±1 in GR is replaced by a regular behavior of these
quantities. The situation is depicted in Figure 3.

In the general-relativistic solution, all Xi are negative and blow up near the Kasner singularity
τ→ 1. Our modification (11) resolves this singularity, making all Xi large negative but finite.
Our solution thus smoothly continues to the region τ < 1. Since Xi are finite and nonzero at this
point, L(X) is also continuous. However, the value of Λ(Ψ) crosses zero and becomes negative
at τ < 1.

As time decreases from τ = 1, the next special point that we encounter is τ = τ2. We observe
that X1 and X3 cross zero at τ = τ2, while X2 ≈

√
3/(τ − τ2) has a simple pole, approaching positive

infinity as τ → τ2 from above. Since all Xi were negative at τ = 1, this means that X2 crosses zero at
some τ+ ∈ (τ2, 1). It then crosses zero once again at some τ− ∈ (−1, τ2). This behavior is demonstrated
in Figure 3. In the interval (τ−, τ+), metric (31) changes signature from (−,+,+,+) to (−,−,+,−),
the spatial coordinate x2 thus taking the role of time. Thus, although we do not encounter singularity
in the fundamental gauge field (all hi are everywhere smooth), there is a singularity in metric (31) at
the points τ = τ±, where it also changes signature.

This behavior is in parallel to the “resolution” of the Schwarzschild singularity discussed in the
preceding section, where we also observe change of signature of the corresponding metric. In both
cases, it has to do with the fact that the value of Λ(Ψ) becomes negative in our model (11) as the
quantity Tr Ψ2 increases. Such a behavior of the “cosmological function” Λ(Ψ) saves the theory
from singularity.

-3 -2 -1 1 2 3

Τ

-20

-10

10

20

X3

X2

X1

Figure 3. Behavior of the variables Xi given by Equation (35) in the modified theory (11) with
αΛ0 = 5 × 10−3. As in general relativity (see Figure 2), each variable Xi has a pole at respective τ = τi.
However, the common poles at τ = ±1 disappear, and the variables Xi become regular at these points.

5. Discussion and Conclusions

In this paper, we considered a specific family of chiral modified gravity theories in four dimensions.
In the language of pure connection, the main idea is to consider general homogeneous functions of
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the curvature of the connection as Lagrangians of the theory. Such a modification is guaranteed to
lead to second-order field equations without new degrees of freedom. The fundamental field in this
formulation is the connection field; the requirement of its curvature components to be (anti)-self-dual
then determines the conformal class of metrics. The metric can thus be regarded as a derived,
or secondary concept in this formulation.

The family of modifications under consideration is chiral; therefore, we are dealing with
modifications of complexified GR. Such a theory begs for reality conditions, which are not difficult
to formulate in the cases of Riemannian and split signatures of the arising metric. In the case of
physical Lorentzian signature, no general reality conditions are known. Another closely related
problem is coupling of this theory to matter. Note that matter fields in our setting should couple to the
fundamental field describing gravity, which is the connection field. Alternatively, one can start with a
more general family of gauge theories [16] that describe gravity as well as matter fields. The problem of
reality conditions will remain in any setting; since matter fields couple to a complex-valued connection,
some reality conditions are required to make sense of the arising dynamics.

In some special cases, such as the spherically symmetric case or the Bianchi I setup, the problem
of reality causes no difficulty: the self-dual part of the Weyl curvature is automatically real, resulting
in real effective metrics. Our main finding in these cases is that a natural one-parameter family
of modifications (11) with positive parameter α resolves the Schwarzschild black-hole and Kasner
singularities. In the spherically symmetric case, we obtain a space-time extending indefinitely and
periodically beyond the would-be black-hole singularity (see Figure 1). In the case of Bianchi I
symmetry, we obtain a solution bypassing the would-be Kasner singularities and connecting two
asymptotically De Sitter regions (see Figure 3). In both space-times, the fundamental connection
field remains regular, although the related metric has singularity points with changes of signature
along some coordinates. This type of metric singularity, in the absence of singularity in the basic
connection field, appears to be generic to the family of modified theories under investigation. The fact
that chiral modified gravity theories can resolve the singularities of general-relativistic solutions is
quite remarkable and makes them worth further investigation.
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