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Abstract: In this work we consider perturbations of homogeneous and hypersurface orthogonal
cosmological backgrounds with local rotational symmetry (LRS), using a method based on the
1 + 1 + 2 covariant split of spacetime. The backgrounds, of LRS class II, are characterised by that
the vorticity, the twist of the 2-sheets, and the magnetic part of the Weyl tensor all vanish. They
include the flat Friedmann universe as a special case. The matter contents of the perturbed spacetimes
are given by vorticity-free perfect fluids, but otherwise the perturbations are arbitrary and describe
gravitational, shear, and density waves. All the perturbation variables can be given in terms of the
time evolution of a set of six harmonic coefficients. This set decouples into one set of four coefficients
with the density perturbations acting as source terms, and another set of two coefficients describing
damped source-free gravitational waves with odd parity. We also consider the flat Friedmann
universe, which has been considered by several others using the 1 + 3 covariant split, as a check of
the isotropic limit. In agreement with earlier results we find a second-order wavelike equation for the
magnetic part of the Weyl tensor which decouples from the density gradient for the flat Friedmann
universes. Assuming vanishing vector perturbations, including the density gradient, we find a similar
equation for the electric part of the Weyl tensor, which was previously unnoticed.
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1. Introduction

In light of the recent success in measurements of gravitational waves [1], and the consequent
opening of a new observational window, it is of interest to study the propagation of gravitational
waves and their interactions on different cosmological backgrounds to see, for example, what the
effects of anisotropy and/or inhomogeneities are.

The fluctuations in the cosmic microwave background radiation (CMB), the large-scale structures
and the cosmological redshift are well explained by the ΛCDM model [2–6], which describes an almost
homogeneous and isotropic universe with a cosmological constant and cold dark matter. However,
there are some deviations between the data and the model. For example, the observed power spectrum
of the CMB seems to differs from the ΛCDM model for large angles [7–10]. Since a large amount of
alternative matter is needed to account for the dark sector, a wide range of alternative cosmological
models have also been investigated to explore if they can explain the current observations [11–22].
Also, present redshift studies do not give very strict bounds on the anisotropy in the expansion [23–25],
making studies of different types of perturbations on anisotropic cosmological backgrounds of interest.
For earlier works on this see, for example, [26–31], and for different perturbative methods see [32–36].

In this paper we will use a method based on the 1 + 3 and 1 + 1 + 2 covariant splits of spacetime [37–48]
to study perturbations on anisotropic backgrounds. In the 1 + 3 split there is a preferred timelike
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vector, like the 4-velocity of matter, which is used to split tensors into timelike scalars and spacelike
3-tensors in a way that keeps covariance of the tensors. Similarly, a further 1 + 2 split can be made
with respect to a spatial direction. This split is natural when there is a preferred spatial direction on
the background, but can be also be used for isotropic backgrounds. Hence, the direction is fixed by, for
example, choosing one of the perturbed vectors along it. The gauge problem in relativistic perturbation
theory is here avoided by using covariant objects which vanish on the background for the perturbed
quantities [49].

In an earlier paper [50] we considered perturbations on a Kantowski–Sachs background, using
the 1 + 1 + 2 covariant split of spacetime [45]. The perturbations were vorticity-free and the perturbed
spacetime was considered to be described by a perfect fluid. The perturbations include density
fluctuations, shear waves, and pure gravitational perturbations travelling with the speed of light at
leading order in the high frequency limit. Moreover, beyond this geometrical optics limit, anisotropic
dispersion relations were indicated. The full dynamics were found to be given by evolution equations
for six harmonic coefficients which decouple into two sub-systems, one with two components
describing pure gravitational degrees of freedom, and one with the remaining four coefficients where
the density gradient acts as a source term.

In this work we extend the previous 1 + 1 + 2 analysis to a wider class of locally rotationally
symmetric (LRS) backgrounds. LRS symmetry means that spacetime is invariant under rotations
around at least one spatial direction at every point [51,52]. The analysis will cover vorticity-free
perturbations of all LRS spatially homogeneous and hypersurface orthogonal perfect fluid backgrounds
with vanishing magnetic part of the Weyl tensor, except the hyperbolic and closed Friedmann
models, which together with the flat model have been considered by several authors (see, for
example, [37,53–59]), using the 1 + 3 split. The considered metrics all belong to LRS class II in the
classification of [51]. We find the vorticity-free perturbations of the homogeneous and hypersurface
orthogonal LRS II backgrounds to behave in an analogous way to those in the previous study on
Kantowski–Sachs backgrounds [50] and a similar harmonic decomposition can be used. Still, all
harmonic coefficients can be expressed in terms of six coefficients and the evolution equations have
the same structure as before, but the behaviour of the solutions of course varies according to which
backgrounds are taken. Finally, as a consistency check, we consider the flat Friedmann background
as the isotropic limit of our 1 + 1 + 2 equations. We find that the magnetic part of the Weyl tensor,
which in the general anisotropic case is partly sourced by the density gradient, satisfies a source-free
second-order damped wave equation. This is in agreement with earlier results, using the 1 + 3 covariant
split of spacetime. A second-order equation is also obtained for the electric part of the Weyl tensor for
the case of pure tensor perturbations , in contrast to an earlier study [53].

The paper is organized as follows: In Section 2 a short summary of the 1 + 3 and 1 + 1 + 2
covariant splits of spacetime is given. The LRS backgrounds are discussed in Section 3. In Section 4.1
the harmonic expansion is described and then the evolution equations for the harmonic coefficients
are given in Section 4.2. The high-frequency limit is considered in Section 4.3. The flat Friedmann case
is treated in Section 4.4. Conclusions are summarised in Section 5.

We use the signature convention (−+++) and units where c = 1 and 8πG = 1.

2. The 1 + 3 and 1 + 1 + 2 Covariant Splits of Spacetime

In this section we give a brief summary of the 1 + 3 and 1 + 1 + 2 covariant splits of spacetime.
For more details on 1 + 3 split the reader is referred to [37,42] and for 1 + 1 + 2 split to [45,47].
A summary of the two can also be found in [50].

A 1+3 split of spacetime is suitable when there is a preferred timelike vector ua. The projection
operator onto the perpendicular 3-space is given by hb

a = gb
a + uaub in terms of the 4-metric gab.
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With the help of hab vectors and tensors can be covariantly decomposed into spatial and timelike parts.
The covariant time derivative and projected spatial derivative are given by

ψ̇a..b ≡ uc∇cψa...b and Dcψa...b ≡ h f
c hd

a ...he
b∇ f ψd...e , (1)

respectively. The covariant derivative of the 4-velocity, ua, can be decomposed as

∇aub = −ua Ab + Daub = −ua Ab +
1
3

θhab + ωab + σab , (2)

where the kinematic quantities of ua, acceleration, expansion, vorticity, and shear are defined by
Aa ≡ ub∇bua, θ ≡ Daua, ωab ≡ D[aub], and σab ≡ D<aub>, respectively. Here square brackets [ ] denote
anti-symmetrisation, and angular brackets < > denote the symmetric and trace-free part of a tensor,
i.e. ψ<ab> ≡

(
hc
(ahd

b) −
1
3 habhcd

)
ψcd. These quantities, together with the Ricci tensor (expressed via

the Einstein equations by, for example, energy density µ and pressure p for a perfect fluid) and
the electric, Eab ≡ Cacbducud, and magnetic, Hab ≡ 1

2 εadeCde
bcuc, parts of the Weyl tensor, are then

used as independent variables. Here εabc ≡ ηdabcud ≡ 4!
√−gδ0

[dδ1
a δ2

b δ3
c]u

d is the three-dimensional
volume element.

The Ricci identities for ua and the Bianchi identities then provide evolution equations in the ua

direction and constraints (see for example [42]).
A formalism for a further split (1 + 2) with respect to a preferred spatial vector na (with uana = 0)

was developed in [45,47]. Projections perpendicular to na are made with Nb
a = hb

a − nanb, and in
an analogous way to above, spatial vectors and tensors may be decomposed into scalars along na and
perpendicular two-vectors and symmetric, trace-free two-tensors as Aa = Ana +Aa , ωa = Ωna + Ωa,
and σab = Σ(nanb − 1

2 Nab) + 2Σ(anb) + Σab. This occurs similarly for Eab and Hab in terms of E , Ea, Eab
andH,Ha,Hab, respectively. Derivatives along and perpendicular to na are

ψ̂a...b ≡ ncDcψa...b = nch f
c hd

a ...he
b∇ f ψd...e and δcψa...b ≡ N f

c Nd
a ...Ne

b D f ψd...e , (3)

respectively. Similarly to the decomposition of ∇aub, Danb, and ṅa can be decomposed into further
kinematic quantities of na as

Danb = naab +
1
2

φNab + ξεab + ζab and ṅa = Aua + αa , (4)

where aa ≡ n̂a, φ ≡ δana, ξ ≡ 1
2 εabδanb, ζab ≡ δ{anb}, A ≡ na Aa, and αa ≡ Nb

a ṅb. The two-dimensional
volume element is given by εab ≡ εabcnc and curly brackets { } denote the symmetric and trace-free
part of 2-tensors. A bar on vector indices will denote projection onto the 2-sheets, e.g., ψ̇ā ≡ N b

a ψ̇b.
The Ricci and Bianchi identities are then written as constraints and evolution and propagation

equations in the ua and na directions, respectively (see [45]). For the commutation relations between
the differential operators ˙ , ̂ and δa when acting on scalars, vectors and tensors, see Appendix A.

3. Locally Rotationally Symmetric Spacetimes

A spacetime which at each point is invariant under rotations around at least one spatial direction
is referred to as locally rotationally symmetric, or LRS for short. The corresponding locally maximally
symmetric 2-sheets perpendicular to the isotropy axis are characterized by the 2D curvature scalar
R = 2K/a2

2, where a2 is the radius of curvature (or alternatively the scale factor) and K = ±1 or 0 for
spheres, pseudo-spheres, or planes, respectively.

The perfect fluid LRS spacetimes can be divided into three classes, I, II and III [51,52]. The Class
I metrics are stationary with nonzero vorticity and vanishing shear and expansion and hence are
of limited interest as cosmological models. Class II is characterized by the fact that the magnetic
Weyl tensor Hab, vorticity ωab, and 2-sheet twisting ξ all vanish. In general, spacetimes in this
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class are both time- and space-dependent and it contains many physically interesting solutions like
spherically-symmetric perfect fluids, the inhomogeneous Lemaitre–Tolman–Bondi cosmologies, the
homogeneous Kantowski–Sachs and LRS Bianchi I and III cosmologies, and the flat and hyperbolic
Friedmann models. The metrics in LRS class III are spatially homogeneous with a nonzero twist of
the 2-sheets and have vanishing vorticity and acceleration, as well as vanishing expansion of the
2-sheets. The only models in this class with vanishing magnetic part of the Weyl tensor are the closed
Friedmann models.

Perturbations of Kantowski–Sachs universes, which are the hypersurface orthogonal and
homogeneous LRS II models with positive 2-curvature, R > 0, were studied by us in an earlier
paper [50]. In this paper we extend the analysis to all hypersurface orthogonal and homogeneous
LRS II models with vanishing expansion of the 2-sheets, i.e., φ = 0. With this last requirement
a similar harmonic decomposition as in [50] can be used. Fortunately this only excludes the hyperbolic
Friedmann universes. Since the only solutions in LRS class III with vanishing magnetic part of the Weyl
tensor are the closed Friedmann universes [60], it means that our analysis will cover all homogeneous
and hypersurface orthogonal LRS backgrounds with a vanishing magnetic part of the Weyl tensor
except the hyperbolic and closed Friedmann models, which together with the flat model have been
studied elsewhere with the 1 + 3 covariant split (see e.g., [37,53–55,57–59]).

3.1. LRS Class II

The perfect fluid LRS Class II spacetimes are characterised by Hab = ξ = ωab = 0, see, e.g., [51,52].
In terms of the quantities defined in Section 2, the spacetimes are given by the following scalars:
the energy density µ, the pressure p, the electric part of the Weyl tensor E , the expansion Θ, the shear Σ,
the acceleration A, and the expansion of the 2-sheets, φ. Alternatively, one of the quantities can be
replaced with the 2-curvature of the 2-sheets

R =
2
3
(µ + Λ)− 2E − 1

2

(
Σ− 2Θ

3

)2
+

φ2

2
. (5)

For a complete local description of the geometry, the frame vectors along the 4-velocity, ua, and
the preferred spatial direction, na, are needed to construct all Cartan invariants (see e.g., [61]). In terms
of timelike and spacelike coordinates, t and z, respectively, they are given by

e0 = u = X∂t + x∂z , e1 = n = Y∂t + y∂z (6)

where X, x, Y and y are functions of t and z. For spatially homogeneous spacetimes, where all invariant
objects are functions of a timelike coordinate solely, we may without loss of generality change the time
coordinate so that X = 1 and x = 0. Metrics with 4-velocity ua orthogonal to the hypersurfaces of
homogeneity are obtained by putting Y = 0. The assumption of Y 6= 0 implies thatR = 0 (see [52]),
and give rise to tilted models of Bianchi types V or I.

The quantities {µ, p, E , Θ, Σ,A, φ, X, Y, x, y}, which describe the spacetime, are subject to
integrability conditions given by commutator equations between e0 and e1, the Ricci equations for ua

and na, and some of the Bianchi identities (see [52,61,62]). Einstein’s equations are imposed through
the Ricci tensor, which for a perfect fluid is given by µ, p and ua.

3.1.1. Homogeneous and Hypersurface Orthogonal LRS II Metrics

With the assumptions x = Y = 0, it follows that the acceleration vanishes, A = 0, [52]. The
system then reduces to the following evolution equations:

µ̇ = −Θ (µ + p) , (7)
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Θ̇ = −Θ2

3
− 3

2
Σ2 − 1

2
(µ + 3p) + Λ , (8)

Σ̇ = −
(

2
3

Θ +
1
2

Σ
)

Σ− E , (9)

Ė =

(
3
2

Σ−Θ
)
E − 1

2
(µ + p)Σ , (10)

φ̇ = −
(

1
3

Θ− 1
2

Σ
)

φ , (11)

where a dot indicates derivative with respect to t, and to the constraints

φΣ = φE = 0 , (12)

3E = −2 (µ + Λ)− 3Σ2 +
2
3

Θ2 + ΣΘ − 3
2

φ2 . (13)

3.1.2. Homogeneous and Hypersurface Orthogonal LRS II Metrics with φ = 0

For φ = 0 the system reduces to
µ̇ = −Θ (µ + p) , (14)

Θ̇ = −Θ2

3
− 3

2
Σ2 − 1

2
(µ + 3p) + Λ , (15)

Σ̇ =
2
3
(µ + Λ) +

Σ2

2
− ΣΘ− 2

9
Θ2 , (16)

with E given algebraically by

3E = −2 (µ + Λ)− 3Σ2 +
2
3

Θ2 + ΣΘ . (17)

Hence, given an equation of state p = p (µ) the solutions are completely determined in terms
of Σ, Θ and µ, and the nonzero zeroth order quantities are given by the set S(0) = {Σ, Θ, µ, p, E}.

The 2-curvature is now given by

R =
2
3
(µ + Λ)− 2E − 1

2

(
Σ− 2Θ

3

)2
= 2 (µ + Λ) +

3
2

Σ2 − 2Θ2

3
=

2K
a2

2
, (18)

where in the last equality the scale factor of the 2-sheets a2 = a2(t) has been introduced and where
K takes the values ±1 or 0 according to the geometry of the 2-sheets: sphere, pseudo-sphere, or flat.
Taking the time derivative ofR, and using Equations (14)–(16), one finds

Ṙ =

(
Σ− 2Θ

3

)
R , (19)

and hence one of the evolution Equations (14)–(16) can be replaced by Equation (19). According to
the sign of R, different types of solutions are obtained. For R > 0 one gets the Kantowski–Sachs
cosmologies, which we studied in [50]. If R < 0 the spacetimes are of Bianchi type III. For R = 0
there are solutions of Bianchi type I/VII0, including the flat Friedmann universe. Since Equation (18)
determines one of the quantities algebraically, one of the evolution equations can be dropped. This is
due to the fact that the time derivative of Equation (18) will be identically satisfied due to the evolution
Equations (14)–(16).

The line-element can for the different values of K be written as

ds2 = −dt2 + a2
1 (t) dz2 + a2

2 (t)
(

dϑ2 + fK(ϑ)dϕ2
)

, (20)
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where f1(ϑ) = sin2 ϑ, f−1(ϑ) = sinh2 ϑ, and f0(ϑ) = 1 (or alternatively f0 = ϑ). For K = 1 the 2-sheets
are spheres and ϑ and ϕ the usual spherical coordinates, but for K = −1 and 0 the 2-sheets can be
taken to be open and infinite with the topology of R2. The coordinates are dimensionless and hence the
scale factors carry the dimension of length (or time since c = 1). The 4-velocity of comoving observers
is u = ∂/∂t and the direction of anisotropy is n = a−1

1 ∂/∂z, which due to symmetry and normalisation
satisfies [51]:

n̂b ≡ naDanb = 0 , ṅb̄ = 0 . (21)

In terms of of the scale factors a1 and a2 in (20), the expansion and scalar part of the shear take
the values

Θ =
ȧ1

a1
+ 2

ȧ2

a2
, (22)

Σ =
2
3

(
ȧ1

a1
− ȧ2

a2

)
. (23)

3.1.3. Homogeneous and Hypersurface Orthogonal LRS II Metrics with φ 6= 0

There are also solutions withR = 0 and Σ = E = 0. For these the sheet expansion φ is in general
nonzero and the system is given by Equations (14) and (15) plus the constraint

µ + Λ− 1
3

Θ2 +
3
4

φ2 = 0 . (24)

If φ 6= 0, these are the negatively curved Friedmann models of Bianchi type V, whereas φ = 0
gives the flat Friedmann models which are covered by the sub-class in Section 3.1.2. For the negatively
curved Friedmann models the metric can be given by

ds2 = −dt2 + a2
[
dz̃2 + e−2z̃

(
dx2 + dy2

)]
. (25)

4. Vorticity-Free, Perfect Fluid Perturbations of Homogeneous and Orthogonal LRS II Cosmologies

The analysis of perturbations on Kantowski–Sachs backgrounds in [50] will here be extended to
all homogeneous and hypersurface orthogonal LRS class II backgrounds except for the hyperbolic
Friedmann models. As for Kantowski–Sachs we will assume that the perturbations are irrotational,
i.e., that Ω = Ωa = 0, and also that the perturbed spacetime is described by a perfect fluid. The frame
is partly fixed by choosing the preferred timelike vector ua to be the 4-velocity of the fluid also in
the perturbed spacetime. Since the preferred direction na is not kept for the perturbed spacetime,
we choose to fix its direction by choosing aa = 0, meaning that the acceleration only has a component
in the na-direction. For more details on the fixing of frame, see [50].

The choice of frame does not completely fix the mapping between the perturbed and background
spacetimes [37], but according to the Stewart–Walker lemma [49] variables which vanish on the
background are gauge-invariant. Hence, for the generic case with φ = 0 on the background, we will
replace the nonzero quantities on the background, µ, p, Θ, Σ and E with their gradients

µa = δaµ , pa = δa p , Wa = δaΘ , Va = δaΣ , Xa = δaE . (26)

As was shown in [50] the hat derivatives, Θ̂ etc., are determined in terms of the 2-gradients,
Wa etc., when the vorticity vanishes (see also Section 4.1.2). The first-order variables which vanish on
the background are then

S(1) ≡ {Xa, Va, Wa, µa, pa,A,Aa, Σa, Σab, Ea, Eab,H,Ha,Hab, ab, αa, φ, ξ, ζab} . (27)

These are now subject to the Ricci identities for ua and na and Bianchi identities, giving evolution
equations along ua, propagation equations along na and constraints. The exact, non-perturbative
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system of equations for a 1 + 1 + 2 split of spacetime can be found in [45]. For first-order perturbations
the set of equations in terms of the new variables in Equation (26) was derived in [50]. This was
done for Kantowski–Sachs backgrounds, but this set is actually valid for all hypersurface orthogonal
homogeneous LRS class II spacetimes with φ = 0, the differences lying in the zeroth order coefficients
for different backgrounds. For completeness we quote the result from [50] in Appendix B.

For the special case R = E = Σ = 0 and φ 6= 0 we should in a similar way use the variable
φa = δaφ, whereas E and Σ now are of first order. For the modified system see Appendix C.

4.1. Harmonic Expansion

For the metrics given by Equation (20), where φ = 0, the wave equation on scalars

∇2Ψ ≡ gab∇a∇bΨ = 0 (28)

is separable by applying the following harmonic expansion

Ψ = ∑
k‖ ,k⊥

ΨS
k‖k⊥

Pk‖ Qk⊥ , (29)

where the coefficients ΨS
k‖k⊥

depend solely on time (see, e.g., [45,50,63]). The function Pk‖ is the

eigenfunction of the Laplacian ∆̂ = na∇anb∇b and it is constant on the z = const hypersurfaces

∆̂Pk‖ = −
k2
‖

a2
1

Pk‖ , δaPk‖ = Ṗk‖ = 0 . (30)

Here, k‖ are the dimensionless constant comoving wave numbers in the direction of anisotropy,
and a1 is the scale factor in this direction. The physical wave numbers are given by k‖/a1.

Similarly, harmonics Qk⊥ are introduced on the 2-sheets as eigenfunctions to the two-dimensional
Laplace–Beltrami operator [45]:

δ2Qk⊥ = −
k2
⊥

a2
2

Qk⊥ , Q̂k⊥ = Q̇k⊥ = 0 . (31)

Here, δ2 = δaδa, a2 is the scale factor of the 2-sheets, and k⊥ are the dimensionless comoving
wavenumbers along the 2-sheets.

WhenR > 0 the 2-sheets are spheres and the harmonics can be represented by the usual spherical
harmonics Ym

l

δ2Ym
l = − l(l + 1)

a2
2

Ym
l , Ŷm

l = Ẏm
l = 0 , (32)

with k2
⊥ = l(l + 1). Here l = 0, 1, 2, ..., and for a given l value the index m runs from −l to l.

The index m does not occur in the equations governing the perturbations due to the background
spacetime symmetries.

For R ≤ 0, when the 2-sheets are open, the k⊥ are not discrete and may take any real values.
ForR = 0 the eigenfunctions can be represented by plane waves.

Vectors and tensors can be also expanded in harmonics by introducing vector and tensor
harmonics [47,64,65]. The even (electric) and odd (magnetic) parity vector harmonics are

Qk⊥
a = a2δaQk⊥ , Qk⊥

a = a2εabδbQk⊥ , (33)
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and the vector Ψa can be expanded as

Ψa = ∑
k‖ ,k⊥

Pk‖
(

ΨV
k‖k⊥

Qk⊥
a + ΨV

k‖k⊥Qk⊥
a

)
. (34)

when the comoving wavenumbers take continous values, the sums are changed to integrals with

a convenient normalization factor. For Qk⊥
a and Qk⊥

a

εabδaQk⊥
b = 0 and δaQk⊥

a = 0 (35)

hold, respectively. This corresponds to the fact that a generic vector can be written as the sum of one
curl-free and one divergence-free vector.

Similarly, the even and odd tensor harmonics are

Qk⊥
ab = a2

2δ{aδb}Q
k⊥ , Qk⊥

ab = a2
2εc{aδcδb}Q

k⊥ , (36)

and the tensor Ψab can be expanded as

Ψab = ∑
k‖ ,k⊥

Pk‖
(

ΨT
k‖k⊥

Qk⊥
ab + ΨT

k‖k⊥Qk⊥
ab

)
. (37)

Note that for vectors Ψa and tensors Ψab which are odd by definition, the rôles of quantities
without and with an overbar, e.g., Ψa , are interchanged. For example, for the magnetic part of the
Weyl tensor, where the three-dimensional volume element occurs in its definition,HT

k‖k⊥
belongs to

the odd sector, whereasHT
k‖k⊥ belongs to the even sector.

Some useful relations involving the vector and tensor harmonics are listed in Appendix D.
For different types of harmonics used in relativity and cosmology see, for example, [56,66–68].

4.1.1. Harmonics When φ 6= 0

In Bianchi V models with metric

ds2 = −dt2 +
a2

z2

[
dz2 +

(
dx2 + dy2

)]
, (38)

where z was introduced as z = ez̃, the source free wave equation for a scalar is:

0 = ∇2Ψ = −Ψ̈−ΘΨ + D2Ψ

= −Ψ̈−ΘΨ + δ2Ψ + φΨ̂ + ∆̂Ψ , (39)

with
D2Ψ = habDaDbΨ . (40)

In order to separate the time and spatial dependence of Ψ, we expand it in harmonics obeying

D2Qk = − k2

a2 Qk , Q̇k = 0 , (41)

where k is a real number. These harmonics can be built as follow. Equation (31) is modified to

δ2Qk⊥ = −k2
⊥

z2

a2 Qk⊥ , Q̂k⊥ = Q̇k⊥ = 0 , (42)
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where k⊥ is real and Qk⊥ can be represented by plane waves:

Qk⊥ = eik⊥(x+y) . (43)

The expansion of Qk in harmonics Qk⊥ is given by

Qk (x, y, z) = ∑
k⊥

Pk,k⊥ (z) Qk⊥ (x, y) , (44)

where the sum stands for a conveniently normalized integration with respect to k⊥ and
Pk,k⊥ (z) satisfies (

z2 d2

dz2 − z− k2
⊥z2

)
Pk,k⊥ (z) = −k2Pk,k⊥ (z) . (45)

This equation was derived from (41) and (42) and by using φ = −2/a [45]. The regular solution
of (45) is

Pk,k⊥ (z) = z3/2Kν (k⊥z) , (46)

where Kν is the modified Bessel functions of the second kind with

ν =
√

1− k2 . (47)

A scalar occurring at the first order in the perturbed spacetime can be expanded as

Ψ = ∑
k

ΨS
k (t) Qk (x, y, z) = ∑

k,k⊥

ΨS
k (t) Pk,k⊥ (z) Qk⊥ (x, y) . (48)

Nevertheless, this expansion shows that a 1 + 3 covariant approach is more convenient in this case
than the 1 + 1 + 2. The function Pk,k⊥ (z) depend on both separation constants k, k⊥. This is because
δ2-derivative carries a z2 factor in Equation (42).

For suitable three-dimensional harmonics see, for example, [38,54–56,68–70] and for 1 + 3 analysis
of the Friedmann models see, e.g., [37,53–55,57–59].

4.1.2. Relations between Harmonic Coefficients

As was shown in [50], on using the commutation relation (A4) and the property (A86) of the
vector harmonics and assuming vanishing vorticity, it follows that odd parts of the gradients of the
scalars S(0) = {Σ, Θ, µ, p, E} defined in Equation (26) vanish:

µV
k‖k⊥

= XV
k‖k⊥ = VV

k‖k⊥ = WV
k‖k⊥ = pV

k‖k⊥
= 0 . (49)

It was also shown that the harmonic coefficients of the hat derivatives of the objects in S(0) can be
expressed in terms of the coefficients of the vectors in Equation (26). Denoting an object in S(0) by G its
hat derivative can be expanded as

Ĝ = ∑
k‖k⊥

G̃S
k‖k⊥

Pk‖ Qk⊥ , (50)

and its 2-gradients Ga ≡ δaG as

Ga = ∑
k‖ ,k⊥

Pk‖
(

GV
k‖k⊥

Qk⊥
a + GV

k‖k⊥Qk⊥
a

)
. (51)

From (A3) it then follows that

G̃S
k‖k⊥

=
ik‖a2

a1
GV

k‖k⊥
, (52)
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if Ωa and φ vanish to the zeroth order.

4.2. Evolution Equations for the Case φ = 0

The evolution equations, propagation equations and constraints given in Appendix B can be
expanded in harmonics. This will result in time evolution equations and constraints for the harmonic
coefficients AS

k‖k⊥
, HS

k‖k⊥
, φS

k‖k⊥
, ξS

k‖k⊥
, µV

k‖k⊥
, pV

k‖k⊥
, AV

k‖k⊥
, AV

k‖k⊥ , VV
k‖k⊥

, WV
k‖k⊥

, XV
k‖k⊥

, ΣV
k‖k⊥

, ΣV
k‖k⊥ ,

aV
k‖k⊥

, aV
k‖k⊥

, αV
k‖k⊥

, αV
k‖k⊥

, EV
k‖k⊥

, EV
k‖k⊥ , HV

k‖k⊥
, HV

k‖k⊥ , ΣT
k‖k⊥

, ΣT
k‖k⊥ , ζT

k‖k⊥
, ζ

T
k‖k⊥ , ET

k‖k⊥
, ET

k‖k⊥ , HT
k‖k⊥

,

and HT
k‖k⊥ . It follows that AV

k‖k⊥ = 0. The frame can then be fixed by requiring aa = 0, i.e.,

aV
k‖k⊥

= aV
k‖k⊥

= 0 which implies ξS
k‖k⊥

= 0. Finally, by choosing a barytopic equation of state p = p(µ)

we obtain pV
k‖k⊥

= c2
s µV

k‖k⊥
in terms of the speed of sound squared c2

s = dp/dµ. Of the remaining 24

harmonic coefficients 18 can be solved for algebraically in terms of the six coefficients µV
k‖k⊥

, ΣT
k‖k⊥

,

ET
k‖k⊥

, ET
k‖k⊥ ,HT

k‖k⊥
andHT

k‖k⊥ (see Appendix E). The remaining system for the six harmonic coefficients

decouple into two systems, one for the two coefficients ET
k‖k⊥ and HT

k‖k⊥
and one for the remaining

four coefficients µV
k‖k⊥

, ΣT
k‖k⊥

, ET
k‖k⊥

andHT
k‖k⊥

4.2.1. System for ET
k‖k⊥ andHT

k‖k⊥

It turns out that ET
k‖k⊥ andHT

k‖k⊥
decouple from the other coefficients. They satisfy the following

system (note that both are of odd parity):

Ė
T
k‖k⊥= −

3
2
(F+ΣD)ET

k‖k⊥+
ik‖
a1

(1− D)HT
k‖k⊥

, (53)

ḢT
k‖k⊥

= − a1

2ik‖

(
2k2
‖

a2
1
− CB + 9ΣE

)
ET

k‖k⊥ −
3
2
(2E + F)HT

k‖k⊥
, (54)

where

B ≡
2k2
‖

a2
1
+

k2
⊥

a2
2
+

9Σ2

2
+ 3E =

2k2
‖

a2
1
−
Ra2

2 − k2
⊥

a2
2

+ 3Σ
(

Σ +
Θ
3

)
, (55)

CB ≡
(
Ra2

2 − k2
⊥

a2
2

+ 3E
)

= Σ
(

Θ− 3
2

Σ
)
−

k2
⊥

a2
2

, (56)

DB ≡ R−
k2
⊥

a2
2
+ 3E + µ + p = Σ

(
Θ− 3

2
Σ
)
−

k2
⊥

a2
2
+ µ + p , (57)

EB ≡ Σ
2
(CB− E) + ΘE

3
=

(
2
3

Θ2 − 2(µ + Λ) + Σ
(

Θ− 3
2

Σ
))(

Θ− 3
2

Σ
)
− Σ

k2
⊥

2a2
2

, (58)

F ≡ Σ +
2Θ
3

. (59)

The system takes the same form as for the Kantowski–Sachs background [50], but note that the
functions B, C etc. are slightly differently defined in terms of the curvatureR of the 2-sheets and also
that the solutions from Equations (14)–(16), (22) and (23) for the scale factors and kinematic quantities
will be different for different values ofR, given by Equation (18).

The system can also be written as two decoupled second-order wave equations with damping as

Ë
T
k‖k⊥+ qE1Ė

T
k‖k⊥ + qE0E

T
k‖k⊥ = 0 , (60)
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ḦT
k‖k⊥

+ qH1ḢT
k‖k⊥

+ qH0HT
k‖k⊥

= 0 , (61)

where

2qE0 = 1−D
a1

[
2k2
‖

a1
+ a1 (9ΣE− BC)

]
+ 3 d

dt (F+ΣD)

−3 (F+ΣD)
(

d
dt ln 1−D

a1
− 3

2 (2E + F)
)

,
(62)

qE1 =
3
2
(2E + 2F+ΣD)− d

dt
ln

1− D
a1

, (63)

2qH0 = 1−D
a1

[
2k2
‖

a1
+ a1 (9ΣE− BC)

]
− 3 (2E + F) d

dt ln
[

2k2
‖

a1
+ a1 (9ΣE− BC)

]
+9

2 (2E + F) (F+ΣD) + 3 d
dt (2E + F) ,

(64)

qH1 =
3
2
(2E + 2F+ΣD)− d

dt
ln

[
2k2
‖

a1
+ a1 (9ΣE− BC)

]
. (65)

In the high-frequency limit the speed of propagation for these waves will approach the speed of
light and hence they can be interpreted as free gravitational waves (see Section 4.3).

4.2.2. System for ΣT
k‖k⊥

, ET
k‖k⊥

,HT
k‖k⊥ and µV

k‖k⊥

The coefficients ΣT
k‖k⊥

, ET
k‖k⊥

,HT
k‖k⊥ and µV

k‖k⊥
form the following system:

µ̇V
k‖k⊥

=
[

Σ
2

(
1− 3 µ+p

B

)
− 4Θ

3

]
µV

k‖k⊥
+ a2

2 (µ + p)

×
[
(1− C)

(
BΣT

k‖k⊥
− 3ΣET

k‖k⊥

)
+

ik‖
a1
(2− J)HT

k‖k⊥

]
,

(66)

Σ̇T
k‖k⊥

= − c2
s

a2 (µ + p)
µV

k‖k⊥
+

(
Σ− 2Θ

3

)
ΣT

k‖k⊥
− ET

k‖k⊥
, (67)

ĖT
k‖k⊥

=
3Σ

2a2B
µV

k‖k⊥
− µ + p

2
ΣT

k‖k⊥
− 3

2
(F + ΣC) ET

k‖k⊥
−

ik‖
2a1

(2− J)HT
k‖k⊥ , (68)

Ḣ
T
k‖k⊥= −

ik‖
a1a2B

µV
k‖k⊥
− 3

2

(
M
B

+ F
)
Hk‖kT

⊥
−

ik‖
a1

(1− C) ET
k‖k⊥

. (69)

Here we have introduced the additional notations

JB ≡ (Ra2
2−k2

⊥)k
2
⊥a2

1
k2
‖a

4
2

+ 2CB =

(
R− k2

⊥
a2

2

)(
2k2
‖

a2
1
+

k2
⊥

a2
2

)
a2

1
k2
‖
+ 6E

=
k2
⊥a2

1
k2
‖a

2
2

(
R−

2k2
‖

a2
1
− k2

⊥
a2

2

)
+ 2Σ

(
Θ− 3

2 Σ
)

,
(70)

M ≡ 2E
(

Σ +
Θ
3

)
+ Σ
Ra2

2 − k2
⊥

a2
2

, (71)

where E is given by Equation (17).
As for the Kantowski–Sachs case, from these one can derive second-order wave-like equations for

ΣT
k‖k⊥

, ET
k‖k⊥

, and HT
k‖k⊥ where the density gradient µV

k‖k⊥
and its derivative act as source terms. It is

only in the high frequency limit that the second-order equations for ET
k‖k⊥

andHT
k‖k⊥ decouple from

the source terms, given by the density gradient, and hence describe freely moving gravitational waves.
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4.3. High-Frequency Approximation

In [50], where the backgrounds were given by Kantowski–Sachs models, we studied the
high-frequency limit (optical limit; see [71,72]), of the propagation equations. For our quantities
this implies

k2
‖

a2
1

,
k2
⊥

a2
2
� Θ2, Σ2, E , µ, p . (72)

Since in this limit the curvature of the 2-sheets becomes negligible the resulting equations are
identical in form to those for the Kantowski–Sachs backgrounds for all signs ofR, but the zeroth-order
factors a1, a2, Θ and Σ of course are different for different backgrounds.

For the uncoupled system of ET
k‖k⊥ and HT

k‖k⊥
the following second-order wave equations

with damping

Ë
T
k‖k⊥+ qE1Ė

T
k‖k⊥ +

(
k2
‖

a2
1
+

k2
⊥

a2
2

)
ET

k‖k⊥ = 0 , (73)

ḦT
k‖k⊥

+ qH1ḢT
k‖k⊥

+

(
k2
‖

a2
1
+

k2
⊥

a2
2

)
HT

k‖k⊥
= 0 , (74)

where

qE1
=

7Θ
3

+ 4Σ− 3Σ
k2
⊥

a2
2

a2
1
k2
‖ + k2

⊥

, (75)

qH1 =
7Θ
3

+ 4Σ− 6Σ
k2
⊥

2a2
2

a2
1

k2
‖ + k2

⊥

, (76)

are obtained. These are in the form

Ẍ + 2ζΩẊ + Ω2X = 0 , (77)

where Ω is the undamped angular frequency and the actual angular frequency is given by Ω
√

1− ζ2.
The propagation speed of the wave is

cw =
Ω

kphys

√
1− ζ2 with k2

phys =
k2
‖

a2
1
+

k2
⊥

a2
2

. (78)

The propagation velocity hence goes as 1 − ζ2/2 for relatively small damping coefficients ζ,
and approaches the speed of light for large frequencies. For the static case, when Θ = Σ = 0, the
damping would vanish and then the propagation velocity would be exactly the speed of light. When
the propagation is along the preferred direction, k⊥ = 0, and qE1

= qH1 , resulting in the same damping

ζ|| for both variables ET
k‖k⊥ andHT

k‖k⊥
. Hence, they have the same propagation velocity which differs

from the speed of light at the second-order in ζ||. However, when the propagation is perpendicular to

the preferred direction, k2
‖ = 0, then qE1

6= qH1 , giving different dampings ζ⊥E and ζ⊥H for ET
k‖k⊥ and

HT
k‖k⊥

, respectively. Therefore, the propagation velocities also differ at the second order in damping

coefficients. In addition, since ζ|| 6= ζ⊥E 6= ζ⊥H, the propagation velocities are direction-dependent.

As mentioned in Section 4.2.2, the second-order equations for ET
k‖k⊥

andHT
k‖k⊥ also decouple from

the density gradient in the high frequency limit and are given by

ËT
k‖k⊥

+ qE1ĖT
k‖k⊥

+

(
k2
‖

a2
1
+

k2
⊥

a2
2

)
ET

k‖k⊥
= 0 , (79)
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Ḧ
T
k‖k⊥ + qH1Ḣ

T
k‖k⊥ +

(
k2
‖

a2
1
+

k2
⊥

a2
2

)
HT

k‖k⊥
= 0 , (80)

with qE1 = qH1 and qH1 = qE1
. Beause of the latter, the propagation velocities of ET

k‖k⊥
andHT

k‖k⊥
and

ofHT
k‖k⊥ and ET

k‖k⊥ coincide in the high-frequency limit and as before the propagation velocity differs
from the speed of light to the second order in the damping parameter.

4.4. Perturbations of the flat Friedmann models

Here we consider the flat Friedmann models as a check of the isotropic limit of the general LRS II
case. In this case there is no preferred spatial direction on the background, but as before, we fix the
1-direction by choosing the acceleration to only have a 1-component, i.e., aa = 0, in the perturbed
spacetime. Tensor perturbations of the Friedmann cases, using the 1 + 3 covariant split, were studied
in [53] and we make a comparison with their results.

The flat Friedmann models are given by E = Σ = R = φ = 0. Without loss of generality we can
use a1 = a2 ≡ a. We also introduce the notations

k2 ≡ k2
‖ + k2

⊥ , (81)

and

B0 =
2k2
‖

a2 +
k2
⊥

a2 . (82)

The first system for ET
k‖k⊥ andHT

k‖k⊥
then reduces to

Ė
T
k‖k⊥= −Θ ET

k‖k⊥+
ik‖
aB0

(
2k2

a2 − µ− p
)
HT

k‖k⊥
, (83)

ḢT
k‖k⊥

= − a
2ik‖

B0E
T
k‖k⊥ −ΘHT

k‖k⊥
. (84)

As before, this can be written as second-order damped wave equations

Ë
T
k‖k⊥+

(
7Θ
3
− N

)
Ė

T
k‖k⊥ +

(
k2

a2 +
2
3

Θ2 + 2(Λ− p)− NΘ
)
ET

k‖k⊥ = 0 (85)

and

ḦT
k‖k⊥

+
7
3

Θ ḢT
k‖k⊥

+

(
k2

a2 +
2
3

Θ2 + 2(Λ− p)
)
HT

k‖k⊥
= 0 . (86)

The term N is given by

N ≡
(µ + p)

(
1 + 3c2

s
)

3
(

2k2

a2 − (µ + p)
)Θ (87)

and vanishes in the high frequency limit.
The second system becomes

µ̇V
k‖k⊥

= −4Θ
3

µV
k‖k⊥

+
k2

a
(µ + p)ΣT

k‖k⊥
− a2(µ + p)B0

2ik‖
HT

k‖k⊥ , (88)

Σ̇T
k‖k⊥

= − c2
s

a (µ + p)
µV

k‖k⊥
− 2Θ

3
ΣT

k‖k⊥
− ET

k‖k⊥
, (89)

ĖT
k‖k⊥

= −µ + p
2

ΣT
k‖k⊥
−ΘET

k‖k⊥
+

aB0

2ik‖
HT

k‖k⊥ , (90)
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Ḣ
T
k‖k⊥= −

ik‖
a2B0

µV
k‖k⊥
−ΘHT

k‖k⊥ −
2ik‖k2

a3B0
ET

k‖k⊥
. (91)

From these we obtain the following second-order wave equations for ΣT
k‖k⊥

and ET
k‖k⊥

, again with

the density fluctuations acting as source terms,

Σ̈T
k‖k⊥

+
5Θ
3

Σ̇T
k‖k⊥

+

(
k2

a2 +
Θ2

6
+

3
2
(Λ− p)

)
ΣT

k‖k⊥
=

(
1− c2

s
)

a (µ + p)
µ̇V

k‖k⊥
+ sΣ0µV

k‖k⊥
, (92)

ËT
k‖k⊥

+

(
7Θ
3
− N

)
ĖT

k‖k⊥
+

(
k2

a2 +
2
3

Θ2 + 2(Λ− p)− NΘ
)
ET

k‖k⊥
=

N
a(µ + p)

µ̇V
k‖k⊥

+ sE0µV
k‖k⊥

, (93)

where

sΣ0 =

((
4
3 −

5
3 c2

s − c4
s

)
Θ− 2cs ċs

)
a (µ + p)

and sE0 =
c2

s − 1
2a

+
4ΘN

3a(µ + p)
. (94)

The density gradient obeys the following second-order equation

µ̈V
k‖k⊥

+

(
10
3

+ c2
s

)
θµ̇V

k‖k⊥
+

(
c2

s k2

a2 +
11
6

θ2 +
4c2

s
3

θ2 − 5
2
(p−Λ)

)
µV

k‖k⊥
= 0 (95)

and we see that the density perturbations propagate with the speed of sound in the high frequency
limit. Unlike the case with an anisotropic background, we now obtain a second-order decoupled wave
equation forHT

k‖k⊥

Ḧ
T
k‖k⊥ +

7
3

Θ Ḣ
T
k‖k⊥ +

(
k2

a2 +
2
3

Θ2 + 2(Λ− p)
)
HT

k‖k⊥ = 0 . (96)

Note that Equations (86) and (96) forHT
k‖k⊥

andHT
k‖k⊥ , respectively, are identical. Similarly, the

left-hand sides of Equations (85) for ET
k‖k⊥ and (93) for ET

k‖k⊥
, respectively, are identical. The damping

coefficients in the second-order equations depend only on k, therefore the propagation velocities of the
perturbations are not direction-dependent. In addition the propagation velocities at high frequencies
approach the speed of light. Because of the symmetries of Friedmann spacetimes, we can safely assume
that µV

k‖k⊥
depend only on k, and not separately on k‖ and k⊥, which is also clear from Equation (95).

Then the second-order equations for ΣT
k‖k⊥

and ET
k‖k⊥

also depend only on k like those governing ET
k‖k⊥ ,

HT
k‖k⊥

andHT
k‖k⊥ .

In [53] the 1 + 3 covariant split was used to study tensorial perturbations of the Friedmann models.
The pure tensor perturbations are characterised by vanishing energy density gradients and vorticity
to the first order. Hence, when comparing our result with their we must use µV

k‖k⊥
= µ̇V

k‖k⊥
= 0.

Our Equations (86) and (96) for the even and odd parts of the magnetic part of the Weyl tensor,
HT

k‖k⊥ and HT
k‖k⊥

, respectively, are then the same as their Equation (20) for the flat Friedmann case.

The equation for ΣT
k‖k⊥

(92) similarly corresponds to their Equation (22) 1.

The main difference between [53] and our result is that we obtain a second-order wave
equation from Equation (93) for ET

k‖k⊥
, whereas they needed a third-order equation to decouple Eab.

In Equation (15) in [53] they give a second-order equation for the electric part of the Weyl tensor,

1 There seems to be a misprint in Equation (22) it [53]. Probably the factor (9γ− 1) should read (10− 9γ).
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Eab, with the shear σab acting as a source term. From our Equation (88) we see that imposing
µV

k‖k⊥
= µ̇V

k‖k⊥
= 0 gives a constraint between ΣT

k‖k⊥
andHT

k‖k⊥

ΣT
k‖k⊥

=
a3B0

2k2ik‖
HT

k‖k⊥ . (97)

This constraint is satisfied as is seen by differentiating it and substituting Equations (89)–(91).
Hence, the number of independent variables in the system (88)–(91) is reduced from four to two by
imposing that the density perturbations vanish. With the help of Equation (90) now ΣT

k‖k⊥
can be

completely expressed in terms of ET
k‖k⊥

and ĖT
k‖k⊥

ΣT
k‖k⊥

=
2a2

2k2 − (µ + p)a2

(
ĖT

k‖k⊥
+ ΘET

k‖k⊥

)
. (98)

By using this result in their Equation (15) in for the flat Friedmann case, where simple
plane waves can be used for the harmonics, we obtain our Equation (93). The three-dimensional
Equations (7) and (21) in [53] correspond to our Equations (97) and (98). Using the three-dimensional
harmonics in [68] similar second-order equations for all values of K are obtained (see Appendix F).

5. Conclusions

A previous analysis of vorticity-free perturbations on Kantowski–Sachs backgrounds has been
extended to all homogeneous and hypersurface orthogonal LRS perfect fluids with the vanishing
magnetic part of the Weyl tensor except the hyperbolic and closed Friedmann models, which have
been studied elsewere [37,53–55,57–59] using the covariant 1 + 3 split approach. We find the
same structure of the evolution equations for the perturbations as in the case of Kantowski–Sachs.
All harmonic coefficients can be determined in terms of a subset containing only six coefficients.
The evolution equations for these decouple into one system for ET

k‖k⊥ and HT
k‖k⊥

, representing

source-free gravitational degrees of freedom, and another for ΣT
k‖k⊥

, ET
k‖k⊥

, HT
k‖k⊥ , and µV

k‖k⊥
, which

describes perturbations sourced by the density gradient. Only in the high frequency limit do the
second-order wave equations for ET

k‖k⊥
and HT

k‖k⊥ decouple from the source terms. The analysis of

propagation velocities in the high frequency limit led to direction-dependent dispersion relations on
anisotropic backgrounds.

We also studied perturbations on the flat Friedmann universe, which is the isotropic limit of the
considered class of backgrounds. Here the second-order wave equation for HT

k‖k⊥ decouples from

the other coefficients, whereas ET
k‖k⊥

still is sourced by the density gradient. The result is compared

with an earlier study, [53], where a 1 + 3 formalism was used to study pure tensor perturbations on
Friedmann backgrounds. The 1 + 1 + 2 covariant approach, together with a harmonic decomposition,
is also effective for this setup, because all tensorial perturbations are easily obtained as second-order
differential equations in contrast to the third-order equation more naturally appearing for the electric
part of Weyl tensor in the 1 + 3 covariant description.
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Appendix A. Commutation Relations

The commutation relations of covariant derivatives of the scalar field Ψ on hypersurface
orthogonal and homogeneous LRS II backgrounds are to the first order:

̂̇Ψ− ˙̂Ψ = −AΨ̇ +

(
Σ +

Θ
3

)
Ψ̂ , (A1)

δaΨ̇− N b
a (δbΨ)· = −AaΨ̇−1

2

(
Σ− 2Θ

3

)
δaΨ , (A2)

δaΨ̂− N b
a

(
δ̂bΨ

)
= −2εabΩbΨ̇ +

1
2

φδaΨ , (A3)

δ[aδb]Ψ = εabΩΨ̇ . (A4)

Similar relations hold for the first-order 2-vector Ψa:

̂̇Ψā − ˙̂Ψā =

(
Σ +

Θ
3

)
Ψ̂ā , (A5)

δaΨ̇b − N c
a N d

b (δcΨd)
· = −1

2

(
Σ− 2Θ

3

)
δaΨb , (A6)

δaΨ̂b − N c
a N d

b

(
δ̂cΨd

)
=

1
2

φδaΨb , (A7)

δ[aδb]Ψc =
1
2
RNc[aΨb] , (A8)

and for the first-order symmetric, trace-free 2-tensor Ψab:

̂̇Ψ{ab} −
˙̂Ψ{ab} =

(
Σ +

Θ
3

)
Ψ̂ā , (A9)

δaΨ̇bc − N d
a N e

b N f
c

(
δdΨe f

)·
= −1

2

(
Σ− 2Θ

3

)
δaΨbc , (A10)

δaΨ̂bc − N d
a N e

b N f
c

( ̂δdΨe f

)
= 0 , (A11)

2δ[aδb]Ψcd = R
(

Nc[aΨb]d + Nd[aΨb]c

)
, (A12)

where the 2-curvatureR is given by Equation (18). In (A3) and (A7) the last terms on the right-hand
sides are second-order in the generic case when φ = 0 on the background, and can hence be dropped.

Appendix B. Evolution and Propagation Equations and Constraints for φ = 0

Here, the evolution and propagation equations and constraints from reference [50] for the generic
case when φ = 0 are repeated. These are obtained by linearising the 1 + 1 + 2 equations in [45]. 2

The set S(0) = {Θ, Σ, E , µ, p} gives the quantities which are nonzero on the background. We define
the corresponding first-order quantities

µa = δaµ , pa = δa p , Wa = δaΘ , Va = δaΣ , Xa = δaE . (A13)

2 There are some minor misprints in [45]. See [50] for corrections.
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which vanish on the background. The vorticity-free perturbations are then given by the following
nonzero first-order quantities (which all vanish on the background):

S(1) ≡ {Xa, Va, Wa, µa, pa,A,Aa, Σa, Σab, Ea, Eab,H,Ha,Hab, ab, αa, φ, ξ, ζab} . (A14)

The evolution equations are given by

φ̇ =

(
Σ− 2Θ

3

)(
φ

2
−A

)
+ δaαa , (A15)

2ξ̇ =

(
Σ− 2Θ

3

)
ξ + εabδaαb +H , (A16)

Ḣ =
3
2

(
Σ− 2Θ

3

)
H− εabδaEb − 3Eξ , (A17)

µ̇ā =
1
2

(
Σ− 2Θ

3

)
µa −Θ (µa + pa)− (µ + p)Wa + µ̇Aa , (A18)

Ẋā = 2
(

Σ− 2Θ
3

)
Xa+

3E
2

(
Va−

2
3

Wa

)
−µ + p

2
Va −

Σ
2
(µa + pa) + ĖAa + εbcδaδbHc , (A19)

V̇ā−
2
3

Ẇā =
3
2

(
Σ− 2Θ

3

)(
Va −

2
3

Wa

)
− Xa +

1
3
(µa + 3pa) +

(
Σ̇− 2Θ̇

3

)
Aa − δaδbAb, (A20)

Σ̇{ab} =

(
Σ− 2Θ

3

)
Σab + δ{aAb} − Eab , (A21)

ζ̇{ab} =
1
2

(
Σ− 2Θ

3

)
ζab + δ{aαb} − εc{aH c

b} . (A22)

The equations containing both propagation and evolution contributions are

Ẇā − δaÂ =

(
Σ
2
−Θ

)
Wa − 3ΣVa −

1
2
(µa + 3pa) + Θ̇Aa + δaδbAb , (A23)

α̂ā − ȧā =

(
Σ +

Θ
3

)
(Aa + aa)− εabHb , (A24)

2Σ̇ā − Âa = δaA−
(

Σ +
4Θ
3

)
Σa − 3Σαa − 2Ea , (A25)

Ėā+
1
2

εabĤb =
3
4

(
Σ− 4Θ

3

)
Ea +

(3E−2µ−2p)
4

Σa +
3
4

εabδbH− 3E
2

αa+
1
2

εbcδbHc
a, (A26)

Ḣā−
1
2

εabÊ b =
3
4

(
Σ− 4Θ

3

)
Ha −

3
4

εabXb − 3E
2

εabAb+
3E
4

εabab− 1
2

εbcδbE c
a, (A27)

Ė{ab}− εc{aĤ c
b} = −

3
2

(
Σ+

2Θ
3

)
Eab−εc{aδcHb} −

(3E + µ + p)
2

Σab, (A28)

Ḣ{ab} + εc{aÊ c
b} = −3

2

(
Σ +

2Θ
3

)
Hab +

3E
2

εc{aζ c
b} + εc{aδcEb} . (A29)

The pure propagation equations are

φ̂ = −
(

Σ− 2Θ
3

)(
Σ +

Θ
3

)
+ δaaa − E −

2 (µ + Λ)

3
, (A30)

2ξ̂ = εabδaab , (A31)
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Ĥ = −δaHa , (A32)

Âa = δaA , (A33)

p̂ā = − (µ + p) δaA , (A34)

µ̂ā

3
− X̂ā =

3E
2

δaφ + δaδbEb, (A35)

2
3

Ŵā − V̂ā =
3Σ
2

δaφ + δaδbΣb , (A36)

Σ̂ā =
1
2

(
Va +

4
3

Wa

)
− 3Σ

2
aa − δbΣab , (A37)

2Êā = Xa − 3Eaa − 3ΣεabHb − 2δbEab+
2
3

µa , (A38)

2Ĥā = δaH− 3E εabΣb + 3ΣεabE b − 2δbHab , (A39)

Σ̂{ab} = δ{aΣb} +
3Σ
2

ζab − εc{aH c
b} , (A40)

ζ̂{ab} =

(
Σ +

Θ
3

)
Σab + δ{aab} − Eab . (A41)

Finally, the constraints are
εabδaAb = 0 , (A42)

pa = − (µ + p)Aa , (A43)

εabδaΣb = −3Σξ +H , (A44)

εabδbξ +δbζab−
δaφ

2
=

1
2

(
Σ− 2Θ

3

)
Σa+ Ea, (A45)(

Va −
2
3

Wa

)
+ 2δbΣab = −2εabHb . (A46)

Appendix C. Evolution and Propagation Equations and Constraints for φ 6= 0

Here, the evolution and propagation equations and constraints are given for the exceptional
case where φ 6= 0 on the background, corresponding to the negatively curved Friedmann universe.
The set S(0) = {Θ, µ, p, φ} gives the quantities which are nonzero on the background. We define
corresponding first-order quantities

µa = δaµ , pa = δa p , Wa = δaΘ , φa = δaφ , (A47)

which vanish on the background. As before, we let Va = δaΣ and Xa = δaE . Vorticity-free perturbations
hence are given by the following nonzero first-order quantities (which all vanish on the background):

S(1) ≡ {φa, Wa, µa, pa,A,Aa, Σ, Σa, Σab, E , Ea, Eab,H,Ha,Hab, ab, αa, ξ, ζab} . (A48)

The following evolution equations then hold on the perturbed spacetimes:

φ̇ā = φ̇Aa −
2Θ
3

φa +

(
Va −

2
3

Wa

)
φ

2
+

2Θ
3

δaA+ δaδbαb , (A49)

2ξ̇ = −2Θ
3

ξ + εabδaαb +H , (A50)

Ḣ = −ΘH− εabδaEb , (A51)
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µ̇ā = −
Θ
3

µa −Θ (µa + pa)− (µ + p)Wa + µ̇Aa , (A52)

Ė = −ΘE − 1
2
(µ + p)Σ + εabδaHb , (A53)

Σ̇{ab} = −
2Θ
3

Σab + δ{aAb} − Eab , (A54)

ζ̇{ab} = −
Θ
3

ζab + δ{aαb} − εc{aH c
b} . (A55)

The equations containing both propagation and evolution contributions are

Σ̇− 2
3
Â = −1

3
φA− 2

3
ΘΣ− 1

3
δaAa − E , (A56)

Ẇā − δaÂ = −ΘWa −
1
2
(µa + 3pa) + Θ̇Aa + δaδbAb + φδaA , (A57)

α̂ā − ȧā =
Θ
3
(Aa + aa)− εabH−

1
2

φαa , (A58)

2Σ̇ā − Âa = δaA−
4Θ
3

Σa − 2Ea −
1
2

φAa , (A59)

Ėā+
1
2

εabĤb = −Θ Ea −
1
2
(µ + p)Σa +

3
4

εabδbH+ 1
2

εbcδbHc
a −

1
4

φεabHb, (A60)

Ḣā−
1
2

εabÊ b = −ΘHa −
3
4

εabXb − 1
2

εbcδbE c
a +

1
4

φεabE b, (A61)

Ė{ab}− εc{aĤ c
b} = −Θ Eab−εc{aδcHb} −

(µ + p)
2

Σab +
1
2

φεc{aHc
b}, (A62)

Ḣ{ab} + εc{aÊ c
b} = −ΘHab + εc{aδcEb} −

1
2

φεc{aE c
b} . (A63)

The pure propagation equations are

φ̂ā =
1
3

(
Va +

4
3

Wa

)
Θ + δaδbab − Xa −

2
3

µa −
3
2

φφa , (A64)

2ξ̂ = εabδaab − 2φξ , (A65)

Ĥ = −δaHa −
3
2

φH , (A66)

Âa = δaA−
1
2

φAa , (A67)

p̂ā = − (µ + p) δaA−
1
2

φp , (A68)

µ̂ā

3
− X̂ā = δaδbEb + 2φXa −

1
6

φµa, (A69)

2
3

Ŵā − V̂ā =
3Σ
2

δaφ + δaδbΣb + 2φVa −
1
3

φWa , (A70)

Σ̂ā =
1
2

(
Va +

4
3

Wa

)
− δbΣab −

3
2

φΣab , (A71)

2Êā = Xa − 2δbEab+
2
3

µa − 3φEa , (A72)

2Ĥā = δaH− 2δbHab − 3φHa , (A73)
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Σ̂{ab} = δ{aΣb} − εc{aH c
b} −

1
2

φΣab , (A74)

ζ̂{ab} =
Θ
3

Σab + δ{aab} − Eab − φζab . (A75)

Finally, the constraints are
εabδaAb = 0 , (A76)

pa = − (µ + p)Aa , (A77)

εabδaΣb = H , (A78)

εabδbξ +δbζab−
φa

2
= −Θ

3
Σa+ Ea, (A79)(

Va −
2
3

Wa

)
+ 2δbΣab = −2εabHb − φΣa . (A80)

Appendix D. Harmonics

In this Appendix we enlist a set of identities for the even Qk⊥
a and odd Qk⊥

a vector harmonics,
including the orthogonality relations

NabQk⊥
a Qk⊥

b = 0 , (A81)

the algebraic relations

Qk⊥
a = −ε b

a Qk⊥
b , Qk⊥

a = ε b
a Qk⊥

b , (A82)

and the differential relations

Q̇k⊥
a = Q̂k⊥

a = 0 , Q̇
k⊥
a = Q̂

k⊥
a = 0 , (A83)

δ2Qk⊥
a =

Ra2
2 − 2k2

⊥
2a2

2
Qk⊥

a , δ2Qk⊥
a =

Ra2
2 − 2k2

⊥
2a2

2
Qk⊥

a , (A84)

δaQk⊥
a = −

k2
⊥

a2
Qk⊥ , δaQk⊥

a = 0 , (A85)

εabδaQk⊥
b = 0 , εabδaQk⊥

b =
k2
⊥

a2
Qk⊥ , (A86)

where the 2-curvatureR is given by Equation (18).
The even and odd tensor spherical harmonics obey the orthogonality relations

NabNcdQk⊥
ac Qk⊥

bd = 0 , (A87)

the algebraic relations

Qk⊥
ab = ε c

{a Qk⊥
b}c , Qk⊥

ab = −ε c
{a Qk⊥

b}c , (A88)

and the differential relations

Q̇k⊥
ab = Q̂k⊥

ab = 0 , Q̇
k⊥
ab = Q̂

k⊥
ab = 0 , (A89)

δ2Qk⊥
ab =

2Ra2
2 − k2

⊥
a2

2
Qk⊥

ab , δ2Qk⊥
ab =

2Ra2
2 − k2

⊥
a2

2
Qk⊥

ab , (A90)

δbQk⊥
ab =

Ra2
2 − k2

⊥
a2

2
Qk⊥

a , δbQk⊥
ab = −

Ra2
2 − k2

⊥
a2

2
Qk⊥

a , (A91)
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ε c
a δbQk⊥

bc =
Ra2

2 − k2
⊥

a2
2

Qk⊥
a , ε c

a δbQk⊥
bc =

Ra2
2 − k2

⊥
a2

2
Qk⊥

a , (A92)

εbcδbQk⊥
ac =

Ra2
2 − k2

⊥
a2

2
Qk⊥

a , εbcδbQk⊥
ac =

Ra2
2 − k2

⊥
a2

2
Qk⊥

a . (A93)

Appendix E. Harmonic Coefficients

The perturbation variables coupled to µV
k‖k⊥

, ΣT
k‖k⊥

, ET
k‖k⊥

, andHT
k‖k⊥ are

AV
k‖k⊥

=
a1

ik‖

AS
k‖k⊥

a2
= − c2

s
µ + p

µV
k‖k⊥

, (A94)

ik‖
a1

ζT
k‖k⊥

=

(
Σ +

Θ
3

)
ΣT

k‖k⊥
− ET

k‖k⊥
, (A95)

ik‖
a1a2

ΣV
k‖k⊥

= −
(

B +
Ra2

2 − k2
⊥

a2
2

) ΣT
k‖k⊥

2
+

3
2

ΣET
k‖k⊥
− i

k‖
a1
HT

k‖k⊥ , (A96)

2HV
k‖k⊥

3a2
= − Σ

a2B
µV

k‖k⊥
+ ΣCET

k‖k⊥
− EΣT

k‖k⊥
−

ik‖
a1

J
HT

k‖k⊥

3
, (A97)

VV
k‖k⊥

a2
= − 2Σ

a2B
µV

k‖k⊥
− B

3
(1 + 2C)ΣT

k‖k⊥
+ Σ (1 + 2C) ET

k‖k⊥
− 2

3
ik‖
a1

(1 + J)HT
k‖k⊥ , (A98)

WV
k‖k⊥
a2

= 3Σ
2a2B µV

k‖k⊥
+

(
3E + Ra2

2−k2
⊥

a2
2
− B

) ΣT
k‖k⊥
2

+ 3Σ
2 (1− C) ET

k‖k⊥
− ik‖

2a1
(2− J)HT

k‖k⊥ ,
(A99)

ik‖
a1

φS
k‖k⊥

a2
2

= −
k2
‖

a2
1

2
a2B

µV
k‖k⊥
− BL

3
ΣT

k‖k⊥
+

(
LΣ−

Ra2
2 − k2

⊥
a2

2B
k2
⊥

a2
2

)
ET

k‖k⊥
−

ik‖
a1

2L
3
HT

k‖k⊥ , (A100)

ik‖
a1a2

αV
k‖k⊥

= −
[

3Σ
2B +

(
Σ + Θ

3

)
c2

s
µ+p

] µV
k‖k⊥
a2

− 3E
2 ΣT

k‖k⊥
+ 3Σ

2 CET
k‖k⊥
− ik‖

2a1
JHT

k‖k⊥ ,
(A101)

XV
k‖k⊥
a2

=

[
1− 3

B

(
k2
⊥

a2
2
+ 3E

)]
µV

k‖k⊥
3a2
− E

(
Θ− 3

2 Σ
)

ΣT
k‖k⊥

+ C
(

k2
⊥

a2
2
+ 3E

)
ET

k‖k⊥

+ a1
ik‖

[
E
(

1
3 Θ− 1

2 Σ
) k2

‖
a2

1
− ΣRa2

2−k2
⊥

4a2
2

k2
⊥

a2
2

]
6HT

k‖k⊥
B ,

(A102)

ik‖
a1a2
EV

k‖k⊥
=

k2
‖

a2
1

µV
k‖k⊥
a2B −

3E
2

(
Σ + Θ

3

)
ΣT

k‖k⊥
+

(
3E
2 − C

k2
‖

a2
1

)
ET

k‖k⊥

− ik‖
a1

3HT
k‖k⊥

2B

[
2E
(

Σ + Θ
3

)
+ ΣRa2

2−k2
⊥

a2
2

]
,

(A103)

and which are coupled to ET
k‖k⊥ ,HT

k‖k⊥
are

HV
k‖k⊥

=
ik‖
a1

a2
k2
⊥
HS

k‖k⊥
= − ik‖

a1
αV

k‖k⊥
=

ik‖
a1

ΣV
k‖k⊥

=
Ra2

2−k2
⊥

2a2
ΣT

k‖k⊥ =
Ra2

2−k2
⊥

a2B

(
3Σ
2 E

T
k‖k⊥ +

ik‖
a1
HT

k‖k⊥

)
,

(A104)
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B
2

ζ
T
k‖k⊥ =

(
Σ +

Θ
3

)
HT

k‖k⊥
− a1

ik‖

(
k2
‖

a2
1
−
Ra2

2 − k2
⊥

2a2
2

)
ET

k‖k⊥ , (A105)

EV
k‖k⊥ =

Ra2
2 − k2

⊥
2a2

[
a1

ik‖

(
1− 9Σ2

2B

)
ET

k‖k⊥ −
3Σ
B
HT

k‖k⊥

]
, (A106)

where

B ≡
2k2
‖

a2
1
+

k2
⊥

a2
2
+

9Σ2

2
+ 3E =

2k2
‖

a2
1
−
Ra2

2 − k2
⊥

a2
2

+ 3Σ
(

Σ +
Θ
3

)
, (A107)

CB ≡
(
Ra2

2 − k2
⊥

a2
2

+ 3E
)

= Σ
(

Θ− 3
2

Σ
)
−

k2
⊥

a2
2

, (A108)

LB ≡ 1
Σ

(
2CB

k2
‖

a2
1
+

k2
⊥

a2
2

(
B +
Ra2

2 − k2
⊥

a2
2

))
= 3Σ

(
k2
⊥

a2
2
−

k2
‖

a2
1

)
+ Θ

(
2k2
‖

a2
1
+

k2
⊥

a2
2

)
, (A109)

JB ≡ (Ra2
2−k2

⊥)k
2
⊥a2

1
k2
‖a

4
2

+ 2CB =

(
R− k2

⊥
a2

2

)(
2k2
‖

a2
1
+

k2
⊥

a2
2

)
a2

1
k2
‖
+ 6E

=
k2
⊥a2

1
k2
‖a

2
2

(
R−

2k2
‖

a2
1
− k2

⊥
a2

2

)
+ 2Σ

(
Θ− 3

2 Σ
)

.
(A110)

Appendix F. Shear and Weyl Tensor Tensorial Waves in Friedmann Spacetime

In Friedmann spacetimes the background equations [see Equations (3.29), (3.34) and (3.40) of [43],
respectively, specified for Friedmann spacetimes] are:

µ̇ + Θ (µ + p) = 0 , (A111)

Θ̇ +
Θ2

3
+

µ + 3p
2
−Λ = 0 , (A112)

Θ2

3
+

3K
a2 = µ + Λ , (A113)

with curvature 6K/a2 = (3)R of 3-spaces of homogeneity, where (3)R is the three-dimensional Ricci
scalar.

In Friedmann spacetimes the perturbations are classified into scalar, vector, and tensor types.
The pure tensor perturbations are characterized by vanishing of vorticity and of all gauge-invariant
vectors and scalars at the first order [53,55]. Thus, the acceleration and the gradient of all scalars
also vanish. Moreover we assume the perturbed energy momentum tensor to describe a barotropic
perfect fluid.

The evolution and constraint equations for the shear and for the electric and magnetic parts of Weyl
tensor in 1 + 3 covariant formalism [see Equations (7)–(9), (12), (13) and (21),of [53], respectively] are:

σ̇<ab> +
2
3

Θσab + Eab = 0 , (A114)

Ė<ab> + ΘEab − curlHab +
µ + p

2
σab = 0 , (A115)

Ḣ<ab> + ΘHab + curlEab = 0 , (A116)

Hab = curlσab , (A117)

Da Hab = 0 , (A118)

DaEab = 0 , (A119)
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where the curl of a tensor Tab is given by

curlTab = εcd<aDcσb>
d . (A120)

We expand all tensor quantities in terms of tensorial three-dimensional harmonics with even Q(k)
ab

and odd Q(k)
ab parities. These harmonics are related by a curl operation [see Equations (A19) and (A20)

of [68], respectively, or Subsection 11.2.3 of [69]]

curlQ(k)
ab =

k
a

√
1 +

3K
k2 Q(k)

ab , (A121)

curlQ(k)
ab =

k
a

√
1 +

3K
k2 Q(k)

ab . (A122)

The tensor harmonics are symmetric, trace-free and obey

D2Q(k)
ab = − k2

a2 Q(k)
ab ,

DaQ(k)
ab = 0 , Q̇(k)

ab = 0 , (A123)

and the same relations hold for Q(k)
ab [see Appendix E and F of [70]]. Here, k is discrete for closed

Friedmann spacetimes while continous for flat and open universes [68]. From Equations (A121)
and (A122) it follows that Q(k)

ab satisfies the relation

curl curlQ(k)
ab =

k2

a2

(
1 +

3K
k2

)
Q(k)

ab , (A124)

and the same is true for Q(k)
ab .

All symmetric, trace-free and divergenceless first- order tensors are expanded as

Tab = ∑
k

(
TkQ(k)

ab + TkQ(k)
ab

)
. (A125)

Note that sometimes some power of k/a are included in the harmonic expansion [55,68], and
the convention used in Equation (A125) corresponds to that of [53]. Since the three-dimensional
volume element occurs in the definition of Hab, Hk belongs to the even parity sector, and Hk to the odd
parity sector.

By using the harmonic expansion the constraints (A118) and (A119) are satisfied,
while Equation (A117) becomes

Hk =
k
a

√
1 +

3K
k2 σk , (A126)

Hk =
k
a

√
1 +

3K
k2 σk . (A127)

Applying these, the evolution equations Equations (A114)–(A116) reduce to

σ̇k +
2
3

Θσk + Ek = 0 , (A128)

Ėk + ΘEk +

[
µ + p

2
− k2

a2

(
1 +

3K
k2

)]
σk = 0 , (A129)

Ḣk + ΘHk +
k
a

√
1 +

3K
k2 Ek = 0 . (A130)
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Equations for the coefficients belonging to the odd parity can be obtained by interchanging the
overbared and unoverbared variables, respectively. From Equations (A128)–(A130), the following
wave equations can be derived for the shear, and the electric and magnetic parts of Weyl tensor:

σ̈k +
5
3

Θσ̇k +

[
k2

a2

(
1 +

K
2k2

)
+

Θ2

6
+

3
2
(Λ− p)

]
σk = 0 , (A131)

Ëk + q1Ėk + q0Ek = 0 , (A132)

Ḧk +
7Θ
3

Ḣk +

[
k2

a2 +
2Θ2

3
+ 2 (Λ− p)

]
Hk = 0 , (A133)

with coefficients

q0 =
k2

a2 +
2Θ2

3
+ 2 (Λ− p)−

(
1 + 3c2

s
)
(µ + p)

2k2

a2

(
1 + 3K

k2

)
− (µ + p)

Θ2

3
, (A134)

q1 =
7Θ
3
−

(
1 + 3c2

s
)
(µ + p)

2k2

a2

(
1 + 3K

k2

)
− (µ + p)

Θ
3

. (A135)

Similar equations are valid for the other parity variables. In the derivation, the time derivatives of
µ and Θ were eliminated by using Equations (A111) and (A112), respectively, the time derivate of p by

ṗ = c2
s µ̇ , (A136)

and finally the energy density µ is partly elimated by using (A113). Equations (A131)–(A133)
correspond to Equations (92), (93) and (86), respectively, for K = 0 and for the vanishing energy
density 2-gradient.
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