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Abstract: Wouldbe consequences of the existence of effective interactions in quantum gravitation
theory are considered. In the framework of the approach, the example of a running gravitational
coupling is presented, corresponding to an adequate description of effects, which nowadays are
usually prescribed to dark matter and dark energy.
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1. Effective Three-Graviton Interaction

Regarding the well-known problems of dark matter and dark energy, numerous possibilities of
modified gravity are considered (see, e.g., review [1] and recent work [2]). This approach assumes
the existence of new effective interactions of the gravitational field in addition to the fundamental
Einstein–Hilbert Lagrangian. In view of the extreme interest in the problem of modified gravity,
we consider the possibility of the spontaneous generation of effective interactions in quantum
gravity theory.

In the present talk1, we discuss the possibility of an anomalous gravitational interaction in terms
of non-perturbative effects of Einstein–Hilbert gravity. For this purpose, we rely on an approach
induced by the N.N. Bogoliubov compensation principle [4,5]. In works [6–10], this approach was
applied to studies of the spontaneous generation of effective non-local interactions in renormalizable
gauge theories. The approach is described in detail in a recent book [11]. In particular, papers [9,10]
deal with an application of the approach to the electroweak interaction and the possibility of the
spontaneous generation of an effective anomalous three-boson interaction of the following form:
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where g ' 0.65 is the electroweak coupling. Here, F(pi) is a form-factor, which guarantees effective
interaction (Equation (1)) acting in a limited region of the momentum space. This form-factor is
uniquely defined by the compensation equation of the Bogoliubov approach. We use an approximate
scheme, the accuracy of which was estimated to be '(10− 15)% [6]. Up to this precision, the approach
gives unique results for physical parameters; thus we have no adjusting parameters in the scheme.
The wouldbe existence of effective interaction (Equation (1)) leads to important non-perturbative
effects in the electroweak interaction. Its consequences were considered in works [9,10]. We note

1 The talk is connected with work [3].
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that the interaction by Equation (1) was considered for a long period of time on phenomenological
grounds [12,13].

We take the interaction by Equation (1) as a leading hint for the choosing of an effective interaction
in gravity theory. Considering links between vector non-abelian gauge theories and the theory of
gravity, one can easily see that the gauge field Wa

µν plays the same role as the Riemann curvature tensor
Rm

n µ ν. Thus the anomalous interaction, which is strictly analogous to the interaction by Equation (1),
is the following:

G
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Here, F is again some form-factor to be defined by a compensation equation. This equation
corresponds to the diagrams of Figure 1.

Figure 1. Diagram representation of the compensation equation in the first approximation. Dotted lines
correspond to gravitons, a black spot represents the interaction by Equation (2), and the striped triangle
represents the contribution of the Standard Model diagrams.

Performing calculations using FORM, we achieved the following integral equation with
integrations in the Euclid momentum space:
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where F0G is the inhomogeneous part of the equation, which in Figure 1 is denoted by the
striped triangle.

Assuming F0G = Const, we obtain by successive differentiations of Equation (3) a linear
differential equation for F(x). Introducing the following new variable:

z =
81 G2 x5

15625 π2 (4)
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the differential equation is equivalent to Equation (3) with boundary conditions. Taking into account
these conditions, we have the following solution (details can be found in work [6]):

F(z) = C G50
18

(
z |1/15

0, 1/5, 2/5, 3/5, 4/5,−3/5−2/5,−1/5

)
(6)

where
Gmn

pq
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b1, ..., bq
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(7)

is a Meijer function [14].
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) = 0.5972001 (8)

On the other hand, assuming F0G = 0, we may calculate F(0) from Equations (6) and (8),
which gives

F(0) =
18
5

(9)

However, the form-factor F(z) has to be unity at zero. Thus there is evidently an additional
contribution to F(0), that is

F0G 6= 0 (10)

This contribution might be given by diagrams including matter fields, for example, by those being
presented in Figure 2. First of all, we draw attention to the presence of the Z exchange in Figure 2.
The dominant contribution is provided by the lightest particles, namely, by neutrinos. The interaction
of Z with neutrinos contains the γ5 matrix, and thus the Trace inevitably contains the antisymmetric
tensor εαβγδ, which is present in the interaction by Equation (2). The vertex of a graviton interaction
with a neutrino, as well as with any spinor field, is the following:

V(µ, ν, p1, p2) = ı κ (γµ (p1 + p2)ν + γν (p1 + p2)µ) (11)

where κ is connected with the Planck mass:

κ =
1

MPl
(12)

and p1 is the momentum of the incoming neutrino, while p2 is the momentum of the outgoing neutrino.
We have an additional contribution to the electroweak interaction:

∆ Lint = −2 ı A λ3 η
(

ūγµ(1 + γ5) b + t̄γµ(1 + γ5) d
)

Wµ + h.c. (13)

where according to the usual parametrization [15], we have

λ = 0.22537± 0.00061; A = 0.814+0.023
−0.024; η = 0.3535± 0.013 (14)

We readily estimate that these diagrams give the following contribution to the inhomogeneous
part of the equation:
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F0G = −CG
3 g2 κ3 A λ3 η

64 π4M2
W

ln
MW mb
mu md

(15)

where κ is the usual gravitation coupling constant, g ' 0.65 is the electroweak gauge constant, and CG
is a coefficient of the order of unity. From the main Equation (3), we have the following condition:

F(0) + F0G = 1 (16)

Equation (15) must be equal to

F0G = 1 − F(0) ' −3.0 (17)

Figure 2. Diagrams describing the first approximation for the Standard Model contribution to
three-graviton vertex (Equation (2)). Simple lines correspond to matter fermions (quarks, etc.) and
double lines correspond to weak bosons W.

Then, on account of the number of neutrinos Nν = 3 and the previous relations (Equations (3)
and (17)), we obtain the following estimate for the coupling constant of the effective interaction by
Equation (2) G. In doing so, we have to bear in mind that the integral Equation (3) is divided by
a coupling constant G as a result of the overall procedure of searching for non-trivial solutions of
compensation equations. Thus we have

G ∼ g2κ3

4(16 π2)2 M2
Z

ln
M2

Z
m2

ν
(18)

As a matter of fact, for the moment, we cannot substitute a reliable value for the average neutrino
mass mν into Equation (18). We may safely assert that it is not zero because of the existence of the
effect of neutrino oscillations. In any case, it may not be more than 3 eV (see data [15]). In view of
this, we have taken for the estimate just neutrinos as the particles having the smallest masses of all
the particles giving a contribution to the coupling constant G. It is evident that massless particles,
namely photons and gluons, do not give a contribution because of the parity conservation of their
interactions. To obtain a more definite connection between the two parameters G and κ, one needs
perform difficult calculations, which will be done elsewhere. However our estimate (Equation (18))
allows us to consider effects of the interaction by Equation (2) and to conclude if it is advisable to
continue studies in this direction.

With the physical mass of Z and bearing in mind Equation (12), where the Planck mass
MPl ' 1.22 × 1019 GeV is very large, we understand that the possible value (Equation (18)) is
essentially larger than the seemingly natural value, which one can estimate under premise, so that
only gravitational effects can define the quantity under study

GPl ∼ κ5 =
1

M5
Pl

. (19)

The interaction by Equation (2) due to a presence of the antisymmetric tensor εαβγδ gives no
contribution to spherically symmetric problems of gravitation (Schwartzschield solution, Friedmann
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solution, etc.). However, it could manifest itself in problems without spherical symmetry in a rotating
system (e.g., a spiral galaxy). The considerable enhancement of the possible value of Equation (18) in
comparison to the natural value (Equation (19)) by the following factor:

G
GPl

=
g2 M2

Pl
64 π2 M2

Z
= 1031 (20)

is quite remarkable and may lead to observable effects. Here we use also the estimation of the logarithm
in Equation (18).

The propagator of a graviton is the following [16]:

D(a, b, m, n, q) =
gamgbn + gangbm − gabgmn

ı q2 (21)

It is important to note that the effective interaction by Equation (2) is P- and T-non-invariant.
This might be important for the consideration of baryon asymmetry of the universe, which inevitably
needs a T-odd interaction [17].

2. A Model for a Running Gravity Coupling

We have considered the above wouldbe properties of quantum gravity. The theory itself contains
a dimensional coupling constant:

β =
κ2

4 π
(22)

In conventional quantum field theory, such a quantity corresponds to a running coupling,
for example, αs(Q2) in QCD. Thus one should expect that the quantity of Equation (22) is also the
running coupling. However, quantum gravity theory is non-renormalizable. This means of course that
perturbation theory does not work and we have no regular method to obtain an expression for the
running coupling. Thus the application of a non-perturbative approach is necessary. As a matter of
fact, in gauge theories of the Standard Model, contributions of a non-perturbative nature may also
be present. We may refer just to the strong coupling αs(Q2), in which the well-known non-physical
Landau singularity appears in perturbative calculations. It is a general belief that non-perturbative
contributions somehow eliminate this singularity. In particular, in work [18], it is shown that the
singularity is eliminated as a result of the spontaneous generation of an effective non-perturbative
three-gluon interaction, which is analogous to Equation (1). In any case, a discussion of possible
running properties of gravity coupling (Equation (22)) is worth attention. In this section, we consider a
model for such running in view of obtaining an impression, if such searches are advisable.

Now, previous experience [6–13,18–21] has shown that solutions of compensation equations
are usually expressed in terms of Meijer functions [14]. Thus we use these useful functions in our
attempts here. On the other hand, it is very important to have some hints as to the scale of the
possible non-perturbative effects. Here, the example that is considered in the previous Section may be
instructive. Namely, we see that in Equation (18), both κ and the neutrino mass mν are present. That is
the scale of the length dimension that, again with mν ' 3 eV, may be estimated as follows:

l0 =
h̄ MPl
c m2

ν
= 2.711 · 1020m = 8.78 kpc (23)

We see that this estimate gives a kpc scale, which is appropriate to the size of a galaxy.
We now assume that the running Newton gravity coupling constant GN , which is proportional to

coupling β (Equation (22)) depends on a distance in the following way:
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GN(r) = GN0 F(r)

F(r) =
(1

3
G 0 3

4 1
(
x|10,2,4,−2

)
+ 7 G1 2

4 1
(
x|12,4,0,−2

))
(24)

x =
r
r0

where r0 is of the order of magnitude of l0 (Equation (23)) and GN0 is simply the well-known Newton
constant. We use Meijer functions for representation of the effect, because in all cases of different
problems, we encounter these functions in the momentum space. It is remarkable that the Fourier
transform of a Meijer function is again a Meijer function. We choose the coefficients in Equation (24)
so that for r → 0, GN → GN0, and for r → ∞, GN → 21 GN0. The last asymptote corresponds to the
accelerated expansion of the universe, which usually is prescribed to dark energy.

Now we apply Equation (24) to the rotation curves of galaxies. We take r0 = 5 kps. We take for
the rotation curve of a flat-disk galaxy the following expression:

V(r) = V0
√

2MG(I0(y)K0(y)− I1(y)K1(y)) F(r)

y =
r

RG
; V0 = 207.4 km

s

(25)

where MG is a galaxy mass in 1010 M(Sun), RG is its radius in kpc, and r is a distance in a rotation
curve, also in kpc. Then we adjust the galaxy mass and radius to obtain a corresponding rotation curve.
We have taken three galaxies as examples. The black spots in the figures denote observational data,
taken from [22]. The upper curves in the figures correspond to Equation (25). The lower curves in the
figures correspond to F(r) = 1 (i.e., without our effect).

• Galaxy NGC 6674, MG = 21.0, RG = 4.58; Figure 3.
• Galaxy NGC 3521, MG = 9.0, RG = 3.0; Figure 4.
• Galaxy NGC 2683, MG = 5.8, RG = 2.4; Figure 5.
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Figure 3. Rotation curve for galaxy NGC 6674.
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Figure 4. Rotation curve for galaxy NGC 3521.

Figure 5. Rotation curve for galaxy NGC 2683.

3. Conclusions

We have considered a possible P- and T-odd effective interaction that could be considered in
the framework of modified gravitation. The possible influence of effective interactions with gravity
coupling is discussed. A special form of the coupling is presented, which might simultaneously explain
effects that are usually prescribed to dark matter and to dark energy.
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Abstract: The aim of this contribution is to illustrate a methodology for the protection and 
management of the building heritage, adding to the historical documentary investigations, a careful 
phase of survey and a conscious geometric and informational modeling of the pre-existence.  
The focus of this work was the Tower of Vietri sul Mare: a significant example of the architectural 
defense strategies adopted in Salerno in the 16th century. In fact, through the creation of digital 
models, it would be facilitated the management of the volumetric evolution that this tower has 
undergone over time, ensuring a greater accessibility and an easier understanding of the 
transformations it has suffered. 
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1. Introduction 

The conservation and the dissemination of architectural heritage is due in a territory rich  
in historic testimonies such as the coast of Salerno. The discipline of Drawing contributes strongly  
to the knowledge phase of this heritage and is the fundamental vehicle for preserving and handing 
down the past belong to us. In this regard, the following paper is part of a more general study aimed 
at identifying an innovative working methodology for the interpretation of the constructed  
and for the generation of infographic models useful for the analysis of historical artifacts. 

 
 
γγ 
 
The case of study, in particular, is focus on the Tower of Marina of Vietri sul Mare; a building  

of the 16th century and belonging to a more elaborate coastal defense project adopted by the ancient 
Principality of Citra in the viceroy era. The richness of coastal cities has always attracted the interest 
of the corsairs and pirates of the time, also facilitated by the particular orographic features of the place 
that allowed the boats to “hide” and favor the attacks. Therefore it was necessary to provide the 
implementation of defense plans to safeguard and protect populations and centers from  
such incursions.  

Through previous studies, as well as direct archival and iconographic surveys, it was possible 
to identify the volumetric evolution of this tower from the XVI century to the present. The digital  
and three-dimensional representation would then extend the reading of the information acquired  
to a wider public, facilitating the diffusion and understanding of the transformations that took place 
over time. However, new tools and strategies are necessary to protect these valuable resources:  
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New visualization technologies destroy the distances between present and past, facilitating  
the understanding of the artifacts and their evolution over time. Survey and modeling techniques 
that have the purpose of documenting and telling the history through our architectures.  
The transmission of information acquired in the early stages of the research and the documentation 
would be more easily transferable through the realization of virtual models that facilitate the 
comprehension and are a link between the researcher and the less experienced user. 

New forms of representation that would also allow us to pay attention not only on the  
well-established attractions in our territory but also on many others, enhancing the national artistic 
offer. If the purpose is to protect and enhance the architectural beauties of our land, we can widely 
consider the BIM as a vehicle of digital awareness capable to keep the geometry and semantics of the 
tower in an info-graphic model. The link between image and imagination—with the support of digital 
survey techniques—pulsates in the virtual “reconstruction” of the Tower, which, starting with the 
vintage images, has been gradually consolidated. 
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