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Abstract: More and more works deal with statistical systems far from equilibrium, dominated
by unidirectional stochastic processes, augmented by rare resets. We analyze the construction of
the entropic distance measure appropriate for such dynamics. We demonstrate that a power-like
nonlinearity in the state probability in the master equation naturally leads to the Tsallis (Havrda–
Charvát, Aczél–Daróczy) q-entropy formula in the context of seeking for the maximal entropy state at
stationarity. A few possible applications of a certain simple and linear master equation to phenomena
studied in statistical physics are listed at the end.
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1. Definition and Properties of Entropic Distance

Dealing with the dynamics of classical probabilities, we would like to propose a general
recipe for defining the corresponding formula for the entropic divergence between two probability
distributions. Our goal is to handle complex systems with a stochastic dynamics, generalized to
nonlinear dependence on the probabilities. For the study of quantum state probabilities and their
distance measures we refer to a recent paper [1] and references therein.

Entropic distance, more properly called “entropic divergence”, is traditionally interpreted as a
relative entropy, as a difference between entropies with a prior condition, and without [2]. It is also
the Boltzmann–Shannon entropy of a distribution relative to another [3]. Looking at this construction,
however, from the viewpoint of a generalized entropy [4], the simple difference or logarithm of a ratio
cannot be held as a definition anymore.

Instead, in this paper, we explore a reverse engineering concept: seeking an entropic divergence
formula, which is subject to some wanted properties, we consider entropy as a derived quantity.
More precisely, we seek entropic divergence formulas appropriate for given stochastic dynamics,
shrinking during the approach to a stationary distribution, whenever it exists, and establish the entropy
formula from this distance to the uniform distribution. By doing so we serve two goals: (i) having
constructed a non-negative entropic distance we derive an entropy formula which is maximal for the
uniform distribution; and (ii) we come as near as possible to the classical difference formula for the
relative entropy.

Starting from a given master equation, it is far from trivial that which is the most suitable entropy
divergence formula for analyzing the stability of a stationary solution. In the present paper we provide
a general procedure to obtain a general entropic divergence formula for atypical cases. Although we
exemplify only the well-known cases of the logarithmic formula of the Kullback–Leibler and that of
the Renyi divergence, our result readily generalizes to an infinite number of cases, distinguished by
the dependence on the initial state probability at each transition term.
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We start our discussion by contrasting the definition of the metric distance, known from geometry,
to the basic properties of an entropic distance. The metric distance possesses the following properties:

1. ρ(P, Q) ≥ 0 for a pair of points P and Q,
2. ρ(P, Q) = 0 only for P = Q,
3. ρ(P, Q) = ρ(Q, P) symmetric measure,
4. ρ(P, Q) ≤ ρ(P, R) + ρ(R, Q), the triangle inequality in elliptic spaces.

The entropic divergence on the other hand is neither necessarily symmetric, nor can satisfy a
triangle inequality. On the other hand it is subject to the second law of thermodynamics, distinguishing
the time arrow from the past to the future. We require for a real functional, ρ[P, Q], depending on the
distributions Pn and Qn, the followings to hold:

1. ρ[P, Q] ≥ 0 for a pair of distributions Pn and Qn,

2. ρ[P, Q] = 0 only if the distributions coincide Pn = Qn,

3. d
dt ρ[P, Q] ≤ 0 if Qn is the stationary distribution,

4. d
dt ρ[P, Q] = 0 only for Pn = Qn, i.e., the stationary distribution is unique.

Although this definition is not symmetric in the handling of the normalized distributions
Pn and Qn, it is an easy task to consider the symmetrized version, s[P, Q] ≡ ρ[P, Q] + ρ[Q, P].
This symmetrized, entropic divergence inherits some properties from the fiducial construction.
Considering a scaling trace form entropic divergence, ρ[P, Q] = ∑

n
σ(ξn) Qn with ξn = Pn/Qn,

to begin with, we identify the following symmetrized kernel function:

s(ξ) := σ(ξ) + ξ σ(1/ξ). (1)

The only constraint is to start with a core function, σ(ξ) with a definite concavity. Jensen inequality
tells for σ′′ > 0 that

∑
n

σ(ξn) Qn ≥ σ

(
∑
n

ξnQn

)
= σ

(
∑
n

Pn

)
= σ(1). (2)

For satisfying property 1 and 2 one simply sets σ(1) = 0. Interestingly enough, this setting suffices
also for the satisfaction of the second law of thermodynamics, formulated above as further constraints
3 and 4. As a consequence of the symmetrization, it also follows that s(1) = 0 and s′′ > 0.

The symmetrized entropic divergence shows some new, emergent properties. We list its
derivatives as follows:

s(ξ) = σ(ξ) + ξ σ(1/ξ)

s′(ξ) = σ′(ξ) + σ(1/ξ)− 1
ξ

σ′(1/ξ)

s′′(ξ) = σ′′(ξ)−
��

��
�1

ξ2 σ′(1/ξ) +
��

��
�1

ξ2 σ′(1/ξ) +
1
ξ3 σ′′(1/ξ). (3)

The consequences, listed below, can be derived from these general relations:

1. s(1) = 2 σ(1) = 0,
2. s′(1) = σ(1) = 0,
3. s′′ > 0 ⇒ ξm = 1 is a minimum,
4. s(ξ) ≥ 0.

In this way the kernel function, and hence each summand in the symmetrized entropic divergence
formula, is non-negative, not only the total sum.
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2. Entropic Distance Evolution Due to Linear Stochastic Dynamics

Now we study properties 3 and 4, by evaluating the rate of change of the entropic divergence
in time. This change is based on the dynamics (time evolution) of the evolving distribution, Pn(t),
while the targeted stationary distribution, Qn is, by definition, time independent. First we consider
a class of stochastic evolutions governed by differential equations for Ṗn(t) ≡ dPn

dt , linear in the

distribution, Pn(t) [5]. We consider the trace form ρ[P, Q] = ∑
n

Qn σ
(

Pn
Qn

)
and the background

master equation
Ṗn = ∑

m
(wnmPm − wmnPn) . (4)

The antisymmetrized sum in the above equation is merely to ensure the conservation of the norm,
∑
n

Pn = 1, during the time evolution. Using again the notation ξn = Pn/Qn we obtain

ρ̇ = ∑
n

σ′(ξn) Ṗn = ∑
n,m

σ′(ξn) (wnm ξmQm − wmn ξnQn) . (5)

The basic trick is to apply the splitting ξm = ξn + (ξm − ξn) to get

ρ̇ = ∑
n

σ′(ξn) ξn
(((

((((
((((∑

m
(wnm Qm − wmn Qn) + ∑

n,m
σ′(ξn)(ξm − ξn)wnm Qm. (6)

Here the sum in the first term vanishes due to the very definition of the stationary distribution,
Qn. For estimating the remaining term, we utilize the Taylor series remainder theorem in the Lagrange
form. We recall the Taylor expansion of the kernel function σ(ξ),

σ(ξm) = σ(ξn) + σ′(ξn)(ξm − ξn) +
1
2

σ′′(cmn)(ξn − ξm)
2, (7)

with cmn ∈ [ξm, ξn]. Here the first derivative term has occurred in Equation (6). This construction delivers

ρ̇ =
((((

((((
((((∑

n,m
[σ(ξm)− σ(ξn)]wnmQm −

1
2 ∑

n,m
σ′′(cmn) (ξm − ξn)

2 wnmQm. (8)

Here the first sum vanishes again—after exchanging the indices m and n in the first summand,
the result is proportional to the total balance expression, which is zero for the stationary distribution.
With positive transition rates, wnm > 0 the approach to stationary distribution, ρ̇ ≤ 0 is hence proven
for all σ′′ > 0. We note that we never used the detailed balance condition for the transition rates,
only the vanishing of the total balance, which defines the stationary distribution.

This proof, without recalling the detailed balance condition as Boltzmann’s famous H-theorem
did, is quite general. Any core function with positive second derivative and the scaling trace form
co-act to ensure the correct change in time. By using the traditional choice, σ(ξ) = − ln ξ, we have
σ′ = −1/ξ and σ′′(ξ) = 1/ξ2 > 0, satisfying indeed all requirements. The integrated entropic
divergence formula (no symmetrization) in this case is given as the Kullback–Leibler divergence :

ρ[P, Q] = ∑
n

Qn ln
Qn

Pn
. (9)

There is a rationale behind using the logarithm function. It is the only one being additive for the
product form of its argument, mapping factorizing and hence statistically independent distributions to
an additive entropic divergence kernel: For P(12)

n = P(1)
n P(2)

n also Q(12)
n = Q(1)

n Q(2)
n therefore we have

ξ
(12)
n = ξ

(1)
n ξ

(2)
n . Aiming at σ(ξ(12)) = σ(ξ(1)) + σ(ξ(2)), the solution is σ(ξ) = α ln ξ. For σ′′ > 0 it must

be α < 0, so without restricting generality one chooses α = −1.
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Finally, we would like to treat this entropic divergence as an entropy difference. This is achieved
when comparing the stationary distribution to the uniform distribution, Un = 1/W, n = 1, 2, . . . , W.
Using the above Kullback–Leibler divergence formula one easily derives

ρ[U, Q] =
W

∑
n=1

Qn ln(WQn) = ln W +∑
n

Qn ln Qn = SBG[U]− SBG[Q] (10)

with
SBG[Q] = −∑

n
Qn ln Qn, (11)

being the Boltzmann–Gibbs–Planck–Shannon entropy formula. From the Jensen inequality it follows
ρ[U, Q] ≥ 0 , so SBG[U] ≥ SBG[Q].

3. Entropic Divergence Evolution for Nonlinear Master Equations

Detailed balance is also not needed for a more general dynamics. We consider Markovian
dynamics, with a master equation nonlinear in the distribution, Pn, as

Ṗn = ∑
m
[wnm a(Pm)−wmn a(Pn)] . (12)

The stationarity condition defines

0 = ∑
m
[wnm a(Qm)−wmn a(Qn)] . (13)

The entropic distance formula is sought for in the trace form (but this time without the
scaling assumption):

ρ[P, Q] = ∑
n

σ(Pn, Qn), (14)

the dependence on Qn is fixed by ρ[Q, Q] = 0. The change of the entropic divergence in this case is
given by

ρ̇ = ∑
m,n

∂σ

∂Pn
[wnm a(Qm)ξm −wmn a(Qn)ξn] (15)

with ξn := a(Pn)/a(Qn). We again put ξm = ξn + (ξm − ξn) in the first summand:

ρ̇ = ∑
n

∂σ

∂Pn
ξn
((((

((((
((((

(
∑
m
[wnm a(Qm)−wmn a(Qn)] + ∑

n,m

∂σ

∂Pn
wnm a(Qm) (ξm − ξn) (16)

In order to use the remainder theorem one has to identify

∂σ

∂Pn
= κ′(ξn) = κ′

(
a(Pn)

a(Qn)

)
. (17)

This ensures ρ̇ < 0 for any κ′′ > 0 and P 6= Q.
We examine the example of the q–Kullback–Leibler or Rényi divergence. Starting with the classical

logarithmic kernel, κ(ξ) = − ln ξ, we have κ′′(ξ) = 1/ξ2 > 0. Now having a nonlinear stochastic
dynamics, a(P) = Pq, the integrated entropic divergence formula (without symmetrization) delivers
the Tsallis divergence [6–8],

∂σ

∂Pn
= −Qq

n

Pq
n

, ⇒ ρ[P, Q] = ∑
n

Qn lnq
Qn

Pn
. (18)
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with

lnq(x) =
1− xq−1

1− q
(19)

being the so called deformed logarithm with the real parameter q.
We again would like to interpret this entropic divergence as entropy difference. The entropic

divergence of the stationary distribution from the uniform distribution Un = 1/W, n = 1, 2, . . . , W is
given by:

ρ[U, Q] =
W

∑
n=1

Qn

1− q

[
1− (WQn)

q−1
]
= Wq−1 (ST[U]− ST[Q]) . (20)

with ST being the Tsallis entropy formula:

ST[Q] =
1

1− q ∑
n
(Qq

n −Qn) = −∑
n

Qn lnq(Qn). (21)

From the Jensen inequality, it follows ρ[U, Q] ≥ 0 , so ST[U] ≥ ST[Q], i.e., the Tsallis entropy
formula is also maximal for the uniform distribution. The factor Wq−1 signifies non-extensivity,
a dependence on the number of states in the relation between the entropic divergence and the relative
Tsallis entropy.

4. Master Equation for Unidirectional Growth and Reset

With the particular choice of the transition rates, wnm = µmδn−1,m + γmδn,0, one describes a local
growth process augmented with direct resetting transitions from any state to the ground state labeled
by the index zero [9]. The corresponding master equation

Ṗn = µn−1Pn−1 − (µn + γn) Pn (22)

is terminated at n = 1 and the equation for the n = 0 state takes care of the normalization conservation:

Ṗ0 =
∞

∑
n=1

γnPn − µ0P0. (23)

For the stationary distribution one obtains

Qn =
µn−1

µn + γn
Qn−1 = · · · = µ0Q0

µn

n

∏
j=1

(
1+

γj

µj

)−1

, (24)

and Q0 has to be obtained from the normalization. Table 1 summarizes some well known probability
density functions, PDFs , which emerge as stationary distribution to this simplified stochastic dynamics
upon different choices of the growth and reset rates µn and γn. In the continuous limit we obtain

∂

∂t
P(x, t) = − ∂

∂x
(µ(x) P(x, t))− γ(x)P(x, t). (25)

with the stationary distribution

Q(x) =
K

µ(x)
e
−

x∫
0

γ(u)
µ(u) du

. (26)
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Table 1. Summary of rates and stationary PDFs .

γn, γ(x) µn, µ(x) Qn, Q(x)

const const geometrical→ exponential
const linear Waring→ Tsallis/Pareto
const sublinear power Weibull
const quadratic polynomial Pearson
const exp Gompertz

ln(x/a) αx Log-Normal
linear const Gauss

α(ax− c) αx Gamma

Finally we derive a bound for the entropy production in the continuous model of unidirectional
growth with resetting.

First we study the time evolution of the ratio, ξ(t, x) = P(x, t)/Q(x). Using P = ξQ we get from
Equation (25):

Q
∂ξ

∂t
= −ξ

�
�
��∂(µQ)

∂x
− µQ

∂ξ

∂x
−��γ Q ξ. (27)

Using the same equation for stationary Q(x) and dividing by Q we obtain

∂ξ

∂t
= −µ(x)

∂ξ

∂x
. (28)

Now we turn to the evolution of the entropic divergence,

ρ(t) ≡
∞∫

0

s(ξ(t, x)) Q(x)dx, (29)

With the symmetrized kernel, s(ξ) = σdiv(ξ) + ξ σdiv(1/ξ) ≥ 0, one gets using
∂s

∂t
= −µ(x)

∂s

∂x
the following distance evolution, considering the boundary condition ξ(t, 0) = 1 and s(1) = 0:

dρ

dt
= −

∞∫
0

s(ξ(t, x)) Q(x) γ(x)dx (30)

We note that for the Kullback–Leibler divergence the following symmetrized kernel function has
to be used: σ(ξ) = − ln ξ leads to s(ξ) = (ξ − 1) ln ξ and in this way ensures dρ

dt ≤ 0.
In order to obtain a lower bound for the speed of the approach to stationarity, we use again the

Jensen inequality for s(ξ):

∫
p(x) s(ξ(x)) dx ≥ s

(∫
p(x) ξ(x) dx

)
(31)

with any arbitrary p(x) ≥ 0 satisfying
∫

p(x) dx = 1. For pour purpose we choose
p(x) = γ(x)Q(x)/

∫
γQ dx. This leads to the following result:

dρ

dt
≤ − 〈γ〉∞ · s

(
〈γ〉 t
〈γ〉∞

)
=
[
〈γ〉∞ − 〈γ〉 t

]
· ln
〈γ〉 t
〈γ〉∞

. (32)

Note that the controlling quantity is actually the expectation value of the resetting rate,∫
p(x)ξ(x) dx =

∫
γP dx = 〈γ〉t. Since s(ξ) reaches its minimum with the value zero only at the

argument 1, the entropic divergence ρ(t) stops changing only if the stationary distribution is achieved.
In all other cases it shrinks.
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5. Conclusions

Summarizing, in this paper we have presented a construction strategy for the entropic distance
formula, designed to shrink for a given wide class of stochastic dynamics. The very entropy formula
was then derived from inspecting this distance between the uniform distribution and the stationary
PDF of the corresponding master equation. In this way, for linear master equations the well-known
Kullback–Leibler definition arises, while for nonlinear dependence on the occupation probabilities
one always arrives at an accordingly modified expression. In particular, for a general power-like
dependence the Tsallis q-entropy occurs as the “natural” relative entropy interpretation of the proper
entropic divergence. In the continuous version of the growth and reset master equation, a dissipative
probability flow supported with an inflow at the boundary, a lower bound was given for the shrinking
speed of the symmetrized entropic divergence using the Jensen inequality.

To finish this paper we would like to make some remarks on real world applications of the above
discussed mathematical treatment. Among possible applications of the growth and resetting model,
we mention the network degree distributions showing exponential behavior for constant rates and a
Tsallis–Pareto distribution [10] (in the discrete version a Waring distribution [11,12]) for having a linear
preference in the growth rate, µn = α(n + b). For high energy particle abundance (hadron multiplicity)
distributions the negative binomial PDF is an excellent approximation [13], when both rates µ and γ are
linear functions of the state label. For middle and small settlement size distributions a log-normal PDF
arise, achievable with linear growth rate, µ(x) and a logarithmic reset rate, γ(x) ∼ ln x. Citations of
scientific papers and Facebook shares and likes also follow a scaling Tsallis–Pareto distribution [14,15],
characteristic to constant resetting and linear growth rates. While wealth seems to be distributed
according to a Pareto-law tail, the middle class incomes rather show a gamma distribution, stemming
from linear reset and growth rates. For a review of such applications see our forthcoming work.
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