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Abstract: The motivation for this talk and paper is related to the classification of the homogeneous
simply connected maximal 3-geometries (the so-called Thurston geometries: E3, S3, H3, S2×R,
H2×R, S̃L2R, Nil, and Sol) and their applications in crystallography. The first author found in
(Molnár 1997) (see also the more popular (Molnár et al. 2010; 2015) with co-author colleagues,
together with more details) a unified projective interpretation for them in the sense of Felix Klein’s
Erlangen Program: namely, each S of the above space geometries and its isometry group Isom(S)
can be considered as a subspace of the projective 3-sphere: S ⊂ PS3, where a special maximal group
G = Isom(S) ⊆ Coll(PS3) of collineations acts, leaving the above subspace S invariant. Vice-versa,
we can start with the projective geometry, namely with the classification of Coll(PS3) through linear
transforms of dual pairs of real 4-vector spaces (V4, V4, R,∼) = PS3 (up to positive real multiplicative
equivalence ∼) via Jordan normal forms. Then, we look for projective groups with 3 parameters,
and with appropriate properties for convenient geometries described above and in this paper.

Keywords: Thurston geometries; fixed point free isometry group of hyperbolic space; infinite series
of compact hyperbolic manifolds and possible material structures (fullerenes and nanotubes)

1. Introduction

Our intention is to investigate and visualize the possible projective transforms, not considered
earlier, for 3-parameter transitive translations, the possible invariant projective polarities, the possible
invariant Riemann metrics, etc. Bolyai–Lobachevsky hyperbolic geometry H3 is a particular example.
We hope that we get further geometries, or that new interesting problems will arise, in this manner.
We conjecture that our experience space can wear the structure of these 8 Thurston geometries, in small
size at certain physical circumstances.

First, we look for a 3-parameter fixed point free group of translations, simply transitive on a
3-subspace. For instance, think of the classical Euclidean geometry E3 where the 4× 4 matrix group
(first in the E3 column)

E3 :


1 x y z
0 1 0 0
0 0 1 0
0 0 0 1

 ; Nil :


1 x y z
0 1 0 − 1

2 y
0 0 1 1

2 x
0 0 0 1

 ∼


1 x y z
0 1 0 0
0 0 1 x
0 0 0 1

 ∼


1 x y z
0 1 z y
0 0 1 x
0 0 0 1

 ;
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S̃L2R :


x0 x1 x2 x3

−x1 x0 x3 −x2

x2 x3 x0 x1

x3 −x2 −x1 x0

 ; Sol :


1 x y z
0 e−z 0 0
0 0 ez 0
0 0 0 1

 ∼


1 u v w
0 cosh w sinh w 0
0 sinh w cosh w 0
0 0 0 1


describes first the translation that carries the origin (1, 0, 0, 0) into (1, x, y, z) in the classical
homogeneous coordinate system E0, E1, E2, E3. This group is simply transitive on points and fixed
point free on the affine 3-subspace A3 = P3 \ e0, where P3 is obtained from the projective sphere
PS3 by the identification of opposite points, as usual, and e0 is the ideal plane described by the linear
form e0 of the dual basis (e0, e1, e2, e3) in V4 to the vector basis (e0, e1, e2, e3) in V4, i.e., eiej = δ

j
i

(the Kronecker symbol). That means, we get the Cartesian coordinate tetrahedron (simplex), where e0

describes the origin E0, incident to the side planes e1, e2, e3 by the corresponding forms. The ideal plane
e0 is opposite to the origin, and contains the ideal points E1, E2, E3 of the x, y, z axes, respectively. Then,
we extend this translation group with all projective collineations, leaving invariant a projective polarity
(or scalar product) of signature (+,+,+, 0), with unimodular linear transforms, as usual. Now, think
of the “optimal” generalizations of this, as made in the papers [1–7] for the above Thurston geometries.

Then, come above other three Thurston geometries, as examples. The second example is Nil in 2
equivalent interpretations. The second variant is the classical Heisenberg group in our projective sense.
Indeed, with our translation matrix we get

(1, a, b, c, )(T2) = (1, x + a, y + b, z + bx + c),

as the (non-commutative) translate of an arbitrary point (a, b, c), in affine sense. The third component
shows some “twist” effect as a characteristic property of Nil. The first variant of Nil is our initiative:

(1, a, b, c, )(T1) = (1, x + a, y + b, z +
1
2
(−ay + bx) + c).

Here, the commutator of the first two (e1 and e2) translations will just be the third (e3) translation.
The 4th Sol geometry above is also an affine metric space in A3 with strange metrics [7]; we indicate
another Sol interpretation as well. However, S̃L2R (in our interpretation) needs the projective
embedding into PS3 indeed, similarly as S3, H3, S2×R, H2×R (see [1,6] not detailed here).

Our intention is to investigate the other possible projective transforms, not considered previously,
for 3-parameter transitive translations, the possible invariant projective polarities, the possible invariant
Riemann metrics, etc. We hope that we get further geometries, or that new interesting problems,
and applications will arise. First, to be modest, we can restrict ourselves to collineations, commuting
with typical one-parameter groups. See Cases (i), (ii) and some others as follows. We have some
seemingly new candidate groups, in similar notations as above, not pretending completeness yet:

(i) :


1 x y z
0 1 x 0
0 0 1 0
0 0 0 1

 ; (ii) :


1 x y z
0 1 x y
0 0 1 x
0 0 0 1

 ; (iii)


1 x y z
0 1 x 0
0 0 1 x
0 0 0 1

 ;

(iv)


1 x y z
0 1 x 0
0 0 1 y
0 0 0 1

 ; (v) :


1 x y z
0 1 z 0
0 0 1 y
0 0 0 1

 ; (vi) :


cos t sin t u v
− sin t cos t −v u

0 0 cos t − sin t
0 0 sin t cos t

 ;

(vii)


cos t sin t u v
− sin t cos t −v u

u −v cos t − sin t
v u sin t cos t

 ; (viii) :


cosh t sinh t u v
sinh t cosh t −v u

u v cosh t sinh t
−v u sinh t cosh t

 ;
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Cases (vii) and (viii) are probably equivalent to S̃L2R geometry as above.
As usual, in each case, we form the inverse matrix, and pull back the arc element, e.g., (0, dx, dy, dz)

from (1, x, y, z) to the origin. Here, we choose the standard positive-definite Riemann metrics, so we
get the arc-length-square in each point. Then the Levi–Civita connection with Christoffel symbols Γk

ij
below leads to the well known differential equation system (of second order, (′) derivatives by the arc
length s) of geodesic curve (u1 = x, u2 = y, u3 = z, Einstein–Schouten index convention!):

Γk
ij =

(1
2
(∂gjl/∂ui + ∂gil/∂uj − ∂gij/∂ul)

)
glk → (u′′)k + Γk

ij(u
′)i(u′)j = 0,

with given initial values of the place (the origin (1, 0, 0, 0)) and the speed (unit velocity). We shortly
illustrate the above process with two examples.

(i) These (commutative group of) transforms commute with the matrix of Jordan form
1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1


(ds)2 = (dx)2 + [(dx)(−x) + (dy)]2 + (dz)2 = (dx)2(1 + x2)2(dx)(dy)x + (dy)2 + (dz)2;

leads to x′′ = 0, y′′ − x′x′ = 0, z′′ = 0, so with x′(0) = u, y′(0) = v, z′(0) = w,

u2 + v2 + w2 = 1, to x = us, y =
1
2

u2s2 + vs, z = ws;

parabolas as geodesics for this geometry.
(ii) These transforms commute with the matrix

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1


(ds)2 = (dx)2 + [(dx)(−x) + (dy)]2 + [(dx)(x2 − y) + (dy)(−x) + (dz)]2

= (dx)2(1 + x2 + x4 − 2x2y + y2)− 2(dx)(dy)(x + x3 − xy) + 2(dx)(dz)(x2 − y)

+(dy)2(1 + x)2 − 2(dy)(dz)x + (dz)2; leads to

x′′ = 0, y′′ − xx′x′ = 0, z′′ + xx′x′ − 2x′y′ = 0, so with x′(0) = u, y′(0) = v, z′(0) = w,

u2 + v2 + w2 = 1, to x = us, y =
1
2

u2s2 + vs, z = u3/6s3 + uvs2 + ws;

we get cubics as geodesics for this geometry.

At the same time, in both cases (denote by (T) the given matrix), our geodesics are so-called
translation curves, i.e., the solutions of the first order differential equation system (dynamical system
with u2 + v2 + w2 = 1)

(0, u, v, w)(T) = (0, x′, y′, z′).

Our “translations” in the above commutative Cases (i)–(ii) are seemingly diffeomorphically equivariant
with some Euclidean translations. It would be nice to find a method (if there exists such) for recognizing
well-known geometries to the above unknown matrices.

We have summarized in Table 1 the significant notions of the projective models of
Thurston geometries:
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Table 1. Thurston geometries each modelled on PS3 by specified polarity or scalar product and
isometry group.

Space X Signature of Polarity Π(?)
or Scalar Product 〈 , 〉 in V4

Domain of Proper Points of X in
PS3 (V4(R), V4)

The Group G = Isom X as a Special
Collineation Group of PS3

S3 (+ + ++) PS3 Coll PS3 preserving Π(?)

H3 (− + ++) {(x) ∈ P3 : 〈x, x〉 < 0} Coll P3 preserving Π(?)

S̃L2R
(− − ++) with skew

line fibering

Universal covering of
H := {[x] ∈ PS3 : 〈x, x〉 < 0}

by fibering transformations

Coll P3 preserving Π(?) generated by
plane reflections

E3 (0 + ++)
A3 = P3 \ {ω∞} where

ω∞ := (b0), b0
? = 0

Coll P3 preserving Π(?), generated by
plane reflections

S2×R
(0 + ++) with O-line

bundle fibering A3 \ {O}, O is a fixed origin
G is generated by plane reflections and
sphere inversions, leaving invariant the

O-concentric 2-spheres of Π(?)

H2×R
(0 − ++) with O-line

bundle fibering
C+ = {X ∈ A3 : 〈−→OX,

−→
OX〉 < 0,

half cone} by fibering

G is generated by plane reflections and
hyperboloid inversions, leaving invariant
the O-concentric half-hyperboloids in the

half-cone C+ by Π(?)

Sol
(0 − ++) and parallel

plane fibering with an ideal
plane φ

A3 = P3 \ φ
Coll. of A3 preserving Π(∗) and the

fibering with 3 parameters

Nil
Null-polarity Π(?) with

parallel line bundle fibering
F with its polar ideal plane φ

A3 = P3 \ φ
Coll. of A3 preserving Π(?)

with 4 parameters

2. Specific Geometries, H2×R and S̃L2R in Models

The Thurston geometries are well known. Here, E3, S3 and H3 are the classical spaces of constant
zero, positive and negative sectional curvature, respectively; S2×R and H2×R are direct product
geometries with S2 spherical and H2 hyperbolic base plane, respectively, and a distinguished R-line
with usual R-metric; S̃L2R and Nil with a twisted product of R with H2 and E2, respectively; and Sol
as a twisted product of the Minkowski plane M2 with R. Thus, we have, in each an infinitesimal
(positive definite) Riemann metric, invariant under certain translations, guaranteing homogeneity in
every point.

These translations commute only in E3, in general, but a discrete (discontinuous) translation
group—as a lattice—can be defined with compact fundamental domain in Euclidean analogy,
but with some different properties. The additional symmetries can define crystallographic groups
with compact fundamental domain, again in Euclidean analogy, moreover with nice tilings, packings,
material possibilities, etc.

Our projective spherical model, initiated in [1], is based on linear algebra over the real vector
space V4 (for points) and its dual V4 (for planes) (see Figure 1), up to a positive real factor, so that the
proper dimension is 3. We can illustrate and visualize the topic in the Euclidean screen of a computer.

Here, we mention only the model of the spaces H2×R and S̃L2R derived from the hyperbolic
plane H2 (see Figures 2 and 3).
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Figure 1. Our scene for dimensions 2 with projective sphere PS2 embedded into the real vector space
V3 and its dual V3.
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Figure 2. The hyperbolic plane H2, embedded into P2 ⊂ PS2 by a conic polarity u(u) → U(u),
p → P, a → A (the Beltrami–Cayley–Klein disc model). Here, we illustrate the projective model of
H2×R geometry, too. Imagine similarities from the origin O. The logarithm of similarity factor will be
the R-parameter.
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Figure 3. The unparted hyperboloid model of S̃L2R = H̃ of skew line fibres growing in points of a
hyperbolic base plane H2. In addition, a Gum-fibre model of Hans Havlicek and Rolf Riesinger, used
also by Hellmuth Stachel with other respects (Vienna UT).

3. Crystallography in Non-Euclidean Spaces

3.1. Hyperbolic Space H3

In n-dimensional hyperbolic space Hn (n ≥ 2), there are 3-types of spheres (balls): the sphere,
horosphere and hypersphere. If n = 2, 3 we know a universal upper bound of the ball packing
densities, where each ball volume is related to the volume of the corresponding Dirichlet–Voronoi
(D-V) cell. For example, in H3, the densest horoball packing is derived from the {3, 3, 6} Coxeter
tiling consisting of ideal regular simplices T∞

reg with dihedral angles π
3 . The density of this packing

is δ∞
3 ≈ 0.85328 and this provides a very rough upper bound for the ball packing densities as well.

However, there are no “essential” results regarding the “classical” ball packings with congruent balls,
nor for ball coverings.

In [8], we have studied the extremal ball arrangements in H3 with “classical balls”. We consider
only periodic congruent ball arrangements (for simplicity) related to the generalized, so-called complete
Coxeter orthoschemes and their extended groups. We also formulated conjectures for the densest ball
packing with density 0.77147 . . . and the loosest ball covering with density 1.36893 . . . . Both are related
to the extended Coxeter group (5, 3, 5) and the so-called hyperbolic football manifold (look at Figure 4).
These facts can have important relations with fullerenes in crystallography.

Imagine congruent football polyhedra filling hyperbolic space H3. The faces are paired (glued
together), e.g., a−1 → a will be mapped by a screw motion a, carrying FG into its adjacent Fa

G.
Three footballs meet at each edge, and four meet at each vertex (as carbon atoms with 4 valences).

In [9], the second author classified the hyperbolic dodecahedron manifolds (see Figure 5).
As a byproduct of our papers [8,10], and the previous initiative of the first author, we have recently

found an infinite sequence of hyperbolic polyhedra Cw(2z, 2z, 2z) (6 ≤ 2z, 3 ≤ z odd integer) which
can be equipped with a fixed-point-free face pairing, as a gluing procedure, so that the polyhedron
become a compact hyperbolic manifold. That means each point has a ball-like neighbourhood.
The visualization of such “finite worlds” seems to be a timely task, and we try to involve our students
as well. First, we model the famous hyperbolic football manifold, and restrict ourselves only to the
Cw(6, 6, 6) manifold as in [11]. The description of fundamental groups and other properties, moreover
visualization of such “finite worlds” seem to be interesting problems, as well (see Figure 6).
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Figure 4. The hyperbolic football manifold for the Archimedean solid {5, 6, 6} and fullerenes.

Figure 5. Twofold covering the football manifold as a hyperbolic dodecahedron manifold.
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Figure 6. Cobweb manifold Cw(6, 6, 6) as a nanotube.

In the computations (e.g., [8,12]), we use the above orthoschemes whose volume is derived by the
next theorem of R. Kellerhals ([13], using ingenious ideas of N. I. Lobachevsky):

Theorem 1. (R. Kellerhals) The volume of a three-dimensional hyperbolic complete orthoscheme
O = Wuvw ⊂ H3 is expressed with the essential angles α01 = π

u , α12 = π
v , α23 = π

w , (0 ≤ αij ≤ π
2 ) in the

following form:

Vol(O) = 1
4
{L(α01 + θ)−L(α01 − θ) + L(π

2
+ α12 − θ)

+ L(π

2
− α12 − θ) + L(α23 + θ)−L(α23 − θ) + 2L(π

2
− θ)},

where θ ∈ [0, π
2 ) is defined by:

tan(θ) =

√
cos2 α12 − sin2 α01 sin2 α23

cos α01 cos α23
,

and where L(x) := −
x∫

0
log |2 sin t|dt denotes the Lobachevsky function (in J. Milnor’s interpretation).

The volume Vol(B(R)) of a ball B(R) of radius R can be computed by the classical formula of
J. Bolyai:

Vol(B(R)) = 2π(cosh(R) sinh(R)− R) = π(sinh(2R)− 2R)

=
4
3

πR3(1 +
1
5

R2 +
2

105
R4 + . . . ).

3.2. Nil Space

Nil-geometry is derived from the famous Heisenberg matrix group. It is one of the 8 Thurston
3-geometries, having also an affine-projective interpretation, as the first author initiated with
his colleagues. The third author found a top dense lattice-like geodesic ball packing in Nil
(of kissing number 14) (see [14]) with density 0.78085 . . . denser than the best Euclidean one with

π
3
√

2
≈ 0.74048 . . . with kissing number 12 in the famous Kepler conjecture. If we linearize Nil,

i.e., its translation curves, then the geodesic curve can explicitly be determined from the corresponding
second order differential equation system. Geodesic spheres and balls can be attractively visualized
using these results (see Figure 7).
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Figure 7. The densest lattice-like congruent ball configuration in Nil space related to the lattice
parameter k = 1, the central red ball is touching 14 surrounding green ones (computer picture by
Benedek Schultz), and a horizontal geodesic curve lying in a hyperbolic paraboloid.

3.3. Sol Space

In the eight homogeneous Thurston 3-geometries, the notions of translation curves and translation
balls can be introduced in a unified way by the initiative of E. Molnár (see [15]). P. Scott in [16], who
defined Sol lattices to which lattice-like translation ball packings can be investigated (see Figures 8 and 9).

In [17] the third author has studied the relation between Sol lattices and lattices of the
pseudoeuclidean (or Minkowskian) plane. We have investigated the translation balls of Sol space and
computed their volume, defined the Sol parallelepiped and the density of the lattice-like ball packing.
Moreover, the third author determined the densest translation ball packing by so-called fundamental
lattices. This density is δ ≈ 0.56405 . . . and the kissing number of the balls to this packing is 6. In our
work, we used the affine model of Sol space through affine-projective homogeneous coordinates
introduced by the first author in [1]. We only note here that the first and third authors in [7] classified
the Sol lattices (see [18]).
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Figure 8. Fundamental lattice in Sol geometry. Notice the Minkowskian base lattice of special relativity.



Universe 2017, 3, 83 10 of 12

2.0

−0.5

0.0

0.5

1.5

1.0

−0.5

1.5

1.0

0.0

2.0

0.5

0
1

2

4

2

0

−2

0

1

2

Figure 9. The optimal translation ball arrangement by fundamental lattices in Sol space.

3.4. S2×R Space

In [19], the third author described a candidate of the densest geodesic ball packing for all Thurston
geometries. The greatest density until now was ≈0.85328 . . . that is not realized by a packing with
equal balls of H3. However, that is attained, in different manners, e.g., by a horoball packing of
hyperbolic space H3 where the ideal centres of horoballs lie on the absolute figure of H3 inducing the
regular ideal simplex tiling (3, 3, 6) by its Coxeter–Schläfli symbol. In [19], the third author presented a
geodesic ball packing whose density is ≈0.87757 . . . in S2×R geometry. The extremal configuration is
illustrated in Figure 10. Moreover, in [19], it has been formulated, as a conjectute, that is the densest
geodesic ball packing with equal balls for all Thurston geometries.

Figure 10. The conjectured densest geodesic ball packing configuration for all Thurston geometries in
the specific projective model of S2×R geometry whose density is ≈0.87757. . .

4. Conclusions

In this paper (related to the 10th BGL 2017 Gyöngyös/Hungary), based on the presentation of
the first author, we have motivated our new initiative on projective interpretation of the 8 Thurston
geometries, where open problems arise as well. After illustrating some specific geometries, we have
presented new hyperbolic space forms with possible applications in crystallography. Thus, the
hyperbolic football manifolds [20] as fullerenes, then brand new infinite series of cobweb (tube)
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manifolds as nanotubes have been introduced [11]. Various ball packing and covering problems have
been reported as new mathematical results, as well as with possible applications.

We kindly refer the interested reader to the further works [19,21–27]. The authors thank the
referees for their kind help in improving the style of this paper.

Conflicts of Interest: The authors declare no conflict of interest.
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