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Abstract: In this paper we present the measurement of charged pion two-particle femtoscopic
correlation functions in /sy = 200 GeV Au + Au collisions in 31 average transverse mass bins,
separately for positive and negative pion pairs. Lévy-shaped source distributions yield a statistically
acceptable description of the measured correlation functions, with three physical parameters:
correlation strength parameter A, Lévy index a and Lévy scale parameter R. The transverse mass
dependence of these Lévy parameters is then investigated. Their physical interpretation is also
discussed, and the appearance of a new scaling variable is observed.

Keywords: RHIC; PHENIX; femtoscopy; Bose-Einstein correlations; Lévy distribution; anomalous
diffusion; critical point; in-medium mass modification

1. Introduction

In nucleus-nucleus collisions at the Relativistic Heavy Ion Collider, a strongly coupled Quark
Gluon Plasma (sQGP) is formed [1-4], creating hadrons at the freeze-out. The measurement of
femtoscopic correlation functions is used to infer the space-time extent of hadron creation. The field of
femtoscopy was founded by the astronomical measurements of R. Hanbury Brown and R. Q. Twiss [5]
and the high energy physics measurements of G. Goldhaber and collaborators [6,7]. If interactions
between the created hadrons, higher order correlations, decays and all other dynamical two-particle
correlations may be neglected, then the two-particle Bose-Einstein correlation function is simply
related to the source function S(x, k) (which describes the probability density of particle creation at
the space-time point p and with four-momentum x). This can be understood if one defines N;(p) as
the invariant momentum distribution and N;(pj, p2) as the momentum pair distribution. Then the
definition of the correlation function is [8]:

__ Na(p1,p2)
Cz(pl,pz) - W’ Where (1)

Na(p1,p2) = /5(361,?71)5(962, p2)[¥2(x1, x2)|Pd* g dxy. 2)

Here ¥, (x1, x2) is two-particle wave function, for which

2 (0) 2
[¥a(x1,x2)|" = “5[’2 (xl,xQ)’ =1+4cos[(p1 — p2)(x1 — x2)] (3)

follows in an interaction-free case, denoted by the superscript (0). This leads to

2

S(Q.K) , where 4)

5(0,K)

QK ~1+
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S(Q,K) = / S(x,K)e!%*d*x is the Fourier-transformed of S, ()

and Q = p; — p2 is the momentum difference, K = (p; + p2)/2 is the average momentum, and we
assumed, that Q < K holds for the investigated kinematic range. Usually, correlation functions
are measured versus Q, for a well-defined K-range, and then properties of the correlation functions
are analyzed as a function of the average K of each range. If the source is a static Gaussian with a
radius R, then the correlation function will also be a Gaussian with an inverse radius, hence it can be
described by one plus a Gaussian: 1+ exp(—(QR)?). However, if the source is expanding, then the
observed Gaussian radius R does not represent the geometrical size, but rather a length of homogeneity,
depending on the average momentum K. The approximate dependence of R~2 « A + Bmr is observed

for various collision systems, collision energies and particle types [9,10], where mr = /K% + m2c?,
and Kr is the transverse component of K. This can be interpreted as a consequence of hydrodynamical
expansion [11,12]. See Ref. [13] (and references therein) for details.

Usually, the shape of the particle emitting source is assumed to be Gaussian, however, this does
not seem to be the case experimentally [14,15]. In an expanding hadron resonance gas, increasing mean
free paths lead to a Lévy-flight, anomalous diffusion, and hence to spatial Lévy distributions [16-18].
The one-sided, symmetric Lévy distribution as a function of spatial coordinate r is defined as:

L(a,Rr) = (27) 7 [ dqeie JuRL, ©)

where a is the Lévy index and R is the Lévy scale. Then & = 2 gives back the Gaussian case and & = 1
yields a Cauchy distribution. This source function leads to a correlation function of

C2(Q K) =14 (QRES, 7)

It is interesting to observe that the spatial Lévy distribution results in power-law tails in the
spatial correlation function, with an exponent of —1 — a. Such power-law spatial correlations are
also expected in case of critical behavior, with an exponent of —(d — 2 + 17), with # being the critical
exponent. It is easy to see that in this case, 7 = &, i.e., the Lévy exponent is identical to the critical
exponent 7 [19]. The second order QCD phase transition is expected to be in the same universality
class as the phase transition of the 3D Ising model or the random field 3D Ising model (see Refs [20-23]
for details and values for the critical exponents), and hence around the critical point, « < 0.5 values
may be expected [19]. Since the exploration of the QCD phase diagram, in particular the search for the
QCD critical endpoint is one of the major goals of experimental heavy ion physics nowadays, the above
discussed relations yield additional motivation for the measurement and analysis of Bose-Einstein
correlation functions.

Furthermore, it is important to note, that not all pions are primordial, i.e., not all of them
are created directly from the collision. A significant fraction of pions are secondary, coming from
decays. Hence the source will have two components: a core of primordial pions, stemming from the
hydrodynamically expanding sQGP (and the decays of very short lived resonances, with half-lives less
than a few fm/c), and a halo, consisting of the decay products of long lived resonances (such as 77, 11/,
KY, w)

S= Score + Shalo‘ (8)

These two components have characteristically different sizes (<10 fm for the core, >50 fm for the
halo, based on the half-lives of the above mentioned resonances). In particular, the halo component is
so narrow in momentum-space, that it cannot be resolved experimentally. This leads to
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0 _ L seK)P (
C Ky=14 - ——"—-~1
2 (2K +\ﬂa@P T Neowe

|§core(Qz K) |2
|Score(0/K)|2

Neore (K) >2§core(Q,K)|2

(K) + Nnato(K) ) [Score (0, K) |2 ©

=1+ A(K)

where Neore(K) = [ Score(Q, K)dQ and Naio(K) = [ Shalo(Q, K)dQ were introduced. Furthermore

Neore (K) )2
AK) = , 10

( ) < (Ncore (K) + Nhalo(K) (10
was defined, equivalent to the “intercept” of the correlation function, i.e., its extrapolated value based
on the observable Q region:

lim cl(Q,K) =1+ A(K). (11)

Hence, in the core-halo picture, A(K) is related to the fraction of primordial (core) pions among
all (core plus halo) pions at a given momentum. One of the motivations for measuring A is that it is
related [24] to the 17’ meson yield, expected [25] to increase in case of chiral U4 (1) symmetry restoration
in heavy-ion collisions (due to the expected in-medium mass decrease of the 7’).

We also have to take into account that the interaction-free case is not valid for the usual
measurement of charged particle pairs, the electromagnetic and strong interactions distort the above
simple picture. For identical charged pions, the Coulomb interaction is the most important, and this
decreases the number of particle pairs at low momentum differences. This can be taken into account
by utilizing the ‘I’éc) (x1, x2) pair wave function solving the Schrodinger-equation for charged particles,
given for example in Ref. [13]. With this, a so-called “Coulomb-correction” can be calculated as

2
f d4X1d4X7_S(X1, K- Q/Z)S(Xz, K+ Q/Z) “P(C) (X1, Xz) ‘
[ d*x1d*x2S(x1, K — Q/2)S(x2, K+ Q/2) [¥0) (x1, x2)

KZ (Q/ K) (12)

27

hence the measured correlation function, including the Coulomb interaction, can be described by
cSoul(Q, K) = K2(Q, K)CV(Q, K 13
2 (Qr ) 2 (Qr ) 2 (Qr ) ( )

For details, see again Ref. [13] and references therein.

In the following, we utilize a generalization of the usual Gaussian shape of the Bose-Einstein
correlations, namely we analyze our data using Lévy stable source distributions. We have carefully
tested that this source model is in agreement with our data in all the transverse momentum regions
reported here: all the Lévy fits were statistically acceptable, as discussed also later. We note that using
the method of Lévy expansion of the correlation functions [26], we have found that within errors all
the terms that measure deviations from the Lévy shape are consistent with zero. Hence we restrict
the presentation of our results to the analysis of the correlation functions in terms of Lévy stable
source distributions.

2. Results

We analyzed 2.2 billion 0-30% centrality /syny = 200 GeV Au + Au collisions recorded
by the PHENIX experiment in the 2010 running period!. We measured two-particle correlation

1 In the conference presentation Minimum Bias data were shown, but here we show and discuss the final 0-30% centrality

data of Ref. [13]. The Minimum Bias data are available e.g., in Ref. [27].
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functions of 7~ 71~ and 7wttt pairs, in 31 mp bins ranging from 228 to 871 MeV, as detailed in
Ref. [13]. The calculated correlation functions based on Lévy-shaped sources gave statistically
acceptable descriptions of all measured correlation functions (all transverse momenta and both charges),
see for example Figure 1. Note that besides the event selection and the track selection criteria discussed
in Ref. [13], we applied two-track cuts as well, to remove merged tracks and “ghost” tracks, both of
which appear due to the spatial two-track resolution of our tracking system. This removes the very
small Q part of the correlation functions, as seen in Figure 1. A reminiscence of this is seen from the
lowest Q point in Figure 1: this defines our fit range. The effect of the choice of the fit range and the
two-track cuts was studied and incorporated into the systematic uncertainties. See more details about
this topic also in Ref. [13]. The fact that the correlation functions were described by Lévy fits allows us
to study and interpret the m1 dependence of the fit parameters R, « and A, as they do represent the
measured correlation functions.

~1.6—= ——
@) 1 PHENIX 0-30% Au+Au @ Vs\n =200 GeV, TTTT, m_= 0.331-0.349 GeV/c
15— A=0.81+£0.04 —+— Raw corr. function
= R=7.71fm £ 0.27 fm
. 4:_. 3 a=1.24+0.03 Raw corr. x Coulomb factor
. €=-0.0294£0.0017 -...... Coulomb factor
- N = 1.0072 + 0.0004 CARGQ) % N (152 0)
_, RO:Q) x Nx (1+
13p *2INDF = 78/83 2
C iy conf. level = 63.8% CY(\Ra;Q) x N x (1+€ Q)
1'2:_". -~ Nx(1+£Q)
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Figure 1. Example fit of 7~ 71~ pairs with m between 0.331 and 0.349 GeV/c (corresponding to
Kr €[0.3,0.32] GeV/c), measured in the longitudinal co-moving frame. The fit shows the measured
correlation function and the complete fit function, while a “Coulomb-corrected” fit function C(?)(Q) is
also shown, with the data multiplied by CEO) / CZC"“].

Let us turn to the resulting fit parameters and their mt dependence. Parameters A, R and «
are shown in Figure 2, as a function of pair mt (corresponding to the given Kt bin). The detailed
description of the systematic uncertainties is given in Ref. [13], here we focus on the characteristics of
the mt dependencies. In the top left panel of Figure 2, we observe that « is constant within systematic
uncertainties, with an average value of 1.207. This average « value is far from the Gaussian assumption
of & = 2 as well as from the conjectured a = 0.5 value at the critical point. We show 1/R? as a function
of mT on the top right panel of Figure 2. We observe, that the hydro prediction of 1/R? ~ A + Bmy still
holds—even though in hydrodynamics, usually no power-law tails appear, due to the Boltzmann factor
creating an exponential cut-off. This is intriguing point may be investigated in phenomenological
models in the future. The correlation function intercept parameter A is shown in the bottom left panel
of Figure 2, after a normalization by
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Amax = <)\>mT:0.5—0.7GeV/c2/ (14)

as detailed in Ref. [13]. The mT dependence of A /Amax indicates a decrease at small m7. This may be
explained by the increase of the resonance pion fraction at low m7. Such an increase is predicted to
occur in case of an in-medium 7’ mass, as discussed above. It is interesting to observe that our data
are not incompatible with predictions [28] based on a reduced 7’ mass, using the Kaneta-Xu model
for ratios of long-lived resonances [29]. Finally, in the bottom right panel of Figure 2 we show the
observation of a new scaling parameter

R

R=———. 15
A1+ a) (15)
The inverse of this variable exhibits a clear linear scaling with mr, and it also has much

decreased statistical uncertainties. Let us conclude by inviting the theory/phenomenology community

to calculate the mr dependence of the above Lévy parameters, and compare their result to

the measurements.
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Figure 2. Fit parameters « (top left), R (top right, shown as 1/ Rz), A (bottom left, shown as A/ Apax)
and R (bottom right, shown as 1/ R) versus average mr of the pair. Statistical and symmetric systematic
uncertainties shown as bars and boxes, respectively.

Acknowledgments: M. Cs. was supported by the New National Excellence program of the Hungarian Ministry
of Human Capacities, the NKFIH grant FK-123842 and the Janos Bolyai Research Scholarship.

Conflicts of Interest: The author declares no conflict of interest.



Universe 2017, 3, 85 60f7

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

Adcox, K.; Adler, S.S.; Afanasiev, S.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; Al-Jamel, A.; Alexander, J.;
Amirikas, R.; Aoki, K.; et al. Formation of dense partonic matter in relativistic nucleus nucleus collisions at
RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 2005, 757, 184-283.

Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.;
Badyal, S.K.; Bai, Y.; Balewski, J.; et al. Experimental and theoretical challenges in the search for the
quark gluon plasma: The STAR collaboration’s critical assessment of the evidence from RHIC collisions.
Nucl. Phys. A 2005, 757, 102-183.

Arsene, I.; Bearden, 1.G.; Beavis, D.; Besliu, C.; Budick, B.; Beggild, H.; Chasman, C.; Christensen, C.H.;
Christiansen, P.; Cibor, J.; et al. Quark gluon plasma and color glass condensate at RHIC? The Perspective
from the BRAHMS experiment. Nucl. Phys. A 2005, 757, 1-27.

Back, B.B.; Baker, M.D.; Ballintijn, M.; Barton, D.S.; Becker, B.; Betts, R.R.; Bickley, A.A.; Bindel, R;;
Budzanowski, A.; Busza, W.; et al. The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A
2005, 757, 28-101.

Hanbury Brown, R.; Twiss, R.Q. A Test of a new type of stellar interferometer on Sirius. Nature 1956, 178,
1046-1048.

Goldhaber, G.; Fowler, W.B.; Goldhaber, S.; Hoang, T.F. Pion-pion correlations in antiproton annihilation
events. Phys. Rev. Lett. 1959, 3, 181-183.

Goldhaber, G.; Goldhaber, S.; Lee, W.Y.; Pais, A. Influence of Bose-Einstein statistics on the antiproton proton
annihilation process. Phys. Rev. 1960, 120, 300-312.

Yano, E.B.; Koonin, S.E. Determining Pion Source Parameters in Relativistic Heavy Ion Collisions. Phys. Lett. B
1978, 78, 556-559.

Adler, S.S.; Afanasiev, S.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; Alexander, ].; Amirikas, R.; Aphecetche, L.;
Aronson, S.H.; Averbeck, R.; et al. Bose-Einstein correlations of charged pion pairs in Au + Au collisions at
s(NN)**(1/2) = 200 GeV. Phys. Rev. Lett. 2004, 93, doi:10.1103/PhysRevLett.93.152302.

Afanasiev, S.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; Alexander, J.; Al-Jamel, A.; Aoki, K.; Aphecetche, L.;
Armendariz, R.; Aronson, S.H.; et al. Kaon interferometric probes of space-time evolution in Au + Au
collisions at s(NN)**(1/2) = 200 GeV. Phys. Rev. Lett. 2009, 103, doi:10.1103 /PhysRevLett.103.142301.
Makhlin, A.N.; Sinyukov, Y.M. The hydrodynamics of hadron matter under a pion interferometric microscope.
Z. Phys. C 1988, 39, 69-73.

Csorgd, T.; Lorstad, B. Bose-Einstein Correlations for Three-Dimensionally Expanding, Cylindrically
Symmetric, Finite Systems. Phys. Rev. C 1996, 54, 1390-1403.

Adare, A.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; Akimoto, R.; Alexander, ]J.; Alfred, M.; Al-Ta’ani, H.;
Angerami, A.; Aoki, K.; et al. Lévy-stable two-pion Bose-Einstein correlations in /5., = 200 GeV Au+Au
collisions. arXiv 2017, arXiv:1709.05649.

Afanasiev, S.; Aidala, C.; Ajitanand, N.N.; Akiba, Y., Alexander, J.; Al-Jamel, A.; Aoki, K;
Aphecetche, L.; Armendariz, R.; Aronson, S.H.; et al. Source breakup dynamics in Au + Au Collisions
at s(NN)**(1/2) = 200 GeV via three-dimensional two-pion source imaging. Phys. Rev. Lett. 2008, 100,
doi:10.1103 /PhysRevLett.100.232301.

Adler, S.S.; Afanasiev, S.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; Alexander, ].; Amirikas, R.; Aphecetche, L.;
Aronson, S.H.; Averbeck, R.; et al. Evidence for a long-range component in the pion emission source in
Au + Au collisions at s(NN)**(1/2) = 200 GeV. Phys. Rev. Lett. 2007, 98, doi:10.1103 /PhysRevLett.98.1323011.
Metzler, R.; Barkai, E.; Klafter, J. Anomalous Diffusion and Relaxation Close to Thermal Equilibrium:
A Fractional Fokker-Planck Equation Approach. Phys. Rev. Lett. 1999, 82, 3563-3567.

Csorgd, T.; Hegyi, S.; Zajc, W.A. Bose-Einstein correlations for Levy stable source distributions. Eur. Phys. ]. C
2004, 36, 67-78.

Csanad, M.; Csorgd, T.; Nagy, M. Anomalous diffusion of pions at RHIC. Braz. J. Phys. 2007, 37, 1002-1013.
Csorgd, T. Correlation Probes of a QCD Critical Point. arXiv 2008, arXiv:0903.0669.

El-Showk, S.; Paulos, M.E,; Poland, D.; Rychkov, S.; Simmons-Duffin, D.; Vichi, A. Solving the 3D Ising
Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents. J. Stat. Phys. 2014,
157, 869-914.



Universe 2017, 3, 85 7of7

21.

22.

23.

24.

25.

26.

27.

28.

29.

Rieger, H. Critical behavior of the three-dimensional random-field Ising model: Two-exponent scaling and
discontinuous transition. Phys. Rev. B 1995, 52, 6659-6667.

Halasz, M.A; Jackson, A.D.; Shrock, R.E.; Stephanov, M.A.; Verbaarschot, ].J.M. On the phase diagram of
QCD. Phys. Rev. D 1998, 58, d0i:10.1103 /PhysRevD.58.096007.

Stephanov, M.A.; Rajagopal, K.; Shuryak, E.V. Signatures of the tricritical point in QCD. Phys. Rev. Lett. 1998,
81, 4816-4819.

Vance, S.E.; Csorgd, T, Kharzeev, D. Partial U(A)(1) restoration from Bose-Einstein correlations.
Phys. Rev. Lett. 1998, 81, 2205-2208.

Kapusta, ].I.; Kharzeev, D.; McLerran, L.D. The Return of the prodigal Goldstone boson. Phys. Rev. D 1996,
53, 5028-5033.

Novak, T.; Csorgd, T.; Eggers, H.C.; de Kock, M. Model independent analysis of nearly Lévy correlations.
Acta Phys. Pol. Suppl. 2016, 9, 289.

Kincses, D. PHENIX results on Lévy analysis of Bose-Einstein correlation functions. Acta Phys. Pol. Suppl.
2017, 10, 627-632.

Vértesi, R.; Csorgd, T.; Sziklai, J. Significant in-medium #" mass reduction in /sy = 200 GeV Au + Au
collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 2011, 83, doi:10.1103 /PhysRevC.83.054903.
Kaneta, M.; Xu, N. Centrality dependence of chemical freeze-out in Au + Au collisions at RHIC (QM2004
proceedings). arXiv 2004, arXiv:nucl-th/0405068.

@ (© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Results
	References

