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Abstract: In this article, as a new mathematical approach to origin of the laws of nature, using a
new basic algebraic axiomatic (matrix) formalism based on the ring theory and Clifford algebras
(presented in Section 2), “it is shown that certain mathematical forms of fundamental laws of nature,
including laws governing the fundamental forces of nature (represented by a set of two definite classes
of general covariant massive field equations, with new matrix formalisms), are derived uniquely from
only a very few axioms.” In agreement with the rational Lorentz group, it is also basically assumed
that the components of relativistic energy-momentum can only take rational values. In essence,
the main scheme of this new mathematical axiomatic approach to the fundamental laws of nature is
as follows: First, based on the assumption of the rationality of D-momentum and by linearization
(along with a parameterization procedure) of the Lorentz invariant energy-momentum quadratic
relation, a unique set of Lorentz invariant systems of homogeneous linear equations (with matrix
formalisms compatible with certain Clifford and symmetric algebras) is derived. Then by an initial
quantization (followed by a basic procedure of minimal coupling to space-time geometry) of these
determined systems of linear equations, a set of two classes of general covariant massive (tensor) field
equations (with matrix formalisms compatible with certain Clifford, and Weyl algebras) is derived
uniquely as well.

Each class of the derived general covariant field equations also includes a definite form of
torsion field appearing as the generator of the corresponding field” invariant mass. In addition, it is
shown that the (1 + 3)-dimensional cases of two classes of derived field equations represent a new
general covariant massive formalism of bispinor fields of spin-2, and spin-1 particles, respectively.
In fact, these uniquely determined bispinor fields represent a unique set of new generalized massive
forms of the laws governing the fundamental forces of nature, including the Einstein (gravitational),
Maxwell (electromagnetic) and Yang-Mills (nuclear) field equations. Moreover, it is also shown
that the (1 + 2)-dimensional cases of two classes of these field equations represent (asymptotically)
a new general covariant massive formalism of bispinor fields of spin-3/2 and spin-1/2 particles,
corresponding to the Dirac and Rarita-Schwinger equations.

As a particular consequence, it is shown that a certain massive formalism of general
relativity—with a definite form of torsion field appeared originally as the generator of gravitational
field’s invariant mass—is obtained only by first quantization (followed by a basic procedure of
minimal coupling to space-time geometry) of a certain set of special relativistic algebraic matrix
equations. It has been also proved that Lagrangian densities specified for the originally derived new
massive forms of the Maxwell, Yang-Mills and Dirac field equations, are also gauge invariant, where
the invariant mass of each field is generated solely by the corresponding torsion field. In addition,
in agreement with recent astronomical data, a new particular form of massive boson is identified
(corresponding to the U(1) gauge symmetry group) with invariant mass: ., ~ 4.90571 x 10~ kg,
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generated by a coupled torsion field of the background space-time geometry.

Moreover, based on the definite mathematical formalism of this axiomatic approach, along
with the C, P and T symmetries (represented basically by the corresponding quantum operators)
of the fundamentally derived field equations, it is concluded that the universe could be realized
solely by the (1 + 2) and (1 + 3)-dimensional space-times (where this conclusion, in particular,
is based on the T-symmetry). It is proved that ‘CPT” is the only (unique) combination of C, P, and T
symmetries that could be defined as a symmetry for interacting fields. In addition, on the basis of
these discrete symmetries of derived field equations, it has also been shown that only left-handed
particle fields (along with their complementary right-handed fields) could be coupled with the
corresponding (any) source currents. Furthermore, it has been shown that the metric of background
space-time is diagonalized for the uniquely derived fermion field equations (defined and expressed
solely in (1 + 2)-dimensional space-time), where this property generates a certain set of additional
symmetries corresponding uniquely to the SU(2); ®U(2)r symmetry group for spin-1/2 fermion fields
(representing “1 + 3” generations of four fermions, including a group of eight leptons and a group
of eight quarks), and also the SU(2) ®U(2)r and SU(3) gauge symmetry groups for spin-1 boson
fields coupled to the spin-1/2 fermionic source currents. Hence, along with the known elementary
particles, eight new elementary particles including four new charge-less right-handed spin-1/2
fermions (two leptons and two quarks), a spin-3/2 fermion, and also three new spin-1 (massive)
bosons, are predicted uniquely by this mathematical axiomatic approach. As a particular result, based
on the definite formulation of derived Maxwell (and Yang-Mills) field equations, it has also been
concluded that magnetic monopoles cannot exist in nature.!

Keywords: mathematical origin of the fundamental laws of nature; gauge-group theoretic prediction
of eight new elementary particles; CPT symmetry as the only combination of C, P and T symmetries
definable for the interacting fields; realization of the universe solely with (1 + 2) and (1 + 3)-dimensional
space-times; a basic mathematical proof for the absence of monopoles in nature; Space-time torsion as
origin of particles’ mass; Spin-1/2, 3/2, 1, 2 elementary particles as the only existing particles in nature

1. Introduction and Summary

Why do the fundamental forces of nature (i.e., the forces that appear to cause all the movements
and interactions in the universe) manifest in the way, shape, and form that they do? This is one
of the greatest ontological questions that science can investigate. In this article, we’ll consider this
basic and crucial question (and a number of relevant issues) via a new axiomatic mathematical
formalism. By definition, a basic law of physics (or a scientific law in general) is: “A theoretical principle
deduced from particular facts, applicable to a defined group or class of phenomena, and expressible
by the statement that a particular phenomenon always occurs if certain conditions be present” [1].
Eugene Wigner’s foundational paper—“On the Unreasonable Effectiveness of Mathematics in the
Natural Sciences”—famously observed that purely mathematical structures and formalisms often
lead to deep physical insights, in turn serving as the basis for highly successful physical theories [2].
However, all the known fundamental laws of physics (and corresponding mathematical formalisms
which are used for their representations), are generally the conclusions of a number of repeated
experiments and observations over years and have become accepted universally within the scientific
community [3,4]. It should be noted that all the current fundamental field equations that comprise the

1 https:/ /cds.cern.ch/record /1980381, https:/ /ui.adsabs.harvard.edu/#abs/2015arXiv150101373Z, https:/ /Inspirehep.net/
record/1387680. Copyright: CC Attribution-NonCommercial-NoDerivatives 4.0 International License. License URL:
https:/ /creommons.org/licenses/by-nc-nd/4.0/
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general formulatory framework of physics are formulated and obtained from the results of experiments
(such as the Einstein, Maxwell, Dirac, Schrodinger equations and so on, using in all modern classical
and quantum field equations). The extent of their validity is merely the extent to which they correctly
predict and agree with experimental results. From a historical point of view, these field equations can
be also equivalently written and formulated on the basis of Lagrangian, Hamiltonian, and similar field
theoretic formulations in connection with the principle of stationary action [5-10].

This article is based on my earlier publications (Refs. [11-14], Springer, 1996-1998). In this article,
as a new mathematical approach to origin of the laws of nature, using a new basic algebraic axiomatic
(matrix) formalism based on the ring theory and Clifford algebras (presented in Section 2), “it is
shown that certain mathematical forms of fundamental laws of nature, including laws governing the
fundamental forces of nature (represented by a set of two definite classes of general covariant massive
field equations, with new matrix formalisms), are derived uniquely from only a very few axioms”and,
in agreement with the rational Lorentz group, it is also basically assumed that the components of
relativistic energy-momentum can only take rational values.

Concerning the basic assumption of the rationality of relativistic energy-momentum, it is necessary
to note that the rational Lorentz symmetry group is not only dense in the general form of Lorentz group,
but also is compatible with the necessary conditions required basically for the formalism of a consistent
relativistic quantum theory [15]. In essence, the main scheme of this new mathematical axiomatic
approach to fundamental laws of nature is as follows. First based on the assumption of rationality of
D-momentum, by linearization (along with a parameterization procedure) of the Lorentz invariant
energy-momentum quadratic relation, a unique set of Lorentz invariant systems of homogeneous linear
equations (with matrix formalisms compatible with certain Clifford, and symmetric algebras) is derived.
Then by initial quantization (followed by a basic procedure of minimal coupling to space-time
geometry) of these determined systems of linear equations, a set of two classes of general covariant
massive (tensor) field equations (with matrix formalisms compatible with certain Clifford, and Weyl
algebras) is derived uniquely as well. Each class of the derived general covariant field equations
also includes a definite form of torsion field appearing as the generator of the corresponding field’s
invariant mass. In addition, it is shown that the (1 + 3)-dimensional cases of two classes of derived field
equations represent a new general covariant massive formalism of bispinor fields of spin-2, and spin-1
particles, respectively. In fact, these uniquely determined bispinor fields represent a unique set of
new generalized massive forms of the laws governing the fundamental forces of nature, including the
Einstein (gravitational), Maxwell (electromagnetic) and Yang-Mills (nuclear) field equations. Moreover,
it is also shown that the (1 + 2)-dimensional cases of two classes of these field equations represent
(asymptotically) a new general covariant massive formalism of bispinor fields of spin-3/2 and spin-1/2
particles, respectively, corresponding to the Dirac and Rarita—Schwinger equations.

Of particular consequence, it is shown that a certain massive formalism of general relativity—with
a definite form of torsion field appeared originally as the generator of gravitational field’s invariant
mass—is obtained only by initial quantization (followed by a basic procedure of minimal coupling
to space-time geometry) of a certain set of special relativistic algebraic matrix equations. It has been
also proved that Lagrangian densities specified for the originally derived new massive forms of the
Maxwell, Yang-Mills and Dirac field equations, are also gauge invariant, where the invariant mass
of each field is generated solely by the corresponding torsion field. In addition, in agreement with
recent astronomical data, a new particular form of massive boson is identified (corresponding to U(1)
gauge group) with invariant mass: m,, ~ 4.90571 x 10~>° kg, generated by a coupled torsion field of
the background space-time geometry.

Moreover, based on the definite mathematical formalism of this axiomatic approach, along with
the C, P and T symmetries (represented basically by the corresponding quantum operators) of the
fundamentally derived field equations, it has been concluded that the universe could be realized solely
with the (1 + 2) and (1 + 3)-dimensional space-times (where this conclusion, in particular, is based on
the T-symmetry). It is proved that ‘CPT" is the only (unique) combination of C, P, and T symmetries



Universe 2017, 3, 67 4 of 74

that could be defined as a symmetry for interacting fields. In addition, on the basis of these discrete
symmetries of derived field equations, it has been also shown that only left-handed particle fields (along
with their complementary right-handed fields) could be coupled to the corresponding (any) source
currents. Furthermore, it has been shown that the metric of background space-time is diagonalized
for the uniquely derived fermion field equations (defined and expressed solely in (1 + 2)-dimensional
space-time), where this property generates a certain set of additional symmetries corresponding
uniquely to the SU(2),®U(2)r symmetry group for spin-1/2 fermion fields (representing “1 + 3”
generations of four fermions, including a group of eight leptons and a group of eight quarks), and also
the SU(2)L®U(2)r and SU(3) gauge symmetry groups for spin-1 boson fields coupled to the spin-1/2
fermionic source currents. Hence, along with the known elementary particles, eight new elementary
particles, including: four new charge-less right-handed spin-1/2 fermions (two leptons and two quarks,
represented by “ze, z, and zy, z4”), a spin-3/2 fermion, and also three new spin-1 massive bosons
—

(represented by W*, V~V’, Z, where in particular, the new boson E is complementary right-handed
particle of ordinary Z boson), have been predicted uniquely and expressly by this new mathematical
axiomatic approach.

As a particular result, presented in Section 3.6, based on the definite and unique formulation of
the derived Maxwell’s equations (and also determined Yang-Mills equations, represented uniquely
with two specific forms of gauge symmetries, in Section 3.15), it has also been concluded generally
that magnetic monopoles cannot exist in nature.

1.1. The Main Results Obtained in This Article are Based on the Following Three Basic Assumptions
(as Postulates)

(1)- “A new definite axiomatic generalization of the axiom of “no zero divisors” of integral domains
(including the ring of integers Z);”

This algebraic postulate (as a new mathematical concept) is formulated as follows:
“Let A = [a;j] be a n x n matrix with entries expressed by the following linear homogeneous

S
polynomials in s variables over the integral domain Z: ajj = aij(bl, by, b3, ..., bs) = % Hijkbk/' suppose
k=1

also “3r eN: A" = F(by,by,bs,...,bs)I,”, where F(by, by, b3, ..., bs) is a homogeneous polynomial of
degree r > 2, and I, is n X n identity matrix; Then the following axiom is assumed (as a new axiomatic
generalization of the ordinary axiom of “no zero divisors” of integral domain Z):

(AT =0) & (Ax M=0,M#0) 1)

where M is a non-zero arbitrary n x 1 column matrix”.

The axiomatic relation (1) is a logical biconditional, where (A" = 0) and (A x M = 0,M # 0)
are respectively the antecedent and consequent of this biconditional. In addition, based on the
initial assumption 37 € N: A" = F(by, by, b3, ..., bs)I,, the axiomatic biconditional (1) could be also
represented as follows:

[F(bl,bz,bg,...,bs):0]@(14XMIO,M#O) (1-1)

where the homogeneous equation F(by, b, b3, ..., bs) = 0, and system of linear equations (A x M =0,
M #0) are respectively the antecedent and consequent of biconditional (1-1). The axiomatic
biconditional (1-1), defines a system of linear equations of the type A x M = 0 (M # 0), as the
algebraic equivalent representation of " degree homogeneous equation F(by, by, bs,...,bs) = 0
(over the integral domain Z). In addition, according to the Ref. [16], since F(by, by, b3,...,bs) = 0
is a homogeneous equation over Z, it is also concluded that homogeneous equations defined over
the field of rational numbers (Q, obey the axiomatic relations (1) and (1-1) as well. As particular
outcome of this new mathematical axiomatic formalism (based on the axiomatic relations (1) and (1-1),
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including their basic algebraic properties), in Section 3.4, it is shown that using a unique set of general
covariant massive (tensor) field equations (with new matrix formalism compatible with Clifford, and
Weyl algebras), corresponding with the fundamental field equations of physics, are derived—where,
in agreement with the rational Lorentz symmetry group, it has been basically assumed that the
components of relativistic energy-momentum can only take the rational values. In Sections 3.2-3.15,
we present in detail the main applications of this basic algebraic assumption (along with the following
basic assumptions (2) and (3)) in fundamental physics.

(2)- “In agreement with the rational Lorentz symmetry group, we assume basically that the
components of relativistic energy-momentum (D-momentum) can only take the rational values.”

Concerning this assumption, it is necessary to note that the rational Lorentz symmetry group
is not only dense in the general form of the Lorentz group, but is also compatible with the
necessary basic conditions required for the formalism of a consistent relativistic quantum theory [15].
Moreover, this assumption is clearly also compatible with any quantum circumstance in which the
energy-momentum of a relativistic particle is transferred as integer multiples of the quantum of action
“h” (Planck constant).

Before defining the next basic assumption, it should be noted that from basic assumptions (1)
and (2), it follows directly that the Lorentz invariant energy-momentum quadratic relation
(represented by Formula (52), in Section 3.1) is a particular form of homogeneous quadratic equation
(represented by Formula (18-2) in Section 2.2). Hence, using the set of systems of linear equations
that are determined uniquely as equivalent algebraic representations of the corresponding set
of quadratic homogeneous equations (given by Equation (18-2) in various numbers of unknown
variables, respectively), a unique set of the Lorentz invariant systems of homogeneous linear equations
(with matrix formalisms compatible with certain Clifford, and symmetric algebras) are also determined,
representing equivalent algebraic forms of the energy-momentum quadratic relation in various
space-time dimensions, respectively. Subsequently, we have shown that by an initial quantization
(followed by a basic procedure of minimal coupling to space-time geometry) of these determined
systems of linear equations, a unique set of two definite classes of general covariant massive (tensor)
field equations (with matrix formalisms compatible with certain Clifford, and Weyl algebras) is also
derived, corresponding with various space-time dimensions, respectively. In addition, it is also shown
that this derived set of two classes of general covariant field equations represent new tensor massive
(matrix) formalism of the fundamental field equations of physics, corresponding with fundamental
laws of nature (including the laws governing the fundamental forces of nature). Following these
essential results, in addition to the basic assumptions (1) and (2), it would also be assumed that:

(3)- “We assume that the mathematical formalism of the fundamental laws of nature, are defined
solely by the axiomatic matrix constitution formulated uniquely on the basis of postulates (1) and
(2)11.

In addition to this basic assumption, in Section 3.11, the C, P and T symmetries of the uniquely
derived general covariant field equations (that are field Equations (3) and (4) in Section 1.2), would be
represented by their corresponding quantum matrix operators.

1.2. A Summary of the Main Consequences of Basic Assumptions (1)—(3)

In the following, we present a summary description of the main consequences of basic
assumptions (1)—-(3) (mentioned in Section 1.1) in fundamental physics. In this article, the metric
signature (+ — ... —), the geometrized units [17] and also the following sign conventions have been
used in the representations of the Riemann curvature tensor ng,, Ricci tensor Ry, and Einstein
tensor Gy, :

Rbyuw = (9T + T8, T5,) — (0uTow + 1%, 15,), VoRiyy = ViRyp = ViuRup, Gy = =87 Ty + ... (2)
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On the basis of assumptions (1)-(3), two sets of the general covariant field equations (compatible with
the Clifford algebras) are derived solely as follows:

(il V7, — m{® &k, ) ¥ = 0 3)

(ific Dy — m\ @k, ) ¥ = 0 4)
where

ot = pt 4 g0t = p— g ®)

ihV, and ihD, are the general relativistic forms of energy-momentum quantum operator
(where V, is the general covariant derivative and D, is gauge covariant derivative, defining in

Sections 3.4-3.6), m(()R) and m(()F) are the fields’ invariant masses, ky = (c/ \/gw, 0,...,0) is the general
covariant velocity in stationary reference frame (that is a time-like covariant vector), g# and g'* are
two contravariant square matrices (given by Formulas (6) and (7)), ¥ is a column matrix given by
Formulas (6) and (7), which contains the components of field strength tensor Ryyps (equivalent to
the Riemann curvature tensor), and also the components of a covariant quantity which defines the
corresponding source current (by relations (6) and (7)), ¥r is also a column matrix given by Formulas
(6) and (7), which contains the components of tensor field F,, (defined as the gauge field strength
tensor), and also the components of a covariant quantity that defines the corresponding source current
(by relations (6) and (7)). In Section 3.11, based on a basic class of discrete symmetries of general
covariant field Equations (3) and (4), it would be concluded that these equations could be defined solely
in (1 +2) and (1 + 3) space-time dimensions, where the (1 + 2) and (1 + 3)-dimensional cases these field
equations are given uniquely as follows (in terms of the above-mentioned quantities), respectively:
For (1 + 2)-dimensional space-time we have:

o |0 0 A+t 0| o | 0O |, | 0
ﬁ_[o —(0" 4+ o1) 0 ol’ﬁ_[—az o "= e o |

0o —d | 0 —d 10 00 0 1 0 0
e T e s e ) e R e ER T )

Bo=

Rye10 Fio ® R ®
Yi = RO Y= 0 ]pm/ = _(Vv + ;%F) kv)(Ppa ’ (6)
7 F 7 r — .
ol s | (B + k)
Ppo ¢
For (1 + 3)-dimensional space-time of we get:
507 0 0 r_ (70+71) 0 ,31: 0 97 B, = 0o
0 —(7%+qY) |70 0 0| - o0 |'M —2 0 |
0 4 0 _AD 0 6 0 7
2 Y I Y 3 _ Y I Y
IB _[75 0 ‘|’ﬁ2_[_74 0 ‘|/‘B _[_77 0 ]’ﬁ3_[_ 6 0 4
1 0 00 0 00O 0 0 0 1 00 0 O
o_ |0 1 00 110000 2 0 0 00 3 |00 -1 0
T"looo0o0|" " joo1o0|"" "o o000l " [o1 0 0]
0 00O 0 0 01 -1 0 0 O 00 0 O
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0 0 0 O 00 -1 0 00 0 O 0 -1 0 O
s, 0o 0o 01| 5 |00 0 0] ¢ |00 O O] , |1 0 00
"o 0o ool 10 0 ol "loo o 1" "o 0 0ol
0 -1 0 O 00 0 O 00 -1 0 0O 0 0 o0
[ Rpe1o ] [ Fp ]
Rpo20 Fx
Rp¢730 F30 ®
R - 1 R
0 0 L(wB:—(VmLW;% kl/)(Pf(NT)/
IIIR = Rp0'23 /YF = F23 ’ _ P (7)
Ji = =Dy + -k)9'D;
Rpo31 F3
RpalZ F]z
R
Lo ] | o) ]

In Formulas (6) and (7), ]5}3} and LEF) are the covariant source currents expressed

necessarily in terms of the covariant quantities 4)};? and ¢F) (as initially given quantities).
Moreover, in Sections 3.4-3.15, it has been shown that the field equations in (1 + 2) dimensions, are
compatible with the matrix representation of Clifford algebra C/; 5, and represent (asymptotically)
a new general covariant massive formalism of bispinor fields of spin-3/2 and spin-1/2 particles,
respectively. It has also been shown that these field equations in (1 + 3) dimensions are compatible
with the matrix representation of Clifford algebra C/; 3, and represent solely a new general covariant
massive formalism of bispinor fields of spin-2 and spin-1 particles, respectively.

In addition, from the field Equations (3) and (4), the following field equations (with ordinary
tensor formulations) could be also obtained, respectively:

v/\Rpayv + vprm//\ + vvaa)\y = T;\rprUTV + TIL/RpO'T/\ + TJ/\RPU’T}N (3'1)
et . (R R
Y, Rhy — (img®) /Bl Rhy = —J5s " (3-2)
REyw = (9TGy + 5, T5,) — 8Ty + 15,17,
(R) o L m ) iy
Joov = —(V, + Tkv)¢p0 T = 7(8mkv — grvky). (3-3)
and _ _ _
D)F,, + DuF,, + DVF/W =0, 4-1)
D, F = '), (4-2)
¢ ¢ (F) =, imy) (F)
P;u/ = DvAy - DyAw]v = *(Dv + I kl/)¢ ’
i (E) (4-3)
Zr;n/ = 2% (gTykv _grvky)-
where in Equations (3-1)-(3-2), ng is the affine connection given by: l"gy = Tﬁ}y — ng Tﬁy

is the Christoffel symbol (or the torsion-free connection), Klpw is a contorsion tensor defined by:
.. (R o - : . . .
Kooy = (imy ' /2h)g,, ko (that is anti-symmetric in the first and last indices), T}, is its corresponding
torsion tensor given by: T,,, = K,,, — K, (as the generator of the gravitational field’s invariant

mass), 6;! is general covariant derivative defined with torsion Tyou- In Equations (4-1)-(4-3), BV is the
general relativistic form of gauge covariant derivative defined with torsion field Z.,,, (which generates
the gauge field’s invariant mass), and A, denotes the corresponding gauge (potential) field.
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In Section 3.11, on the basis of definite mathematical formalism of this axiomatic approach, along
with the C, P and T symmetries (represented basically by the corresponding quantum operators, in
Section 3.11) of the fundamentally derived field equations, it has been concluded that the universe
could be realized solely with the (1 + 2) and (1 + 3)-dimensional space-times (where this conclusion,
in particular, is based on the T-symmetry). It is proved that ‘CPT’ is the only (unique) combination
of C, P, and T symmetries that could be defined as a symmetry for interacting fields. In addition, on
the basis of these discrete symmetries of derived field equations, it has been also shown that only
left-handed particle fields (along with their complementary right-handed fields) could be coupled to
the corresponding (any) source currents. Furthermore, it has been shown that the metric of background
space-time is diagonalized for the uniquely derived fermion field equations (defined and expressed
solely in (1 + 2)-dimensional space-time), where this property generates a certain set of additional
symmetries corresponding uniquely to the SU(2); ®U(2)r symmetry group for spin-1/2 fermion fields
(representing “1 + 3” generations of four fermions, including a group of eight leptons and a group of
eight quarks), and also the SU(2); ®U(2)r and SU(3) gauge symmetry groups for spin-1 boson fields
coupled to the spin-1/2 fermionic source currents. Hence, along with the known elementary particles,
eight new elementary particles, including four new charge-less right-handed spin-1/2 fermions (two
leptons and two quarks, represented by “ze, zn and zy, zq”), a spin-3/2 fermion, and also three

—

new spin-1 massive bosons (represented by W+, W, Z, where in particular the new boson 2 is
complementary right-handed particle of ordinary Z boson), have been predicted uniquely by this new
mathematical axiomatic approach (as shown in Section 3.15).

As a consequence, in Section 3.6 it is shown that a certain massive formalism of the general theory
of relativity—with a definite torsion field which generates the gravitational field’s mass—is obtained
only by first quantization (followed by a basic procedure of minimal coupling to space-time geometry)
of a set of special relativistic algebraic matrix relations. In Section 3.9, it is also proved that Lagrangian
densities specified for the derived unique massive forms of Maxwell, Yang-Mills and Dirac equations,
are gauge-invariant as well, where the invariant mass of each field is generated by the corresponding
torsion field. In addition, in Section 3.10, in agreement with recent astronomical data, a new massive
boson is identified (corresponding to U(1) gauge group) with invariant mass: n., = 4.90571 x 1070
kg, generated by a coupling torsion field of the background space-time geometry. Furthermore, in
Section 3.6, based on the definite and unique formulation of the derived Maxwell’s equations (and also
determined Yang-Mills equations, represented ungiely with two specific forms of gauge symmetries),
it is also concluded that magnetic monopoles cannot exist in nature.

As shown in Section 3.7, if the Ricci curvature tensor R, is defined by the following relation in
terms of Riemann curvature tensor (which is determined by field Equations (3-1)—(3-3)):

~ iméR) v — im(()R) — im(()R)
(V,+ Tkg) wp = (V, + Tkv)Ryp - (vy + TkH)RVP' (8-1)

then from this expression for the current in terms of the stress-energy tensor T, :

(R) im(()R) iméR) iméR) im(()R)
Joov = —87[(Vo + —f—ko) Tpv — (Vo + —f—kp) Tov] +87B[(Vo + —f—ko)Tgov — (Vo + —f—kp)Tgov]  (8-2)

where T = T#pu, the gravitational field equations (including a cosmological constant A emerged
naturally in the course of derivation process) could be equivalently derived from the massless case of
tensor field Equations (3-1)—(3-3) in (1 + 3) space-time dimensions, as follows:

Ryy = —8nTyy +4nTguw — Aguv 9)
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Let us emphasize again that the results obtained in this article are the direct outcome of a new
algebraic-axiomatic approach,? presented in Section 2. This algebraic approach—in the form of a basic
linearization theory—has been constructed on the basis of a new single axiom (that is the axiom (17) in
Section 2.1) proposed to replace with the ordinary axiom of “no zero divisors” of integral domains
(that is the axiom (16) in Section 2). In fact, as noted in Sections 1.1 and 2.1, the new proposed axiom is a
definite generalized form of ordinary axiom (16), which has been formulated in terms of square matrices
(using basically as primary objects for representing the elements of underlying algebra, i.e., integral
domains including the ring of integers). In Section 3, based on this new algebraic axiomatic formalism,
as a new mathematical approach to origin of the laws of nature, “it is shown that certain mathematical
forms of fundamental laws of nature, including laws governing the fundamental forces of nature
(represented by a set of two definite classes of general covariant massive field equations, with new
matrix formalisms), are derived uniquely from only a very few axioms” in which, in agreement with
the rational Lorentz group, it is also assumed that the components of relativistic energy-momentum
can only take rational values.

2. Theory of Linearization: A New Algebraic-Axiomatic (Matrix) Formalism Based on the Ring
Theory and Clifford Algebras

In this Section, a new algebraic theory of linearization (including the simultaneous parameterization)
of the homogeneous equations is presented that is formulated on the basis of ring theory and matrix
representation of the generalized Clifford algebras (associated with homogeneous forms of degree r > 2
defined over the integral domain Z).

Mathematical models of physical processes include certain classes of mathematical objects and the
relations between these objects. The models of this type, which are most commonly used, are groups,
rings, vector spaces, and linear algebras. A group is a set G with a single operation (multiplication)
axb = c ab,c € G which obeys the known conditions [18,19]. A ring is a set of elements R,
where two binary operations, namely, addition and multiplication, are defined. With respect to
addition this set is a group, and multiplication is connected with addition by the distributivity laws:
ax (b+c) = (axb)+(axc), (b+c)xa = (bxa)+ (cxa);abc e R. The rings reflect the
structural properties of the set R. As distinct from the group models, those connected with rings are
not frequently applied, although in physics various algebras of matrices, algebras of hyper-complex
numbers, Grassman and Clifford algebras are widely used. This is due to the intricacy of finding
a connection between the binary relations of addition and multiplication and the element of the
rings [12,22,23]. This Section is devoted to the development of a rather simple approach of establishing
such a connection and an analysis of concrete problems on this basis.

I'have found that if the algebraic axiom of “no zero divisors” of integral domains is generalized
expressing in terms of the square matrices (as it has been formulated by the axiomatic relation (17)),
fruitful new results hold. In this Section, first on the basis of the matrix representation of the
generalized Clifford algebras (associated with homogeneous polynomials of degree r > 2 over the
integral domain Z), we have presented a new generalized formulation of the algebraic axiom of
“no zero divisors” of integral domains. Subsequently, a linearization theory has been constructed
axiomatically that implies (necessarily and sufficiently) any homogeneous equation of degree r > 2
over the integral domain Z, should be linearized (and parameterized simultaneously), and its solution
investigated systematically via its equivalent linearized-parameterized formulation (representing as a

Besides, we may argue that our presented axiomatic matrix approach (for a direct derivation and formulating the
fundamental laws of nature uniquely) is not subject to the Godel’s incompleteness theorems [18]. As in our axiomatic
approach, firstly, we have basically changed (i.e., replaced and generalized) one of the main Peano axioms (when these
axioms algebraically are augmented with the operations of addition and multiplication [19-21]) for integers, which is
the algebraic axiom of “no zero divisors”. Secondly, based on our approach, one of the axiomatic properties of integers
(i.e., axiom of “no zero divisors”) could be accomplished solely by the arbitrary square matrices (with integer components).
This axiomatic reformulation of algebraic properties of integers thoroughly has been presented in Section 2 of this article.
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certain type of system of linear homogeneous equations). In Sections 2.2 and 2.4, by this axiomatic
approach a class of homogeneous quadratic equations (in various numbers of variables) over Z has
been considered explicitly.

2.1. The Basic Properties of the Integral Domain Z

The ordinary basic properties of the integral domain Z with binary operations (+, x) are
represented as follows, respectively [22,23] (Va;, aj, ay, ... € Z):

Closure:
ap+a; €7Z,ar X a; €7 (10)
Associativity:
ap+ (a; +ap) = (ax +ay) +ap, a x (a; x ap) = (a x a;) x ap (11)
Commutativity:
A +a; = ay; + ag, ax X a; = a; X ay (12)
Existence of identity elements:
ap+0=ag, a, x 1 =ay (13)

Existence of inverse element (for operator of addition):
e+ (—ap) =0 (14)
Distributivity:
ag % (a4 ap) = (ag x ay) + (ax x ap), (ax +a;) x ap = (ar x ap) + (a; x ap) (15)
No zero divisors (as a logical bi-conditional for operator of multiplication):
ap=0< (ap xa;=0,a; #0) (16)
Axiom (16), equivalently, could be also expressed as follows,
(ap=0Va;=0)Saxa =0 (16-1)

In this article, as a new basic algebraic property of the domain of integers, we present the following
new axiomatic generalization of the ordinary axiom of “no zero divisors” (16), which particularly has
been formulated on the basis of matrix formalism of Clifford algebras (associated with homogeneous
polynomials of degree r > 2, over the integral domain Z):

“Let A = [a;j] be a n x n matrix with entries expressed by the following linear homogeneous

S
polynomials in s variables over the integral domain Z: ajj = aij(bl, by, b3, ..., bs) = % Hi]-kbk; suppose
k=1

also “dr € N: A" = F(by,by,bs,...,bs)1,", where F(by, by, b3, . .., bs) is a homogeneous polynomial of
degree r > 2, and I, is n X n identity matrix; Then the following axiom is assumed (as a new axiomatic
generalization of the ordinary axiom of “no zero divisors” of integral domain Z):

(A" =0)< (AxM=0,M#0) (17)

where M is a non-zero arbitrary n x 1 column matrix”.
The axiomatic relation (17) is a logical biconditional, where (A" = 0) and (A x M = 0,M # 0)
are respectively the antecedent and consequent of this biconditional. In addition, based on the initial
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assumption 3 v € N: A" = F(by, by, bs,...,bs)I,, the axiomatic biconditional (17) could be also
represented as follows:

[F(bl,bz,bg,...,bs):0]<:>(A><M:0,M750) (17—1)

where the homogeneous equation F(by, by, b, ..., bs) = 0, and system of linear equations (A x M =0,
M # 0) are respectively the antecedent and consequent of biconditional (17-1). The axiomatic
biconditional (17-1), defines a system of linear equations of the type A x M = 0 (M # 0), as the
algebraic equivalent representation of 7" degree homogeneous equation F(by, by, b3, . . ., bs) = 0 (over
the integral domain Z). The axiom (17) (or (17-1)) for n = 1, is equivalent to the ordinary axiom of “no
zero divisors” (16). In fact, the axiom (16), as a particular case, can be obtained from the axiom (17) (or
(17-1)), but not vice versa.

Moreover, according to the Ref. [16], since F(by,by,bs,...,bs) = 0 is a homogeneous equation
over Z, it is also concluded that homogeneous equations defined over the field of rational numbers Q,
obey the axiomatic relations (17) and (17-1).

As a crucial additional issue concerning the axiom (17), it should be noted that the condition
“IJr e N: A" = F(by, by, bs,...,bs)I,” which is assumed initially in the axiom (17), is also compatible
with matrix representation of the generalized Clifford algebras [24-33] associated with the r* degree
homogeneous polynomials F(by, by, b3, . .., bs). In fact, we may represent uniquely the square matrix
A (with assumed properties in the axiom (17)) by this homogeneous linear form: A = i biEy,

k=1
then the relation: A" = F(by, by, b3, ..., bs)I, implies that the square matrices Ej (which their entries

are independent from the variables b) would be generators of the corresponding generalized Clifford
algebra associated with the rth degree homogeneous polynomial F(bq, by, b3, ..., bs). However, in some
particular cases and applications, we may also assume some additional conditions for the generators
Ey, such as the Hermiticity or anti-Hermiticity (see Sections 2.2, 2.4 and 3.1). In Section 3, we use
these algebraic properties of the square matrix A (corresponding with the homogeneous quadratic
equations), where we present explicitly the main applications of the axiomatic relations (17) and
(17-1) in foundations of physics (wWhere we also use the basic assumptions (2) and (3) mentioned in
Section 1.1).

It is noteworthy that since the axiom (17) has been formulated solely in terms of square matrices,
in Ref. [34]® we have shown that all the ordinary algebraic axioms (10)—(15) of the integral domain
Z (except the axiom of “no zero divisors” (16)) in addition to the new axiom (17) could be also
reformulated uniformly in terms of the set of square matrices. Hence, we may conclude that the square
matrices, logically, are the most elemental algebraic objects for representing the basic properties of set
of integers (as the most fundamental set of mathematics).

In the following, based on the axiomatic relation (17-1), we have constructed a corresponding basic
algebraic linearization (including a parameterization procedure) approach applicable to the all classes
of homogeneous equation. Hence, it could be also shown that for any given homogeneous equation of
degree v > 2 over the ring Z (or field QQ), a square matrix A exists that obeys the relation (17-1). In this
regard, for various classes of homogeneous equations, their equivalent systems of linear equations
would be derived systematically. As a particular crucial case, in Sections 2.2 and 2.4, by derivation of
the systems of linear equations equivalent to a class of quadratic homogeneous equations (in various
number of unknown variables) over the integral domain Z (or field Q), these equations have been

Some of recent citations to this paper include: Gudder, S. Reconditioning in Discrete Quantum Field Theory. Int. ].
Theor. Phys. 2017, 1-14; McKenzie, A. The Level I Multiverse is not the same as the Level III Multiverse. arXiv 2017,
arXiv:1702.02019; McKenzie, A. Some Remarks on the Mathematical Structure of the Multiverse. PhilSci-Archive, University
of Pittsburgh Publication, Pittsburgh, USA, 2016. Paper ID: 11921, URL: http:/ /philsci-archive.pitt.edu/11921/, arXiv 2016,
arXiv:1602.04247.
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analyzed (and solved) thoroughly by this axiomatic approach. In the following, the basic schemes of
this axiomatic linearization-parameterization approach are described.
First, it should be noted that since the entries a;; of square matrix A are linear homogeneous

S
forms expressed in terms of the integral variables by, i.e., a;; = k21 Hijkby, we may also represent

S
the square matrix A by this linear matrix form: A = Y b Ej, then (as noted above) the relation:
k=1
A" = F(by, by, bs,...,0bs)1L, implies that the square matrices Ej (the entries of which are independent

from the variables by) would be generators of the corresponding generalized Clifford algebra associated

with the " degree homogeneous polynomial F(by, by, b3, . .., bs) [28-33]. However, for some particular

cases of the " degree homogeneous forms F(by, by, b3, ..., bs) (for r > 2, such as the standard quadratic

forms defined in the quadratic Equation (18) in Section 2.2), without any restriction in the existence
S

and procedure of derivation of their corresponding square matrices A = Y bxEy (with the algebraic

k=1
properties assuming in axiom (17)) obeying the Clifford algebraic relation: A" = F(by, by, b3, ..., bs)I,,

we may also assume certain additional conditions for the matrix generators Ej, such as the Hermiticity
(or anti-Hermiticity), and so on (see Sections 2.2, 2.4 and 3.1). In fact, these conditions could be
required, for example if a homogeneous invariant relation (of physics) is represented by a homogeneous
algebraic equation of the type: F(by, by, b3, ..., bs) = 0, with the algebraic properties as assumed in the
axiom (17), where the variables by denote the components of corresponding physical quantity (such as
the relativistic energy-momentum, as it has been assumed in Section 3.1 of this article based on the
basic assumption (2) noted in Sections 1.1 and 3.1).

In Section 2.2, as one of the main applications of the axiomatic relations (17) and (17-1), we derive
a unique set the square matrices A, x, (by assuming a minimum value for n, i.e., the size of the
corresponding matrix Ayx,) corresponding to the quadratic homogeneous equations of the type:

S
Y. eifi=0,fors=0,1,2,3,4, .., respectively. Subsequently, in Section 2.4, by solving the corresponding
i=0
systems of linear equations A x M = 0, we obtain the general parametric solutions of the quadratic
S

homogeneous equations Y ¢;f; = 0, fors =0, 1, 2, 3, 4,.., respectively. In addition, in Section 2.3

i=0
using this systematic axiomatic approach, for some particular forms of homogeneous equations of

degrees 3,4 and 5, their equivalent systems of linear equations have been derived as well. It is
noteworthy that using this general axiomatic approach (on the basis of the logical biconditional
relations (17) and (17-1)), for any given 1" degree homogeneous equation in s unknown variables over
the integral domain over Z, its equivalent system(s) of linear equations A x M = 0 is derivable (with a
unique size, if in the course of the derivation, we also assume a minimum value for 7, i.e., the size of
corresponding square matrix A, ;). Furthermore, for a given homogeneous equation of degree rin s
unknown variables, the minimum value for 1, i.e., the size of the corresponding square matrix A xy
in its equivalent matrix equation: A x M = 0, is: #ipjn = r I xrlforr =2, and ny, = r° x r° for
r > 2. For additional detail concerning the general methodology of the derivation of square matrix
Apnxn and the matrix equation A x M = 0 equivalent to a given homogeneous equation of degree r
in s unknown variables—on the basis of the axiomatic relations (17) and (17-1)—see also the preprint
versions of this article in Ref. [34].

2.2. The Applications of Axiom (17-1) to Homogeneous Quadratic Equations

In this section, on the basis of axiomatic relation (17-1) and the general methodological notes
(mentioned above), for the following general form of homogeneous quadratic equations their
equivalent systems of linear equations are derived (uniquely):

S

Q(eOIfOIel/fl/--'/es/fs):Zeifi:() (18)

i=0
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Equation (18) fors =0, 1, 2, 3, 4, ... is represented by, respectively:

0
Y eifi=efo =0, (19)
i=0
1
) eifi=eofo+eifi =0, (20)
i=0
2
Y eifi=eofo+eifit+ef =0, (21)
i=0
3
Y eifi =eofo+eifi+eafatesfs =0, (22)
i=0
4
Y eifi = eofo+eifi +eafs +esfs +eafs = 0. (23)
i=0

It is necessary to note that quadratic Equation (18) is isomorphic to the following ordinary
representations of homogeneous quadratic equations:

S
Z Gl‘]‘CiC]‘ = 0, (18-1)
i,j=0
S S
Z GZ‘]'CI‘C]‘ = 2 Gl]dld], (18-2)
i,j=0 i,j=0
using the linear transformations:
[ eo ] [ Goo Gor Go2 - . . Gos [ cotdo] [ fo] [ co—do ]
el Gio Guu G . . . Gy c1+dp f c1—dq
e3 Gy Gy Gp . . . Gy ¢ +do f3 cp —da
= . . . = . (18-3)
L € L Gso Gs1 G . . . Ges | L cs+ds | _fs_ L cs —ds |

where [G;;] is a symmetric and invertible square matrix, i.e, G;; = G;; and det[G;;] # 0, and the

quadratic form ‘io Gijcicj in Equation (18-1) could be obtained via transformations (18-3), only by
ij=

taking d; = 0. ]

We note here, and show below, that the reason for choosing Equation (18) as the standard
general form for representing the homogeneous quadratic equations (that could also be transformed
to the ordinary representations of homogeneous quadratic Equations (18-1) and (18-2), by linear
transformations (18-3)) is not only its very simple algebraic structure, but also the simple linear
homogeneous forms of the entries of square matrices A (expressed in terms of variables ¢;, f;) in the
corresponding systems of linear equations A x M = 0 obtained as the equivalent form of quadratic
Equation (18) in various number of unknown variables.

Moreover, as shown in the following, we may also assume certain Hermiticity and anti-Hermiticity
conditions for the deriving square matrices A (in the corresponding systems of linear equations
A x M = 0 equivalent to the quadratic Equation (18)), without any restriction in the existence and
procedure of derivation of these matrices. By adding these particular conditions, for a specific number
of variables in Equation (18), its equivalent matrix equation A x M = 0 could be determined uniquely.
In Section 3, where we use the algebraic results obtained in Sections 2.2 and 2.4 on the basis of axiomatic
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relations (17) and (17-1) in fact the assumption of these Hermiticity and anti-Hermiticity properties is a
necessary issue. These Hermiticity and anti-Hermiticity additional conditions are defined as follows:
“First, by supposing: ey = fo and ¢; = —f; (fori =1,2,...,s), the quadratic Equation (18) would

S
be represented as: €3 — Y ¢? = 0, and consequently the corresponding square matrix A in the deriving

i=1
system of linear equations A x M = 0 (which equivalently represent the quadratic Equation (18),

based on the axiomatic relation (17-1)) could be also expressed by the homogeneous linear matrix form:

S
A = Y ¢;E;, where the real matrices E; are generators of the corresponding Clifford algebra associated
i=0

S
with the standard quadratic form e — }_ 7.
i=1
Now for defining the relevant Hermiticity and anti-Hermiticity conditions, we assume that any

square matrix A in the deriving matrix equation: A x M = 0 (as the equivalent representation of
quadratic Equation (18)), should also has this additional property that by supposing: ¢y = fo and
S

e; = —f; by which the square matrix A could be represented as: A = Y, ¢;E;, the matrix generator Eg
i=0
be Hermitian: E, = Ej, and matrix generators E; (fori = 1,2,...,s) be anti-Hermitian: E; = —E;.

As noted previously and shown below, by assuming the above additional Hermiticity and
anti-Hermiticity conditions, the system of linear equations A X M = 0 corresponding to quadratic
Equation (18), is determined uniquely for any specific number of variables ¢;, f;. Hence, starting from
the simplest (or most trivial) case of quadratic Equation (18)—i.e., Equation (19)—its equivalent system
of linear equations is given uniquely as follows:

0 € mq
AxM= =0 24
5 Sl ”
where it is assumed M # 0, and in agreement with (17-1) we also have:
0 () 0 €o
Az = X = (eofo 12 24-1
vl 2 8] ”
For Equation (20), the corresponding equivalent system of linear equations is determined as:
0 0 e fi my
0 A’ M 0 0 €1 *f() my
AxM= = =0 25
. Ao || M 1 fo i 0 0 || m )
eqr —e O 0 m
where we have:
0 0 € f1 0 0 €0 fl
M" 0 0 e —fo 0 0 ea —fo
M= 0,A% = = I (25-1
[ M ] # A0 0 |XlA A 0 0 (eofo+eifi)ls (25-1)
egp —¢ 0 0 eqp —e 0 O

Notice that matrix Equation (25) could be represented by two matrix equations, as follows:

A’xM’_[eO h Hmﬂ_o, (25-2)

e1 —fo m

€1 —¢€

A % M — [fo f ] [ my ] —0 (25-3)
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The matrix Equations (25-2) and (25-3) are equivalent (due to the assumption of arbitrariness
of parameters my,my, mz, m), so we may choose the matrix Equation (25-2) as the system of
linear equations equivalent to the quadratic Equation (20)—where for simplicity in the indices of
parameters m;, we may simply replace arbitrary parameter m3 with arbitrary parameter m1, as follows

e fi my |
2 4]

The system of linear equations corresponding to the quadratic Equation (21) is obtained as:

(for "nl; # 0):

0 0 0 0 e 0 —e fi |[m]
0 0 0 0 0 1) —e1 —f2 my
0 0 0 0 —f —fi —fo O s
. 0 A’ M" 7 0 0 0 0 €1 —e 0 7f0 my _
AXM=1 4 M ] | fo 0 —e A 0O 0O 0 0 ms | 9 27)
0 fg —e1 *fg 0 0 0 0 Mmg
7f2 7f1 —ep 0 0 0 0 0 my
L 1 —e2 0 —e O 0 0 0 m
where in agreement with (17) we have:
[0 0 0 0 e 0 —e £ 1 [ 0 0 0 0 e 0 —e fi ]
0 0 0 0 0 ()] —e1 —fz 0 0 0 0 0 )] —e1 —fz
0 0 0 0 —f —fi —fo O 0 0 0 0 —f —fi —fo O
2 0 0 0 0 e1 —en 0 —fo 0 0 0 0 e1 —e 0 —fo
A% = X
fo 0 —e  fi 0 0 0 0 fo 0 —e  fi 0 0 0 0 (27_1)
0 fo —e1 *fz 0 0 0 0 0 fo —e1 *fz 0 0 0 0
*fz —J1 —€ 0 0 0 0 0 *fz *fl —€0 0 0 0 0 0
e1 —e 0 —e€Q 0 0 0 0 L € —e 0 —e€Q 0 0 0 0

= (eofo +e1f1 +eaf2)ls

In addition, similar to Equation (25), the obtained matrix Equation (27) is equivalent to a system
of two matrix equations, as follows:

€0 0 —en f1 ms
0 e —e1 —fo Mg
A xM = 0 ! =0 27-2
g £~ ~fo 0 || m | o
e1 —e 0 —fo m
fo 0 —-e fi my
A" M = 0 fO —e *fz my -0 (27-3)
—fo —fi —e O ms
e1 —e 0 —g My

The matrix Equations (27-2) and (27-3) are equivalent (due to the assumption of arbitrariness of
parameters mq, mjy, ..., my,m), so we may choose the Equation (27-2) as the system of linear equations
corresponding to the quadratic Equation (21)—where for simplicity in the indices of parameters m;,
we may simply replace the arbitrary parameters s, mg, my; with parameters my, my, ms, as follows:

€ 0 —en f1 mq mq
0 (A —e1 —fz my my
=0, 0. (28)
—f - —fo O ms m3 *
€1 —en 0 —f(] m m
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Similarly, for the quadratic Equations (22) the corresponding system of linear equations is obtained
uniquely as follows:

€ 0 0 0 0 —e3 () f] myq
0 € 0 0 e3 0 —eq f2 my
0 0 €p 0 —e €1 0 f3 ms
0 0 0 e —fi —f2 —fs O mi | _ (29)
0 f3 *fz —eq *fo 0 0 0 ms
—fs 0 A —e 0 —fr 0 O Mg
f2 _fl 0 —e3 0 0 —f() 0 my
L e1 €x e3 0 0 0 0 —fo 1L m ]

where the column parametric matrix M in (29) is non-zero M # 0.
In a similar manner, the uniquely obtained system of linear equations corresponding to the
quadratic Equation (23), is given by:

) 0 0 0 0 0 0 0 0 0 0 —es 0 —e3 —er fi mp
0 € 0 0 0 0 0 0 0 0 ey 0 e3 0 —e1 —f2 my
0 0 () 0 0 0 0 0 0 —es O 0 e e 0 f3 m3
0 0 0 (] 0 0 0 0 €y 0 0 0 *fl fz *f3 0 my
0 0 0 0 €o 0 0 0 0 —e3 —ey —e€ 0 0 0 *f4 ms
0 0 0 0 0 eo 0 0 e3 0 f] *fz 0 0 f4 0 Mme
0 0 0 0 0 0 (] 0 e *fl 0 f3 0 *f4 0 0 my
0 0 0 0 0 0 0 () €1 f2 *f3 0 f4 0 0 0 mg -0 (30)
0 0 0 f4 0 f3 f2 f1 *fo 0 0 0 0 0 0 0 mg
0 0 *f4 0 *f3 0 —e [ 0 *fo 0 0 0 0 0 0 mio
0 f4 0 0 *fz €1 0 —e3 0 0 *fg 0 0 0 0 0 mqq
*f4 0 0 0 *fl e e3 0 0 0 0 *fo 0 0 0 0 mip
0 f3 fz —e 0 0 0 €4 0 0 0 0 —f() 0 0 0 mq3
—f3 0 f1 [ 0 0 —eéy 0 0 0 0 0 0 —fo 0 0 mi4
—fz —f1 0 —e3 0 €4 0 0 0 0 0 0 0 0 —f(] 0 mis
L € —e e3 0 —é4 0 0 0 0 0 0 0 0 0 0 —f() L m ]

where we have assumed the parametric column matrix M in (30) is non-zero, M # 0.

In a similar manner, the systems of linear equations (written in matrix forms similar to the matrix
Equations (24), (26), (28)—(30)) with larger sizes are obtained for the quadratic Equation (18) in more
variables (i.e., for s = 6,7,8,...), where the size of the square matrices of the corresponding matrix
equations is 2° x 25 (which could be reduced to 2571 x 257! for s > 2). In general (as it has been also
mentioned in Section 2.1), the size of the n x n square matrices A (with the minimum value for n) in
the matrix equations A x M = 0 corresponding to the homogeneous polynomials F(by, by, bs, ..., bs)
of degree r defined in axiom (17) is r* x r® (which for r = 2 this size, in particular, could be reduced to
25-1 x 2571). Moreover, based on the axiom (17), by solving the obtained system of linear equations
corresponding to a homogeneous equation of degree r we may systematically show (and decide)
whether this equation has the integral solution.

2.3. The Applications of Axiom (17-1) to Higher Degree Homogeneous Equations

Similar to the uniquely obtained systems of linear equations corresponding to the homogeneous
quadratic equations (in Section 2.2), in this section in agreement with the axiom (17), we present the
obtained systems of linear equations, i.e., A x M = 0 (by assuming the minimum value for #, i.e.,
the size of square matrix A, x,), corresponding to some homogeneous equations of degrees 3, 4 and 5,
respectively. For the homogeneous equation of degree three of the type:

F(eo, fo.e1, fi, €2, f2) = €5fo — eofg + €3f» — eafs + e1f181 =10, 31)
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the corresponding system of linear equations is given as follows:

0 0 A Zl

AxM=| A 0 0 2 =0, (32)
o 4 0
mayz

where A is a 27 x 27 square matrix written in terms of the square 9 x 9 matrices A;, Ay and A3,

given by:
[ —ey +f2 0 0 0 0 0 —e+fo e 0 ]
0 —ex+ fo 0 0 0 0 0 €o 1
0 0 —e+fr 0 0 0 f 0 —f
—fQ €1 0 () 0 0 0 0 0
Al = 0 —eg + fo 21 0 e 0 0 0 0 p
fi 0 e 0 0 e 0 0 0
0 0 0 e e 0 —fH 0 0
0 0 0 0 —fo g1 0 —fz 0
0 0 0 i 0 —eo+fo 0 0 —f |
C—f 0 0 0 0 0 —e+fo e 0 ]
0 —f2 0 0 0 0 0 () g1
0 0 —f 0 0 0 fi 0 —f
—fo @ 0 —eth 0 0 0 0 0
Ar=1] 0 —ep+fo & 0 —e+fr O 0 o 0 |, 33
f1 0 €0 0 0 —ey + f2 0 0 0
0 0 0 () e1 0 (%) 0 0
0 0 0 0 —fo a 0 e 0
0 0 0 fi 0 —e+fo 0 0 e |
[ e 0 0 0 0 0 —e0+fo e 0
0 ey 0 0 0 0 0 o 21
0 0 e 0 0 0 f 0 —fo
*fo e1 0 *fz 0 0 0 0 0
Az = 0 —e0+fo &1 0 —f 0 0 0 0
f 0 e 0 0  —f 0 0 0
0 0 0 €0 e1 0 —ep + f2 0 0
0 0 0 0 —fo @ 0 —er+ fo 0
Y 0 0 fi 0 —e+fo 0 0 —e+f2 ]

The uniquely obtained system of linear equations (i.e., A x M = 0, by assuming the minimum size
for the square matrix A, «,) corresponds to the well-known homogeneous equation of degree three:

F(a,b,c) =2(a®> - +Bb*) =0 (34)

and has the following form (in compatible with the new axiom (17)):

0 0 A "m“

AxM=| A, 0 0 =0, (35)
0 A; 0
maz
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where A is a 27 x 27 square matrix written in terms of the 9 x 9 matrices A, Ay and A3 given by:

—a 0 0 0
0 —a 0 O
0 0 —-a O
c b 0 -—a
0 —2c 2b O
b 0 c 0
0 0 0 c
0 0 0 0
| O 0 0 b
[2a 0 0 o0
0 22 0 O
0 0 22 0
c b 0 -—a
0 —2c 2b O
b 0 c 0
0 0 0 ¢
0 0 0 o0
| O 0 0 b
[ —a 0 0 o0
0 —a 0 O
0 0 —a 0
c b 0 2a
0 —2c 2b O
b 0 c 0
0 0 0 ¢
0 0 0 o0
0 0 0 b

coocooa ol cococo
| o a & o oo oo

N
AN

o o o O

—2c b
0 c

b 0

0 0

0 0

0 0

2a 0

0 2a

0 0
—2c b
0 c
b 0
0 0
0 0
0 0
—a 0
0 —a
0 0
—2c b
0 c
b 0
0 0
0 0
0 0
—a 0
0 —a
0 0

For the 4th degree homogeneous equation of the type:

Fe,e2,f1, f2, fa, fa) = —e165 + elea + f1fofafs =0

the corresponding system of linear equations is given as:

AxXxM=

0
—A,
0
0

(36)

(37)

(38)

where A is a 16 x 16 square matrix represented in terms of the 4 x 4 matrices A1, Ay, A3, Ay:
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In addition, the system of linear equations corresponding to 5th degree homogeneous equation of
the type,

Fler e, f1, f2, fa, fa f5) = €le — 165 — &3 + e1es + fifof3fafs = O (40)
is determined as:
0 0 0 0 Al mq
A2 0 0 0 0 my
AXM= 0 A3 0 0 O mz | =0, (41)
0O 0 Ay 0 O e
0 0 0 A5 0 mos

where A is a 25 x 25 square matrix expressed in terms of the following 5 x 5 matrices A1, Ay, A3, Ay, As:

€1 — e 0 0 0 f1
e 0 0 0
A1 = 0 f3 (] 0 0 ’
0 0 f —ea+e 0
. 00 0 fs —e1—e |
i —e1 — € 0 0 0 f1 i
f2 e — e 0 0 0
A2 = 0 f3 €1 0 0 ’
0 0 f4 €2 0
L 0 0 0 f5 —e1 t+ e ]
[ —e1+ e 0 0 0 fi]
fz —e1 — €2 0 0 0
A3 = 0 f3 €1 — e 0 0 ’ (42)
0 0 f4 e1 0
I 0 0 0 f5 e |
i () 0 0 0 f1 i
fo —e1+e 0 0 0
A4 = 0 f3 —e1 — €2 0 0 ’
0 0 f4 €1 — e 0
L 0 0 0 f5 €1 |
(e O 0 0 o]
f2 () 0 0 0
As = 0 f3 —e1 + e 0 0
0 0 f4 —e1 — € 0
L 00 0 s a-e |

2.4. Obtaining the General Parametric Solutions of Homogeneous Quadratic Equations by Solving their
Corresponding Systems of the Linear Equations (Derived in Section 2.2)

In this section by solving the derived systems of the linear Equations (26), (28)—(30) that correspond
with the quadratic homogeneous Equations (20)-(23) in Section 2.2, the general parametric solutions of
these equations are obtained for unknowns ¢; and f;. There are the standard methods for obtaining
the general solutions of the systems of homogeneous linear equations in integers [35,36]. Using these
methods, for the system of linear Equation (26) (and consequently, its corresponding quadratic
Equation (20)) we get directly the following general parametric solutions for unknowns ey, e; and

fO/fl:
ep = lkom,fo = lk1m1,61 = lk1m,f1 = —lk0m1 (43)

where ko, k1, my,m, [ are arbitrary parameters. In the matrix representation, the general parametric
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solution (43) has the following form:

€ . o 1 0 kO fo _ . 0 mq ko
[ e & 0] [ [ 8] cmamt] 2 ][]

where M, = ml, K is a column parametric matrix and M ris also a parametric anti-symmetric matrix.

For the system of linear Equation (28) (and, consequently, for its corresponding quadratic
homogeneous Equation (21)), the following general parametric solution is obtained directly:

eo = lkom, fo = I(kymy —kama),e1 = lkym, f1 = l(kamz — komy), e2 = lkam, fo = I(koma — kym3) (44)

where ko, kq,kp, mq,mp, m3, m,l are arbitrary parameters. In matrix representation the general
parametric solution (44) could be also written as follows:

eo 1 0 0 ko fo 0 mq —my ko
el = ZMgK =Im|[{ 0 1 0 kl ’ fl = leK =1 —Mmq 0 ms kl (44-1)
e 0 0 1 kz fz my —m3 0 kz

where M, = ml3, K'is a column parametric matrix and My is also a parametric anti-symmetric matrix.
In addition, it could be simply shown that by adding two particular solutions of the types {e;, f;}
and {¢, f;} of homogeneous quadratic Equation (18), the new solution {¢; + ¢/, f; } is also obtained,

as follows: s

(2 eifi =0, Z eifi=0) :>2 eifi +efi) = Z ei+el)f (44-2)

i=0 i=0
Using the general basic property (44-2) in addition to the general parametric solution (44) of
quadratic Equation (21) (which has been obtained directly from the system of linear Equation (28)
corresponding to quadratic Equation (21)), exceptionally, the following equivalent general parametric
solution is also obtained for quadratic Equation (21):

ey = l(kom — km3),f0 = l(k1m1 — kzﬂ”lz), e = l(klm — k?’l’lz),

(45)
f1 = l(kzﬂig, — koml), ey = l(kzm — kﬂ’ll),fz = l(komz — klmg)

where ko, k1, ko, k, my1, my, m3, m, | are arbitrary parameters.

Moreover, the parametric solution (45) by the direct bijective replacements of six unknown
variables (e;, fi) (where i = 0, 1, 2) with the six new variables of the type 1, is given by:
eo — hp3, e — hpg, e — hpy, fo = o, f1 — hs1, f2 = hgs, in addition to the replacements of nine
arbitrary parameters u, u1, Uz, u3, vo, v1, V2, v3, w, with new nine parameters of the types ug, u1, u2, us,
00,01,02,03,W, given as: k() — Ll3,k1 — uo,kz — Lll,k — uz,k — Up, M1 — 01, M — Vg, M3 — U3,
m — vy, | = w, exceptionally, could be also represented as follows:

hos = w(usvy — upv3), hyg = w(ugvy — ugvg), hayg = w(ugvy — Usvy),

(45-1)
h31 = w(uyvs — uzvy), hp1 = w(uivy — upvy), hog = w(uzvy — Ugv3);
where it could be expressed by a single uniform formula as well (for y, v = 0,1,2,3):
hyy = w(uyvy — uyoy) (45-2)

A crucial and important issue concerning the algebraic representation (45-2) (as the differences
of products of two parametric variables u;, and v,) for the general parametric solution (45), is that it
generates a symmetric algebra Sym(V) on the vector space V, where (u,,v,) € V [37]. This essential
property of the form (45-2) could be used for various purposes in the following and also in Section 3,
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in which we show the applications of this axiomatic linearization-parameterization approach and the
results obtained in this Section and Section 2.4, to the foundations of physics.

In addition, as it is also shown in the following, it should be mentioned again that the algebraic
form (45-2) (representing the symmetric algebra Sym(V)), exceptionally, is determined solely by
the parametric solution (44-1) (obtained from the system of Equation (28)) by using the identity
(44-2). In fact, from the parametric solutions obtained directly from the subsequent systems of linear
equations. i.e., Equations (29), (30) and so on (corresponding to the quadratic Equations (22) and (23),

S
. ,and subsequent equations, i.e., }_ ¢;f; = 0 for s > 3), the expanded parametric solutions of the

type (45) (equivalent to the algebraicl fc())rm (45-2)) are not derived.

In the following (also see Ref. [34]), we present the parametric solutions that are obtained directly
from the systems of linear Equations (29) and (30) and so on, which also would be the parametric
solutions of their corresponding quadratic Equation (18) in various number of unknowns (on the
basis of axiom (17)). Meanwhile, the following obtained parametric solutions for the systems of
linear Equations (29) and (30) and so on, similar to the parametric solutions (43) and (44), include one
parametric term for each of unknowns e;, and the sum of s parametric terms for each of unknowns f;
(wherei =0,1,2,3,...,s).

Hence, the following parametric solution is derived directly from the system of linear Equation (29)
(that would be also the solution of its corresponding quadratic Equation (22)):

eo = lkom, fo = l(kymy + kama + kams), e1 = lkym, fy = I(—komy + kame — kamz), )
e =lkom, fr = l(—koﬂiz — kzms + k1ﬂ17),€3 = lkam, f3 = l(—koﬂ”l3 + komsg — k1m6).

where ko, k1, kp, k3,1 are arbitrary parameters. In the matrix representation, the parametric solution (46)
is represented as follows:

€o 1 0 00 k() fo 0 mq my ms ko
€1 0100 k] f1 —mq 0 —my Mg k1

— IM.K =1 = IM/K =1 46-1
(] ¢ " 0010 kz ! fz f —Mniy my 0 —Mis kz ( 6 )
e3 0 0 01 k3 f3 —m3 —Mmg ms 0 k3

where M, = mly, Kis a column parametric matrix and My is also a parametric anti-symmetric matrix.

However, in solutions (46) or (46-1) the parameters 1y, my, m3, myg, ms, Mg, my, m are not arbitrary
and in fact, in the course of obtaining the solution (46) from the system of linear Equation (29),
a condition appears for these parameters as follows:

mgm + myms + momeg + mymy =0 (47)

The condition (47) is also a homogeneous quadratic equation that should be solved first, in order
to obtain a general parametric solution for the system of linear Equation (29). Since the parameter
my has not appeared in the solution (46), it could be assumed that m4 = 0, and the condition (47)
is reduced to the following homogeneous quadratic equation, which is equivalent to the quadratic
Equation (20) (corresponding to the system of linear Equation (28)):

my = 0,myms + momeg + mymy =0 (47-1)

where the parameter m would be arbitrary. The condition (47-1) is equivalent to the quadratic
Equation (21). Hence by using the general parametric solution (45-1) (as the most symmetric solution
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obtained for quadratic Equation (21) by solving its corresponding system of linear Equation (28)), the
following general parametric solution for the condition (47-1) is obtained:

my = w(ugvy — ugvg), My = w(ugvy — vy), my = w(ugvs — Uzvy), 8)
ms = w(uzvy — Uupvz), me = w(uqvs — U301 ), My = w(Upv1 — U107)

where u, u1, up, u3, vy, v1,v2,v3, w, m are arbitrary parameters. Now by replacing the solutions (48)
(obtained for mq, my, ms, ms, mg, my in terms of the new parameters u, 11, Uy, U3, Vo, V1, 02,03, W) in
the relations (46), the general parametric solution of the system of linear Equation (29) (and its
corresponding quadratic Equation (22)) is obtained in terms of the arbitrary parameters ko, k1, k2, k3,
Ug, U1, Ua, Uz, Vg, V1, V2,03, W, m,l.

For the system of linear Equation (30) and its corresponding quadratic Equation (23), the following
parametric solution is obtained:

eo = lkom, fo = I(kymy — komy + kaing — kgms), eq = lkym, fi = 1(—komy + kamip + kamyg + komis),
ey = lkom, fo = I(komy + kamiy + kamz — kymas), e3 = lkam, f3 = 1(—komz + kgmyg — komiz — kymag), — (49)
ey = lkym, fy = I(koms — kamyg — komyy — kymyp)

where ko, k1, ky, k3, k4, | are arbitrary parameters. In the matrix representation, the solution (49) can be
also written as follows:

ep 1 00 00 kg fo 0 mq —my ms3 —Mms kg
e 01000 Ky f —-my 0 mis o mig My ky
e | =IM,K=Im| 0 0 1 0 0 ko || o | =IMK=1| my -mys 0 miz M k | (49-1)
e3 00010 ks f3 —mz —myy —myz 0 my k3
ey 0000 1 ks fa ms  —myp —my —myp 0 ky

where M, = mls, K is a column parametric matrix and My is also a parametric anti-symmetric matrix.

However, similar to the system of Equation (29), in the course of obtaining the solutions (49)
or (49-1) from the system of linear Equation (30), the following conditions appear for parameters
my, mp, ms, ms, mig, M1, M1z, M13, M4, M15:

mym = —mny3 — Myh4 — Maiys,

Me = Mty + Moty — MsMys,

mym = mynyg — M3y — MMMy, (50)
mgm = maniyg + Maniyy + Msimy3,
Mo = Mmghiys — M11M14 + M121M13.

that are similar to condition (47). Here also by the same approach, since the parameters 114, mq, mz, mg, mg
have not appeared in the solution (49), it can be assumed that my = mg = my = mg = mg = 0, and the
set of conditions (50) are reduced to the following system of homogeneous quadratic equations which
are similar to the quadratic Equation (20) (corresponding to the system of linear Equation (28)):

my = Mg = my = mg = mg =0,

mymyg — mamip — mshiyg =0,

mymyy + mymiy — msmys =0,

(50-1)
mymyz + maymig + mamys =0,

mapmyg + msmyz + mamyp = 0,

migtiys + mipmyz — my iy = 0;
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The conditions (50-1) are also similar to the quadratic Equation (21). Hence using again the general
parametric solution (45-1), the following general parametric solutions for the system of homogeneous
quadratic Equation (50-1) are obtained directly:

my = w(ugvr — U10g), My = w(U09 — Uev2),

m3 = w(ugvs — uzvy), My =0,

ms = w(ugvg — ugvy), me = 0,

my =0,mg=0,mg =0, (50-2)
myg = w(uzvy — Ug03), M1 = W(U04 — UgD),

myy = w(u1vy — ugv1), Mz = w(Ux03 — U302),

myy = w(u1v3 — u301), M5 = W(U102 — Uz01).

where ug, uq, up, U3, ug,vg,v1,7v2,03,04 and w are arbitrary parameters. Now by replacing the
solution (51) (that has been obtained for my, my, ms, ms, mqg, Mmq1, M1z, M13, M14, M15 in terms of the new
parameters ug, Uy, Ua, U3, tg, Vo, V1, V2, U3, V4, w) in the relations (49), the general parametric solution of
the system of linear Equation (30) (and its corresponding quadratic Equation (23)) is obtained in terms
of the arbitrary parameters ko, k1, ko, k3, ka, ug, 11, U2, U3, U4, v, v1, 02,03, V4, w, m, L.

Meanwhile, similar to relations (48) and (51), it should be noted that arbitrary parameter m; in
the general parametric solution (43) and the arbitrary parameters m, my, m3 in the general parametric
solution (44) (which have been obtained as the solutions of quadratic Equations (20) and (21),
respectively, by solving their equivalent systems of linear Equations (26) and (28)), by keeping their
arbitrariness property, could be expressed in terms of new arbitrary parameters uy, 11, v, v1 and
g, U1, Uz, Vo, V1, U2, as follows, respectively:

my = w(ugvy — u1vg); (43-2)

my = w(ugvy — U1vy), My = w(ugva — Uxvp), My = w(uev3 — Uzvp). (44-3)

In fact, as a particular common algebraic property of both parametric relations (43-2) and (44-2),
it could be shown directly that by choosing appropriate integer values for parameters ug, u1,vg, v1, w
in the relation (43-2), the parameter m; (defined in terms of arbitrary parameters ug, 41, vo, v1, w) could
take any given integer value, and similarly, by choosing appropriate integer values for parameters
ug, U1, Uz, Vo, v1, V2, w in the relation (43-2), the parameters my, my, ms (defined in terms of arbitrary
parameters ug, 11, U2, Vg, 1, U2, w) could also take any given integer values.

Therefore, using this common algebraic property of the parametric relations (43-2) and (44-2),
the arbitrary parameter 1 in general parametric solutions (43), and arbitrary parameters my, my, ms
in general parametric solutions (44), could be equivalently replaced by new arbitrary parameters
ug, u1,09,v1,w and g, uy, Uz, v, v1,02,w, respectively. In addition, for the general quadratic
homogeneous Equation (18) with a larger number of unknowns, the general parametric solutions could
be obtained by the same approaches used above for quadratic Equations (20)—(23), i.e., by solving
their corresponding systems of linear equations (defined on the basis of axiom (17)). Moreover,
using the isomorphic transformations (18-3) and the above general parametric solutions obtained
for quadratic Equations (20)—(23), ... , (via solving their corresponding systems of linear Equations
(26), (28)—(30), ... ), the general parametric solutions of quadratic equations of the regular type (18-2)
(in various number of unknown) are also obtained straightforwardly. All the parametric solutions
that are obtained by this new systematic matrix approach for the homogeneous quadratic equations
and also higher degree homogeneous equations of the type F(x1, x2,x3,...,xs) = 0 (defined in the
axiom (17)), are fully compatible with the solutions and conclusions that have been obtained previously
for various homogeneous equations by different and miscellaneous methods and approaches [16,35,36].
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In Section 3, we have used the uniquely specified systems of homogeneous linear equations (and
also their general parametric solutions) corresponding with the homogeneous quadratic equations.
It has been assumed that the components of the relativistic energy-momentum vector (as one of the
most basic physical quantities) in the Lorentz invariant energy-momentum (homogeneous) quadratic
relation, can only take the rational values.

3. A Unique Mathematical Derivation of the Laws Governing the Fundamental Forces of Nature:
Based on a New Algebraic-Axiomatic (Matrix) Approach

In this Section, as a new mathematical approach to the origin of the laws of nature, using the
new basic algebraic axiomatic (matrix) formalism as presented in Section 2 “it is shown that certain
mathematical forms of fundamental laws of nature, including laws governing the fundamental forces
of nature (represented by a set of two definite classes of general covariant massive field equations,
with new matrix formalisms), are derived uniquely from only a very few axioms” where in agreement
with the rational Lorentz group, it is also basically assumed that the components of relativistic
energy-momentum can only take rational values. Concerning the basic assumption of the rationality of
relativistic energy-momentum, it is necessary to note that the rational Lorentz symmetry group is not
only dense in the general form of Lorentz group, but also is compatible with the necessary conditions
required basically for the formalism of a consistent relativistic quantum theory [15]. In essence,
the main scheme of this new mathematical axiomatic approach to fundamental laws of nature is as
follows. First in Section 3.1, based on the assumption of rationality of D-momentum, by linearization
(along with a parameterization procedure) of the Lorentz invariant energy-momentum quadratic
relation, a unique set of Lorentz invariant systems of homogeneous linear equations (with matrix
formalisms compatible with certain Clifford, and symmetric algebras) is derived.

Then in Section 3.4, by initial quantization (followed by a basic procedure of minimal coupling
to space-time geometry) of these determined systems of linear equations, a set of two classes of
general covariant massive (tensor) field equations (with matrix formalisms compatible with certain
Clifford, and Weyl algebras) is derived. Each class of the derived general covariant field equations also
includes a definite form of torsion field appeared as generator of the corresponding field” invariant
mass. In addition, in Sections 3.4 and 3.11, it is shown that the (1 + 3)-dimensional cases of two
classes of derived field equations represent a new general covariant massive formalism of bispinor
fields of spin-2, and spin-1 particles, respectively. In fact, these uniquely determined bispinor fields
represent a unique set of new generalized massive forms of the laws governing the fundamental
forces of nature, including the Einstein (gravitational), Maxwell (electromagnetic) and Yang-Mills
(nuclear) field equations. Moreover, it is also shown that the (1 + 2)-dimensional cases of two classes
of these field equations represent (asymptotically) a new general covariant massive formalism of
bispinor fields of spin-3/2 and spin-1/2 particles, respectively, corresponding with the Dirac and
Rarita-Schwinger equations.

As a particular consequence, in Section 3.6, it is shown that a certain massive formalism of
general relativity—with a definite form of torsion field appearing originally as the generator of
the gravitational field’s invariant mass—is obtained only by the initial quantization (followed by a
basic procedure of minimal coupling to space-time geometry) of a certain set of special relativistic
algebraic matrix equations. In Section 3.9, it has been proven that Lagrangian densities specified for
the originally derived new massive forms of the Maxwell, Yang-Mills and Dirac field equations, are
also gauge-invariant, where the invariant mass of each field is generated solely by the corresponding
torsion field. In addition, in Section 3.10, in agreement with recent astronomical data, a particular
new form of massive boson is identified (corresponding to U(1) gauge group) with invariant mass:
m, ~ 4.90571 x 10~ kg, generated by a coupled torsion field of the background space-time geometry.

Moreover, in Section 3.12, based on the definite mathematical formalism of this axiomatic
approach, along with the C, P and T symmetries (represented basically by the corresponding
quantum operators) of the fundamentally derived field equations, it has been concluded that the
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universe could be realized solely with the (1 + 2) and (1 + 3)-dimensional space-times (where this
conclusion, in particular, is based on the time-reversal symmetry). In Sections 3.13 and 3.14, it is
proved that ‘CPT’ is the only (unique) combination of C, P, and T symmetries that could be defined
as a symmetry for interacting fields. In addition, in Section 3.14, on the basis of these discrete
symmetries of derived field equations, it has been also shown that only left-handed particle fields
(along with their complementary right-handed fields) could be coupled to the corresponding (any)
source currents. Furthermore, in Section 3.15, it has been shown that metric of the background
space-time is diagonalized for the uniquely derived fermion field equations (defined and expressed
solely in (1 + 2)-dimensional space-time), where this property generates a certain set of additional
symmetries corresponding uniquely to the SU(2)p @U(2)r symmetry group for spin-1/2 fermion fields
(representing “1 + 3” generations of four fermions, including a group of eight leptons and a group of
eight quarks), and also the SU(2);, ®U(2)r and SU(3) gauge symmetry groups for spin-1 boson fields
coupled to the spin-1/2 fermionic source currents. Hence, along with the known elementary particles,
eight new elementary particles, including: four new charge-less right-handed spin-1/2 fermions
(two leptons and two quarks, represented by “ze, zn and zy, z4”), a spin-3/2 fermion, and also
—

three new spin-1 massive bosons (represented by I/NVJF, W’, Z, where in particular, the new boson 2
is complementary right-handed particle of ordinary Z boson), are uniquely predicted by this new
mathematical axiomatic approach.

Furthermore, as a particular result, it is generally concluded in Section 3.6—based on the
definite and unique formulation of the derived Maxwell’s equations (and also determined Yang-Mills
equations, represented uniquely with two specific forms of gauge symmetries, in Section 3.15,
formulas (114-4)—(114-9)— that magnetic monopoles cannot exist in nature.

3.1. The Main Results Obtained in This Article are Based on the Following Three Postulates

As noted in Section 1.1, the main results obtained in this article are based on the following three
basic assumptions (as postulates):

(1)- “A new definite axiomatic generalization of the axiom of “no zero divisors” of integral domains
(including the integr ring Z) is assumed (represented by Formula (17), in Section 2.1);”

This basic assumption (as a postulate) is a new mathematical concept. In Section 2.1, based
on this new axiom, a general algebraic axiomatic (matrix) approach (in the form of a basic
linearization-parameterization theory) to homogeneous equations of degree r > 2 (over the integer
domain, extendable to field of rational numbers), has been formulated. A summary of the main results
obtained from this axiomatic approach have been presented in Section 1.1. As particular outcome of
this new mathematical axiomatic formalism (based on the axiomatic relations (17) and (17-1), including
their basic algebraic properties presented in detail, in Sections 2.1-2.4), in Section 3.4, it is shown that
using, a unique set of general covariant massive (tensor) field equations (with new matrix formalism
compatible with Clifford, and Weyl algebras), corresponding with the fundamental field equations
of physics, are derived—where, in agreement with the rational Lorentz symmetry group, it has been
assumed that the components of relativistic energy-momentum can only take the rational values.
In Sections 3.2-3.15, we present in detail the main applications of this basic algebraic assumption
(along with the following basic assumptions (2) and (3)) to fundamental physics.

(2)- “In agreement with the rational Lorentz symmetry group, we assume basically that the

components of relativistic energy-momentum (D-momentum) can only take the rational values;”

Concerning this assumption, it is necessary to note that the rational Lorentz symmetry group is
not only dense in the general form of Lorentz group, but also is compatible with the necessary
conditions required basically for the formalism of a consistent relativistic quantum theory [15].
Moreover, this assumption is clearly also compatible with any quantum circumstance in which the
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energy-momentum of a relativistic particle is transferred as integer multiples of the quantum of action
“h” (Planck constant).

Before defining the next basic assumption, it should be noted that from basic assumptions (1)
and (2), it follows directly that the Lorentz invariant energy-momentum quadratic relation (represented
by Formula (52)) is a particular form of homogeneous quadratic equation (18-2). Hence, using the
set of systems of linear equations that have been determined uniquely as equivalent algebraic
representations of the corresponding set of quadratic homogeneous equations (given by equation (18-2)
in various number of unknown variables, respectively), a unique set of the Lorentz invariant
systems of homogeneous linear equations (with matrix formalisms compatible with certain Clifford,
and symmetric algebras) are also determined, representing equivalent algebraic forms of the
energy-momentum quadratic relation in various space-time dimensions, respectively. Subsequently,
we have shown that by first quantization (followed by a basic procedure of minimal coupling to
space-time geometry) of these determined systems of linear equations, a unique set of two definite
classes of general covariant massive (tensor) field equations (with matrix formalisms compatible with
certain Clifford, and Weyl algebras) is also derived, corresponding to various space-time dimensions,
respectively. In addition, it is also shown that this derived set of two classes of general covariant field
equations represent new tensor massive (matrix) formalism of the fundamental field equations of
physics, corresponding to fundamental laws of nature (including the laws governing the fundamental
forces of nature). Following these essential results, in addition to the basic assumptions (1) and (2),
it would be also basically assumed that:

(3)- “We assume that the mathematical formalism of the fundamental laws of nature, are defined
solely by the axiomatic matrix constitution formulated uniquely on the basis of postulates (1)
and (2)”.

In addition to this basic assumption, in Section 3.11, the C, P and T symmetries of uniquely
derived general covariant field equations (that are Equations (71) and (72), in Section 3.4), are also
represented basically by their corresponding quantum matrix operators.

As the next step, in the following, based on the basic assumption (2), i.e., the assumption of
rationality of the relativistic energy-momentum, the following Lorentz invariant quadratic relations
(expressed in terms of the components of D-momentums py,, p;, of a relativistic massive particle (given
bytwo reference frames), and also components of quantity p5' = mgk,,, where mj is the invariant mass

H
of particle and k, is its covariant velocity in the stationary reference frame):

8" pupv = " pupy, (51)

S pupy = g P3Pl = g (mok,) (moky) = g% (moko)* = (moc)?. (52)

would be particular cases of homogeneous quadratic Equation (18-2) in Section 2.2, and hence, they
would be necessarily subject to the process of linearization (along with a parameterization procedure)
using the systematic axiomatic approach presented Sections 2, 2.2 and 2.4 (formulated based on the
basic assumption (1)).

The Lorentz invariant relations (51) and (52) (as the norm of the relativistic energy-momentum)
have been defined in the D-dimensional space-time, where m is the invariant mass of the particle,
pu and p;l are its relativistic energy-momentums (i.e., D-momentums) given respectively in two
reference frames, k;, is a time-like covariant vector given by: k, = (ko,0,...,0) = (c/ \/gw, 0,...,0),
“c” is the speed of light, and the components of metric have constant values. As noted in Section 1.2,
in this article the sign conventions (2) (including the metric signature (+ ——... —)) and geometric units
would be used (where in particular “c = 1”). However, for the clarity, in some of relativistic Formulas
(such as the relativistic matrix relations), the speed of light “c” is indicated formally.

As a crucial issue here, it should be noted that in the invariant quadratic relations (51) and
(52), the components of metric which have the constant values (as assumed), have necessarily been

"1
C



Universe 2017, 3, 67 27 of 74

written by their general representations g" (and not by the Minkowski metric #*Y, and so on).
This follows from the fact that by axiomatic approach of linearization-parameterization (presented in
Sections 2.1-2.4) of quadratic relations (51) and (52) (as particular forms of homogeneous quadratic
Equation (18-2) which could be expressed equivalently by quadratic equations of the types (18)
via the linear transformations (18-3)), their corresponding algebraic equivalent systems of linear
equations could be determined uniquely. In fact, based on the formulations of systems of linear
equations obtained uniquely for the quadratic Equation (18) in Sections 2.2-2.4, it is concluded
directly that the algebraic equivalent systems of linear equations corresponding to the relations (51)
and (52), are determined uniquely if and only if these quadratic relations be expressed in terms of the
components ¢ represented by their general forms (and not in terms of any special presentation of
the metric’s components, such as the Minkowski metric, and so on). However, after the derivation
of corresponding systems of linear equations (representing uniquely the equivalent algebraic matrix
forms of the quadratic relations (51) and (52) in various space-time dimensions), the Minkowski metric
could be used in these equations (and the subsequent relativistic equations and relations as well).

Hence, using the systems of linear Equations (24), (26), (28)—(30), ... , obtained uniquely on the
basis of the axiom (17) by linearization (along with a parameterization procedure) of the homogeneous
quadratic Equations (19)-(23), ... (which could be transformed directly to the general quadratic
Equation (18-2), by the isomorphic linear transformations (18-3)) and also using the parametric relations
(43-2), (44-3), (48) and (52) (expressed in terms of the arbitrary parameters u;, and v;), as the result
of linearization (along with a parameterization procedure) of the invariant quadratic relations (51)
and (52), the following systems of linear equations are also derived uniquely corresponding with
various space-time dimensions, respectively:

For (1 + 0)-dimensional case of the invariant relation (51), we obtain:

8% (pv + pi)]ls) = 0 (53)

where v = 0 and parameter s is arbitrary;
For (1 + 1)-dimensional space-time we have:

g‘z”(pu +r)  pi-p ] l (1001 — u1vg)w ] o -
gV (pv+py) —(po—po) s
where v = 0,1 and uy, u1, v9, v1, w, s are arbitrary parameters;
For (1 + 2)-dimensional space-time we have:
g% (pv+py) 0 8 (pv+p) 1P (uov1 — uyvp)w
0 §W(pv+pl) 8" (pvtp) —(p2—ph) || (u2vo —upva)w | o (5
—(p2—r2) —(p1—p1) —(po — pp) 0 (u102 — upvy)w
gV (pv+pl,) —8*(pv+pl) 0 —(po — Po) s

where v =0, 1, 2 and ug, uy, U2, vo,v1, V2, w, s are arbitrary parameters;
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For (1 + 3) -dimensional space-time we obtain:

[ e 0 0 0 0 —e e f1 17 (upvy — uqvp)w ]
0 12 0 0 e3 0 —-e f (ugvy — upv)w
0 0 e 0 —e e 0 f3 (ugvz — uzvy)w
0 0 0 e —fi —fpr —fs O 0 Y 56
0 fs —fo —e1 —fo 0 0 O (u3v2 — ugv3)w
—f3 0 fi —e 0 —fp O 0 (u1v3 — uzvy)w
fr —fi 0 —e 0 0 —fo O (upvq — uqv)w
G e e3 0 0 0 0 —fo |l S ]

where v =0,1, 2,3 and w, ug, u1, Uz, u3, vo, v1,v2,v3, s are arbitrary parameters, and we also have:

eo = 8" (pv+py) fo=—(po —pp)o,
er=g8"(pv+p,) fr=—(p1—P)),
e2 = g% (pv+py) fa = —(p2—ph),
e3=8"(pv+p,) f5=—(p3—p3);

(56-1)

For (1 + 4)-dimensional case, the system of linear equations corresponding to the invariant
quadratic relation (51) is specified as follows:

e 0 0 0 0 0 0 0 0 0 0 —es 0 —e3 —e2 fi (uov1 — urv9)w

0 e 0 0 0 0 0 0 0 0 ey 0 e3 0 —e —f2 (upvp — ugvy)w

0 0 e 0 0 0 o0 0 0 —e O 0 e e 0 f3 (uovs — uzvy)w

0 0 0 e 0 0 0 0 e 0 0 0 —fi fo —fs 0 0

0 0 0 0 eg 0 O 0 0 —e3 —e —e; O 0 0 —fa (ugvg — ugvy)w

0 0 0 0 0 e 0 0 e 0 fi - 0 0 f5 0 0

0 0 0 0 0 0 e 0 e —f 0 f 0 —f 0 0 0

0 0 0 0 0 0 0 e e fo —fs 0 fo 0 0 0 0 Y 57)

0 0 0 fi O f fo A —fo O 0 0 0 0 0 0 0

0 0 —fs 0 —f3z 0 —e e 0 —fo O 0 0 0 0 0 (uzvg — ugv3)w

0 fa 0 0 —fo e1 0 —es O 0 —fo O 0 0 0 0 (U204 — ugvr)w
—fs 0 0 0 —fi 2 e3 0 0 0 0 —fo O 0 0 0 (u104 — ugv1)w

0 fs fo - 0 0 O ey 0 0 0 0 —fo O 0 0 (ugv3 — uzvy)w
—f3 0 f1 e 0 0 —e O 0 0 0 0 0 —fo O 0 (w103 — uzvy)w
—fo —fi 0 —es 0 e O 0 0 0 0 0 0 0 —fo O (102 — upv)w

s —e2 e 0 —e 0 0O 0O 0O 0 0 0 0 0 0 —fo]] s ]

where v =0,1, 2, 3,4, ug, uy, ua, uz, Us, v, V1,2, U3, V4, W, s are arbitrary parameters, and we have:

eo =8 (pv+ i), fo = po— po
er=g"(pv+py) fr=p1— P,
2 = g% (pv+p,) fa=p2—ph (57-1)
e3 =g (pv+py) f5= 13— i
es =g (pv+py) fa = ps— Py
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The systems of linear equations that are obtained for (1 + 5) and higher dimensional cases of
the invariant quadratic relation (51), have also the formulations similar to the obtained systems
of linear Equations (53)—(57), and would be expressed by the matrix product of a 2V x 2N square
matrix and a 2V x 1 column matrix in (1 + N)-dimensional space-time. For (1 + 5)-dimensional case
of the invariant relation (51), the column matrix of the corresponding system of linear equations
(expressed by the matrix product of a 32 x 32 square matrix and a 32 X 1 column matrix) are given by
(where ug, uy, up, us, uq, us, v, v1,v2, V3,4, U5, W, s are arbitrary parameters):

(ugvy — upvg)w 0
(ugvy — upvg)w 0
(ugvsz — uzvg)w 0
0 (u5v4 — u4v5)w
(uguy — ugvg)w 0
0 (uzvs — usvz)w
0 (usvy — upvs)w
s / 0 7 (4105 — usv1)w
S = [ o ] ' = | (s — sty |5 . . (57-2)
0 (ugvz — uzvy)w
0 (upvy — ugv)w
0 (1401 — uyvg)w
0 (upvz — uzv)w
0 (uzvy — uqv3)w
0 (U107 — upvy)w
L 0 . L 5 .

In a similar manner, using the axiomatic approach presented in Section 2, the systems of linear
equations corresponding to the energy-momentum invariant relation (52) in various space-time
dimensions are obtained uniquely as follows, respectively (note that by using the geometric units,
we would take ¢ = 1):

For (1 + 0)-dimensional space-time we obtain:

[go”pv — g0 1 [s] =0 (58)

where v = 0 and parameter s is arbitrary;
For (1 + 1)-dimensional space-time we have:

ov 00

§"pv—¢g (\7;%) 1 [ (1101 — u100)w 1 9)
—0 59

g”mm”(%) ~(ro+ (75)) s

where v =0, 1 and ug, u1, vo, v1, w, s are arbitrary parameters;
For (1 + 2) dimensions we have (where v = 0, 1, 2 and ug, u1, ua, vy, v1,v2, w, s are arbitrary
parameters):

Ov - 00 _mopcC 0 o2V + 20 ( _moc 1
8" =8 () g'pv+ 8 () P (4001 — t00)
0 00 _moc 1v 10, _mgc
0 g =8N (w8 8RS —p2 (120~ wr) | (©0)
—p2 -m —(po+( ”’;50)) 0 (w102 — upv1)w

/ m m S
§Up 80 (E) 8 =80 () 0 ~(po+ (725
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For (1 + 3)-dimensional space-time we obtain:

12 0 0 0 0 —es e fi (upvy — uqv)w
0 € 0 0 €3 0 —e1 fz (uovz — uzvo)w
0 0 () 0 —en e1 0 f3 (uovg — u3vo)w
0 0 0 e —-fi —fo —fs O 0 _0 61)
0 f3 —f2 —e1 —fo 0 0 0 (u3'02 — Ll203)w
*fg, 0 fl —en 0 *f() 0 0 (ulvg — u3vl)w
oA 0 —e 0 0 —fo O (U201 — uqvp)w
| e e e3 0 0 0 0 —fo ]| 5 |

where v =0,1, 2, 3 and ug, uy, ua, us, vo, v1, 02, v3,w, s are arbitrary parameters, and we also have:

= 8%pv = 8% (moc/\/8%), fo = po + (moc/ /g™),
- 10 / = 7
= g"py —g"%moc/ /™), L = ;1 61-1)
=g py — g(moc/\/80), f2 = p2,
e3 = g'py — & (moc/ /W), f3 = p3;

For (1 + 4)-dimensional space-time, the system of linear equations corresponding to the invariant
quadratic relation (52) is derived as follows:

e O 0 0 0 0 0 0 0 0 0 —es 0 —es —er fi | [ (wovy —ugvo)w
0 ) 0 0 0 0 o0 0 0 0 ey 0 e3 0 —e —f2 (uavg — ugva)w
0 0 e 0 0 0 0 0 0 —e O 0 e e 0 f3 (ugvs — uzvy)w
0 0 0 e 0O 0 0 0 e 0 0 0 —fi for —fs 0 0
0 0 0 0 eg 0 O 0 0 —e3 —e —e O 0 0 —fi (ugvg — ugvy)w
0 0 0 0 0 e 0 0 e 0 fi —fo 0 0 fo 0 0
0 0 0 0 0 0 e O e —fi O f5f 0 —f 0 0 0
0 0 0 0 0 0 0 e e for —fs 0 fo 0 0 0 0 Y (62)
0 0 0 f5 0 f5 fo fi —fo 0 0 0 0 0 0 0 0
0 0 —fs 0 —fz 0 —e e 0 —fo O 0 0 0 0 0 (uzvg — ugv3)w
0 fa 0 0 —fo s 0 —e3 O 0 —fo O 0 0 0 0 (ugvq — ugvy)w
—fs 0 0 0 —fi e2 e 0 0 0 0 —fo O 0 0 0 (U104 — ugv1)w
0 fs fp —eg 0 0 0 ey 0 0 0 0 —fo O 0 0 (upv3 — uzvy)w
—fz 0 fi e 0 0 —es O 0 0 0 0 0 —fo O 0 (u1v3 — uzvy)w
—fo —fi 0 —es 0 e O 0 0 0 0 0 0 0 —fo O (u102 — upvy)w
|l 1 —ex e3 0 —e 0 O 0 0 0 0 0 0 0 0 —foll s

where v =0, 1, 2, 3, 4 and ug, u1, up, s, ug, Vo, V1, v2,03, 04, W, s are arbitrary parameters, and we have:

= 8" pv — 8% (moc/\/g™), fo = po + (moc/ /%),
=" py = §"(moc/ /™), fr = 1,
= g% py — g2 (moc/\/8), f = p2, (62-1)
e3 = g% py — g0 (moc/ /W), f5 = p3,
ey = g*'py = 8%(moc/ /™), fa = pa.
The systems of linear equations that are obtained for (1 + 5) and higher dimensional cases of the

energy-momentum quadratic relation (52), have also the formulations similar to the obtained systems
of linear Equations (58)—(62), and would be expressed by the matrix product of a 2V x 2N square
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matrix and a 2N x 1 column matrix in (1 + N)-dimensional space-time. For the (1 + 5)-dimensional case
of energy-momentum relation (52), the column matrix of the corresponding system of linear equations
(expressed by the matrix product of a 32 x 32 square matrix and a 32 x 1 column matrix, similar to
(57-2)) is given by:

(ugvy — upvg)w 0
(Llovz — uzl)o)w 0
(ugvs — uzvg)w 0
0 (usvy — uqvs)w
(ugvg — ugvp)w 0
0 (uzvs — usvz)w
0 (u502 — 1/[27)5)7/()
s / 0 " (4105 — usv1)w
S= [ o ] S TR P . . (62-2)
0 (uqvs — uzvy)w
0 (upvy — ugv)w
0 (ugvy — uqvg)w
0 (upvz — uzv)w
0 (uzvq — uqv3)w
0 (u1vy — upvy)w
L 0 . L s .

where ug, uq, up, u3, ug, Us, vy, v1,v2, V3, V4, U5, W, s are arbitrary parameters.

3.2. Deivation of the Rational Lorentz Transformations

From the derived systems of linear Equations (54)—(57) corresponding to the (1 + 1)—(1 + 4)-
dimensional cases of the invariant relation (51), and also using the general parametric solutions (43)—(51)
(obtained for systems of linear Equations (26)-(30)), the rational Lorentz transformations (which are
completely dense in the standard group of Lorentz transformations [15], as noted in Section 3.1) are
derived for momentums p;, and p;,. For instance, assuming the Minkowski metric from the system of
linear Equation (55), a parametric form of rational Lorentz transformations for three-momentums p,
and p;l in (1 + 2) dimensional space-time is derived as follows:

1+Z%+z%+z§ 2(zp+2,2,) —2(z1—2y2,)

lfzgfz%+z% 1723 72% +z§ 1fzgfz%+z§ /

2(zy—212,) 1+zgfz%fz% 2(zy—2y27;) Po . P9 63
122123 122128 1-2-2+23 v =1 h (63)

P2 2

2 2 2
—2(,21 +.§0222) 2(25—',-2321)2 1fzg+z%72%
1—zj—z{+z5  1-zj—zi+z; 1-z5—z{+z;

where the parameters s, in (63) are given by the formulas: zg = (1ov1 — u1vg)w, z2 = (Upvy — U)W,
z3 = (U102 — upv7)w, that are expressed in terms of the arbitrary parameters g, u1, 2, v, v1, V2, W.
These parameters would be also determined and expressed in terms of the initially given physical
variables (such as the relative velocity between the reference frames). However, as it has been also
noted in Section 2.4 concerning a particular common algebraic property of parametric relations (43-2)
and (44-3) which are equivalent to the above expressions, by choosing appropriate integer values
for parameters ug, 11, t, v, v1, V2, w, the parameters zy, z1,z2 could take any given integer values.
Thus, we may directly determine the relevant expressions for parameters s;, in terms of the initially
given physical values and variables. Hence, as a particular case, from the isomorphic transformations
(63), in addition to these determined expressions for the parameters s, (in terms of the relative velocity
between the reference frames in x-direction and the speed of light): zo = —B/(1+7),z1 = 22 =0,
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v=1/+/1— B? B = v/c, we obtain the equivalent form of Lorentz transformations in the standard
configuration [38]:

1423 2z,

1_2% 1—22 Po _ Y _ﬁ’)/ Po _ p6 (63-1)
2 _ /
22, 1473 P By v P1 P1

2 2
1—zj 11—z

=)

Similar to the derived transformations (63-1), the Lorentz transformations (in standard
configuration) are derived by the same approach for higher-dimensional space-times.

3.3. Matrix Formalism of the Lorentz Invariant Systems of Linear Equations (59)—(62), ... , as Equivalent
Forms of the Relativistic Energy-Momentum Quadratic Relation in Various Space-Time Dimensions

The Lorentz invariant systems of linear Equations (59)-(62), ... , (obtained on the basis of the
axiom (17) and relevant general results presented in Sections 2.2 and 2.4 for homogeneous quadratic
equations) as equivalent forms of the Lorentz invariant energy-momentum quadratic relation (52),
could be expressed generally by the following matrix formulation in (1 + N)-dimensional space-time:

(a’py —moa'k,)S =0, (64)

where
at = gt + 5”‘/&% = B — l;/P’, (65)

my is the invariant mass of a relativistic particle and k;, = (c/ \/gw, 0,...,0) is its covariant
velocity (that is a time-like covariant vector) in the stationary reference frame, «* and a* are two
contravariant 2V x 2N square matrices (corresponding with the matrix representations of Clifford
algebras Cl1,, Cly3, Clyg, ..., Cln (for N > 2) and their generalizations [11,24,32], see also
Appendix A) that by the isomorphic linear relations (65) are expressed in terms of two corresponding
contravariant 2N x 2N matrices p* and p'¥, and S is a 2N x 1 parametric column matrix. These
matrices in (1 + 1), (1 +2), (1 + 3), (1 + 4) and (1 + 5) space-time dimensions are given uniquely as
follows, respectively:

For (1 + 1)-dimensional case we get:

50:[8 _()1],56=[(1) 81,ﬁ1=[8 é]ﬂh“ 8],S=[(”°”1_5”1”0)“’]; (66)

where ug, 11, vy, v1, W, s are arbitrary parameters.
For (1 + 2)-dimensional case we obtain where ug, 11, 12, vg, v1, V2, w, s are arbitrary parameters):

0 0 A +ol 0 0 o? 0 o
‘BO — ‘Bl _ ,B/ _
7 2 7 1 3 7
0 0 —0 0 —0 0

) 0 -0t , 0 —oY
ﬁ_[—v‘) 0 1'[52_[—01 0 ]

(1ov1 — u1v0)w

(szo - uovz)w (67)

(1102 — upvq)w

S

10 0 0 01 0 O
o0 = ol = 02 = 00 =
00 0 1 00 -1 0
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For (1 + 3)-dimensional case we obtain:

(+9 0] | o 7 0 9
0 0 B = 3 B = 2 ’

o P B L R LR
- ,75 0 rF2 _,Y4 0 ! - _,)/7 0 rF3 _,),6 0 !

[ (ugv1 — uyvg)w

Bo=

(uovy — upvg)w
(uov3 — uzvo)w
0
(u3vy — upvz)w
(u1v3 — uzvy)w

(68)

(201 — wyvp)w

100 0] [0 0 00 0 0 0 1 00 0 0
0100 0000 0 00 0 00 -1 0

0 _ 1 2 __ 3 _

Y= Y= Y= Y= ’
0000 0010 0 00 0 01 0 0
000 0| |0 0 0 1 -1 0 0 0 00 0 0
0 0 0 0] [0 0 -1 0 00 0 O 0 -1 00

. 0 0 0 1| | 00 0 0 00 0 0 1 0 00

Y= ;Y= ;Y= ;Y = .
0 0 00 10 0 0 00 0 1 0 0 00
0 -1 0 0| 00 0 0 00 -1 0 0 0 00

where ug, uq, U2, 3, vo, v1, 02,03, W, s are arbitrary parameters. Moreover, the 4 x 4 matrices 7 (68)
generate the Lorentz Lie algebra in (1 + 3) dimensions.



34 of 74
(69)

0

-1

0
00000
00O0O0O 0
00000
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000O0OO0OOT1TO
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0
0

-10 0 0

S
St =
0

(ugv1 — ugvg)w
(1200 — ugv2)w
(uovs — uzvg)w
(ugvp — ugvy)w
U304 — UgV3)W
UpVy — UgD )W
U104 — UgV7 )W
UpU3 — U3V )W
U103 — U301 )W
U0y — UpV7 )W

(

(

(

(

(

(
000

0

0

-1.0 0 0
00000
00000
00000
00000
00000
00000
00000
00001

0

0
0
0
-1
0

-1 0 0 0
0
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00
-1

100 0O0O0O0TO0
0

01 000O0O0TU
00100O0O0O0O
00010O0O0O
00O0O0OOO OO OO
00O0O0OUO OO OO
00O0O0OO OO OO
00O0O0OO OO OO

0
-1 0 0

0
-1 00

3
000

0 0
-1 0 0 0
000

0

0
000

o o

0
-1.0 00

0
0

For (1 + 4)-dimensional case we have:

Universe 2017, 3, 67

Furthermore, similar to the

0

0

4 x 4 ' matrices in (68), the 8 x 8 matrices 17i (69) generate the Lorentz Lie algebra in (1 + 4) dimensions.

where ug, 11, U2, U3, ug, vy, v1,02,v3, 04, W,s are arbitrary parameters.
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For (1 + 5)-dimensional case the size of matrices # and " is 32 x 32. Sis also a 32 x 1 column
matrix, given by:

(ugvy — ugvg)w 0
(uovz — uzvo)w 0
(ugvsz — uzvg)w 0
0 (usvy — ugvs)w
(ugvg — ugvg)w 0
0 (uzvs — usv3)w
0 (usvy — upvs)w
s’ / 0 " (105 — usvy)w
5= [ s ], 5= (uov5 — u5vo)w ! 5= 0 ’ (70)
0 (1403 — uzvy)w
0 (upvy — ugvo)w
0 (ugvy — wqog)w
0 (upvs — uzv)w
0 (uzv1 — ugv3)w
0 (u1vy — upvy)w
L O . L 5 .

where ug, uy, up, uz, ug, us, vo, V1, v2, V3,04, U5, W, s are arbitrary parameters.

Similar to the formulations (66)—(70), for the higher dimensional cases of invariant quadratic
relation (52), the column matrix S and square matrices * and p'* (defining the square matrices a*
and a’" that correspond to the matrix representations of Clifford algebras and their generalization,
see Section 3.3 and also Appendix A) are obtained using similar algebraic structures, where in (1 + N)
space-time dimensions the size of square matrices f# and g’* is 2V x 2N and the size of column matrix
Sis2N x 1.

Remark 1. General Algebraic Formulation of the Column Matrix S Given bythe Matrix Equation (64)

In addition, as noted in Section 3.3, the matrix Equation (64) represents uniquely the equivalent
form of the Lorentz invariant energy-momentum quadratic relation (52) (as the norm of the
D-momentum), based on the axiomatic relations (17) and (17-1) and relevant general results obtained in
Sections 2.2 and 2.4 for homogeneous quadratic equations over the integral domain over Z. Therefore
(as mentioned in Section 3.3), the general algebraic formulation of the entries of column matrices S
obtaining in subsequent higher space-time dimensions, are similar to formulations of the obtained
matrices S (66)—(70) corresponding, respectively, to the (1 + 0), (1 + 1), (1 +2), (1 + 3), (1 + 4) and
(1 + 5)-dimensional cases of Lorentz invariant matrix equation (64). Hence, the algebraic formulation
of column matrix S in (1 + N) space-time dimensions would be generally defined as follows: the
last entry of S is represented solely by the arbitrary parameter s, 2N~ entries are definitely zero
(see below) and all the other 2N~! — 1 entries of S could be represented uniformly by the following
unique algebraic formulation (expressing in terms of the arbitrary parameters: ug, 11, up, u3,. .., un,
vg,V1,V2,03,...,UN, W) given on the basis of a one-to-one correspondence between these (non-zero)
entries of matrix S and the entries h, (for yu > v) of a 2N+1 5 2N+l square matrix H [huv] defined in
(1 + N) dimensions, by:

hyy = (uyoy — uyvy)w (70-1)

where y,v=0,1,2,... ,N,and hy, =0 for y =v.
Note that the algebraic form (70-1) is equivalent to form (45-2) which, as it has been noted in
Section 2.4, generates a symmetric algebra Sym(V) on the vector space V, where (u,,v,) € V [37].
Hence, as a basic algebraic property of the form (70-1), a natural unique isomorphism is defined
between the underlying vector space V of the symmetric algebra Sym(V) (which is generated by
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algebraic form (70-1)) and the Weyl algebra W(V). Moreover, based on this isomorphism, the Weyl
algebra W(V) could be defined as a (first) quantization of the symmetric algebra Sym(V), where the
generators of the Weyl algebra W(V) would be represented by the corresponding (covariant) differential
operators (such as ihV, as per quantum mechanics usage).

In Section 3.4, we use these general and basic algebraic properties of the column matrix S,
in particular, in the procedure of quantization of the algebraic matrix Equation (64).

In addition to the above algebraic properties of the parametric entries of column matrix S,
that are represented uniformly by the algebraic Formula (70-1), in terms of the arbitrary parameters:
ug, Uy, Ug, U3, ..., UN, Vo, v1,02,03,...,0N, W, the following basic properties hold as well:

Displaying the column matrix S by two half-sized 2V =1 x 1 column matrices S’ and S” (containing
respectively the upper and lower entries of S, similar to the Formulas (57-2) and (62-2) representing

!/

the (1 + 5)-dimensional case of matrix S) such that: S = [ g

] , then we have:

(1) The number of entries of the column matrix S’ that are zero, is exactly: (ZN -1_N ), and the
other N entries are represented solely either by the formulation: 1,0 = (ugv, — u,vo)w, or by its
negative form, i.e.,; —hy,0 = ho, = (uyvo - uovy)w, where p=1,2,...,N, and h, denote the N
entries (except the first entry hgg that is zero) of the first column of square matrix H [hw} (defined
by the Formula (70-1));

(2) The number of entries of the column matrix S” that are zero, is exactly: (2N~1 — w -1)

and except the last entry (represented by arbitrary parameter s), all the other (W) entries

are represented solely either by the formulation: hy,, = (4,0, — u,v,)w, or by its negative
form, ie.: —hy = hyy = (uuvy — wyvy)w, where p >v, u,v=1,2,...,N, and hy, denote the
components of square matrix H[h,,], and the last entry of column matrix 5" is also represented
by the arbitrary parameter s.

7

/

S//

cny | 0 1 |01 I N

o= [Fole-[3a][5]- 15
then based on the general formulation of matrix S (defined uniquely by Formulas (66)—(70) for various
space-time dimensions) and its algebraic properties (1) and (2) (mentioned above), it is concluded
directly that the matrix Equation (64) given with the new column matrix $(°") (70-2), i.e., equation:
(alpy — moatky)S (Ch) = 0, is which could be defined solely in (1 + 2) space-time dimensions for
s =0,u1 =0,v1 =0,1in (1 + 3) space-time dimensions for s = 0, and in (1 + 4) space-time dimensions
fors = 0,u; = 0,v7 = 0 (which is reduced and be equivalent to the (1 + 3)-dimensional case of
matrix Equation (64)). In (1 + 1) and (1 + 5) and higher space-time dimensions, the matrix equation

(atpy — moah ky)S(Ch) = 0 would be which are defined if and only if all the entries of column matrix
S(Ch) are zero. This means that the matrix Equation (64): (a* pu — moat'k,)S = 0, is symmetric in the

(3) If we exchange S’ and S” in the column matrix S = l 1 , that could be shown by,

!/

S,, ), solely in (1 + 2)-dimensional space-time for

s =0, u1 =0, v;1 =0,and in (1 + 3)-dimensional space-time for s = 0. In Section 3.12, this particular

exchange of S’ and §” (in the column matrix S =

algebraic property of the column matrix S would be used for concluding a new crucial and essential
issue in fundamental physics.

In the following Section, the natural isomorphism between the symmetric algebra Sym(V)
(generated uniquely by the algebraic form (70-1)) and the Weyl algebra W(V), in addition to the
general algebraic properties of column matrix S mentioned above (in Remark 1), would be used and
applied directly in the procedure of first quantization of the Lorentz invariant system of linear (64).
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3.4. A New Unique Mathematical Derivation of the Fundamental (Massive) Field Equations of Physics
(Representing the Laws Governing the Fundamental Forces of Nature)

By first quantization (followed by a basic procedure of minimal coupling to space-time geometry)
of the Lorentz invariant system of linear Equation (64) (representing uniquely the equivalent form of
energy-momentum quadratic relation (52), see Section 3.3) expressed in terms of the Clifford algebraic
matrices (65)—(70),..., two classes of general covariant field equations are derived uniquely as follows
(given by (1 + N) space-time dimensions):

(iha' V7, — m§ Y@k, ) ¥R =0, (71)

(i D, — m{ &k, ) ¥ = 0 (72)

where ihV, and ihD,, are the general relativistic forms of energy-momentum quantum operator (where
V, is the general covariant derivative, and D, is gauge covariant derivative, for detail see the ordinary

(R)

tensor formalisms of these equations, represented by Formulas (78-1)-(79-3), in Section 3.5), m,
and m(()F) are the fields” invariant masses, k;, = (c/ \/gm, 0,...,0) is the general covariant velocity
in stationary reference frame (that is a time-like covariant vector), a* and a# are two contravariant
2N x 2N square matrices (compatible with the matrix representations of certain Clifford algebras,
see Section 3.3 and also Appendix A) defined by Formulas (65)—(70) in Section 3.3. In the field Equation
(72), Y is a column matrix as a (first) quantized form of the algebraic column matrix S (defined by
relations (64)—(70-2)), determined and represented uniquely by Formulas (73)—(77), ... , in various
space-time dimensions. The column matrix ¥r contains the components of field strength tensor
Ryvpo (equivalent to the Riemann curvature tensor), and also the components of covariant quantity

(©) . : ion: |®) = _(v 4 ) 5(R)
$po’ that defines the corresponding source current tensor by relation: [y = —(V, + —f—kv)¢p0

(which appears in the course of the derivation of field Equation (71), see Section 3.6 for details). In
a similar manner, in the tensor field Equation (72), ¥r is also a column matrix as a (first) quantized
form of the algebraic column matrix S (defined by relations (64)-(70-2)), determined and represented
uniquely by Formulas (73)—(77), ..., in to various space-time dimensions. The column matrix ¥r
contains both the components of tensor field F,;, (defined as the gauge field strength tensor), and also

the components of covariant quantity ¢(F) that define the corresponding source current vector by
relation: relation: ]V(F) =— (5,/ + img k,)¢F) (which appears in the course of the derivation of field
Equation (72), see Section 3.6 for details). Moreover, the general covariance formalism of the field
Equations (71) and (72), would be also shown in Section 3.5.

In addition, in Section 3.11, based on a basic class of discrete symmetries for the field Equations (71)
and (72), along with definite mathematical axiomatic formalism of the derivation of these equations,
it is shown that these equations could be defined solely in (1 + 2) and (1 + 3) space-time dimensions.
It is shown that (1 + 3) dimensional cases of these equations represent uniquely a new formalism of
bispinor fields of spin-2 and spin-1 particles, respectively. It is also shown that the (1 + 2)-dimensional
cases of these equations, represent asymptotically new massive forms of bispinor fields of spin-3/2
and spin-1/2 particles, respectively.

Moreover, in Section 3.12, based on the definite mathematical formalism of this axiomatic
derivation approach, the basic assumption (3) in Section 3.1, along with the C, P and T symmetries
(represented basically by their corresponding quantum matrix operators) of the fundamentally derived
general covariant field Equations (71) and (72), it is concluded that the universe could be realized
solely by the (1 + 2) and (1 + 3)-dimensional space-times (where this conclusion, in particular, is based
on the T-symmetry). In Sections 3.13 and 3.14, it is proved that ‘CPT’ is the only (unique) combination
of C, P, and T symmetries that could be defined as a symmetry for interacting fields. In addition,
in Section 3.14, on the basis of these discrete symmetries of the field equations (71) and (72), it is shown
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that only left-handed particle fields (along with their complementary right-handed fields) could be
coupled to the corresponding (any) source currents.

Furthermore, in Section 3.15, it is argued that the metric of background curved space-time
is diagonalized for the spin-1/2 fermion field equations (defined by the field Equation (110) as a
generalized form of (1 + 2)-dimensional case of Equation (72)), where this property generates a
certain set of additional symmetries corresponding uniquely to the SU(2), ®U(2)r symmetry group for
spin-1/2 fermion fields (represented by two main groups of “1 + 3” generations, corresponding
respectively to two subgroups of leptons and two subgroups of quarks), in addition to the
SU@2)L®U(2)r and SU(3) gauge symmetry groups for spin-1 boson fields coupled to the spin-1/2
fermionic source currents. Moreover, based on these uniquely determined gauge symmetries, four new
charge-less spin-1/2 fermions (represented by “ze , zn ; Zy , 24", where two right-handed charhe-less
quarks z, and zq emerge specifically in two subgroups with anti-quarks such that: (5, U, b, zy)

_ - PO
and (¢, d, t, zq), and also three new massive spin-1 bosons (represented by WT,W~, Z, where in

particular 2 is the complementary right-handed particle of ordinary Z boson), are predicted by this
new mathematical axiomaticapproach.

As a particular result, in Section 3.6, based on the definite and unique formulation of the derived
Maxwell’s equations (and also Yang-Mills equations, defined by the (1 + 3)-dimensional case of
the field Equation (72), compatible with specific gauge symmetry groups as shown in Section 3.15,
Formulas (109)-(110-12)), it is also concluded that magnetic monopoles could not exist in nature.

3.5. Axiomatic Derivation of General Covariant Massive Field Equations (71) and (72)

First, it should be noted that via initial quantization (followed by a basic procedure of minimal
coupling to space-time geometry) of the algebraic systems of linear Equation (64) (as a matrix
equation given by the Clifford algebraic matrices (65)—(70), ... , in various space-time dimensions),
two categories of general covariant field Equations (with a definite matrix formalism compatible with
the Clifford algebras and their generalizations, see Section 3.3 and also Appendix A) are derived
solely, represented by the tensor Equations (71) and (72) in terms of two tensor fields Rps,y and
Fy, respectively. In fact, as it has been mentioned in Remark 1 (in Section 3.3), there is a natural
isomorphism between the Weyl algebra and the symmetric algebra generated by the algebraic form
(70-1) which represents the general formulation of the entries of algebraic column matrix S in the
matrix Equation (64). In addition, the procedure of minimal coupling to space-time geometry would
be simply defined as a procedure which, starting from a theory in flat space-time, substitutes all
partial derivatives by corresponding covariant derivatives and the flat space-time metric by the curved
space-time (pseudo-Riemannian) metric. Moreover, as mentioned in Remark 1 (in Section 3.3), on the
basis of this natural isomorphism, the Weyl algebra could be also represented as a quantization of the
symmetric algebra generated by the algebraic form (70-1). Hence, using this natural isomorphism,
by first quantization (followed by a basic procedure of minimal coupling to space-time geometry) of
matrix Equation (64), two definite classes of general covariant massive (tensor) field equations are
determined uniquely, expressed in terms of two basic connection forms (denoted by two derivatives V,
and D, corresponding respectively to the diffeomorphism (or metric) invariance and gauge invariance),
along with their corresponding curvature forms, denoted respectively by Rysyv (as the gravitational
field strength tensor, equivalent to Riemann curvature tensor) and Fy, (as the gauge field strength
tensor). This natural isomorphism could be represented by the following mappings (corresponding to
the curvature forms Rpopv and Fyy, respectively):

(uyvv - uvvy)w = (vyvv - VVVH)WR = R(u,v)wg Roouv, (71-1)

(uyvy — uyvy)w +— (DyDy — DyDy)wr + (igF)Fuv- (72-1)
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where ng = (avrg,, + r’;vrgy) - (ayrg,, + rﬁyrgv), Fy = DyA, — D, Ay, and gr, A, are respectively
the corresponding coupling constant and gauge field (that is defined generally as a Lie algebra-valued
1-form represented by a unique vector field [39]). Based on this natural unique isomorphism
represented by the mappings (71-1) and (72-1), the column matrices ¥ and Y (in the expressions
of field Equations (71) and (72), respectively) would be determined uniquely various dimensional
space-times, represented by Formulas (73)~(77), ... .

In addition, as detailed in Section 3.4, the last entry of algebraic column matrix S in matrix
Equation (64) (as it has been shown in the relations (64)—(70)), is represented by the arbitrary algebraic
parameter s. In the course of the derivation of field Equations (71) and (72) (via the first quantization
procedure mentioned above, and the mappings (71-1) and (72-1)), the arbitrary parameter s could be
substituted solely by two covariant quantities gb((f;) and ¢(F) that define the corresponding covariant

source currents gb‘()?) and ]1(,F) (given bythe field Equations (71) and (72), respectively) by the conditional

relations: ]F(,Q =—(V,+ ZméR) kv)qb[gg) and JiF) = —(D, + lm;(f) k,)pF).

As another basic issue concerning the general covariance formulation of tensor field Equations (71)
and (72), we should note that each of these Equations (as a system of equations) includes also an
equation corresponding to the 2nd Bianchi identity, as follows, respectively:

iR im®) im®)
(Va+ k) Roow + (Ve + ==k Rpeua + (Vi + ——ku) Rpony = 0, (71-2)
im(()F) imép) im(()F)
(D/\ + TkA)F;W + (Dy + Tk}l)FvA + (Dl/ + TkV)F/\y =0 (72_2)

However, the tensor field Ry as the Riemann curvature tensor, obeys the relation (71-2) tensor,

if and only if a torsion tensor is defined in as: T, = (im((]R) /2h)(8vuky — §wvky), and subsequently
the relation (71-2) be equivalent to the 2nd Bianchi identity of the Riemann tensor. Consequently,

the covariant derivative V,, should be also defined with this torsion, that we may show it by V.
Moreover, as presented in Section 3.6, concerning the relation (72-2), we may also define a torsion field
as: Zoyy = (im(()F) /2h)(gruky — grvky), and write the relations (71-2) and (72-2) (representing the 2™
Bianchi identities) as follows:

v/\Rpa;w + vprm//\ + vvaoAy = T}{H RptTTV + T;uRpUT/\ + TJ/\R‘DUT}H (71-2-a)

DAF,, + DyF,y + DyFy, =0 (72-2-a)

where the general relativistic form of gauge derivative D, has been defined with torsion field

Zyy- We use the derivatives V, and BM in the ordinary tensor representations (i.e., the Formulas
(78-1)—(79-3)) of the field Equations (71) and (72) in Section 3.6. In addition, based on the formulations of
torsions Ty, and Z.,, (that have appeared naturally in the course of derivation of the field Equations
(71) and (72)) and the general properties of torsion tensors (in particular, the property that allows
a torsion tensor to always be treated as an independent tensor field, or equivalently, as part of the
space-time geometry [40-42]), it could be concluded directly that torsion field T, generates the
invariant mass of corresponding gravitational field, and torsion field Z;,,, generates the invariant
mass of corresponding gauge field, respectively. Hence, based on our axiomatic derivation approach
including the mappings (71-1) and (72-1) (mentioned above), the (1 + 1), (1 +2), (1 +3), (1 +4), (1 +5),
..., dimensional cases of column matrices ¥ and ¥r in the specific expressions of general covariant
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massive (tensor) field Equations (71) and (72), are determined uniquely as follows,
For (1 + 1)-dimensional space-time we have:

- . (R)
R R
Ror10 Fio ]‘Lgm)/ =—(V, + 2 kv)fPéa)/
Ye=1 w [T e | = ) ’
Poo ¢ 1P = —(Dy + ™ k,)p(F);
For (1 + 2)-dimensional space-time we obtain:
Rpo10 Fo
— i
R R
Rpo02 Fop ],Sm)/ =—(V,+ 3 kv)%(w)/
Yr = R YrE= , :
P21 Bl 0 = (D, + Mk,)gP);
R
Phe o)
For (1 + 3)-dimensional space-time we have:
[ RpalO 1 [ Fio |
Rpo20 Fo
Rp030 F3o (&)
R - j R
0 0 ]ggmz = _(vv + zmho kv)(l’fm),
TR - R 023 ITP - F23 ! - . (F)
14 1SF) _ _<Dv i 1mfg kv)(P(F);
Rpo31 F31
Rpo12 Fip
R
L ot ] K
For (1 + 4)-dimensional space-time we get:
i RpalO i FlO
Rp(TOZ FOZ
Rp1730 F; 30
0 0
Rp1704 Fos
0 0
0 0
0 R — i (R) R
0 O | Jioh =~ (Vu+ Z-k)dfe
11IR = r‘IIF = 0 ’ _ )
Rp043 F43 ]SF) = _(Dv + lmfg kv)4)(F);
Rp(742 Fp
Rpc741 Fyp
Rp(732 F3
Rpo31 Fa
Rpo21 By
R
L e ] )
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respectively;

(73)

(74)

(75)

(76)
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For (1 + 5)-dimensional space-time we obtain:

valO T
Rp[702

R/0030

Rpo04

o o o

an43
Rpoa2
Rp1741
Rpos2
Roe312
Rp1721

L o ]

where in the relations (73)-(77), ]V(ff; and ]ﬁF) are the source

T Roor0
Roe20
Ropos0
0
Rorao
0
0
0
Fyo ] Rypos0
Foo 0
F3o 0
0 0
Fos 0
0 0
0 0
®) _ 5 m®)
0 Joov = =(Vy + ==k) o s o 0 ¥
o | 1P~ —(By + ™)) 0
Fy3 0
Fp 0
Fy Rypoas
Fz 0
F3 Ryos3
Fxn Ryo25
¢ | Roos1
0
Rposa
Rpoaa
Rpo1a
Roo32
Rpo13
Rpo21
ok |

ooooooooooé"’

o 0
&
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k)

R = im( R
TR = —(V, + ™k, gl

(77)

’

- . (F)
1 = —(Dy + 2k, )pF)

currents expressed, necessarily,

in terms of the covariant quantities ¢,§§) and ¢F) (as the initially given quantities), respectively.
For higher-dimensional space-times, the column matrices Yz and ¥r (with similar formulations) are
determined uniquely as well.

3.6. General Covariant (Tensor) Representations of the Field Equations (71) and (72)

From the Field Equations (71) and (72) (derived uniquely with certain matrix formalisms
compatible with the Clifford and Weyl algebras), the following general covariant field equations,
with ordinary tensor formalisms, are obtained (but not vice versa), respectively:

v/\Rptryv + vprm//\ + vvam\y = Tj\'—prchv + T]L/Rpaf/\ + TJ/\Rpchy/

v, R

utpe

R‘gw/ = (avrgy + rivrz/r\y) - (ayrgv + I

]551)/ = _(Vv + h

iméR)

pr =

im(®)

(im{®) /B) kR = — (R

0 A
)Li,lrlﬂ/

(78-1)

(78-2)

),
(78-3)

kV)fl’él;)/ Topw = 5 (§rukv — gevky).
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and
DAFW +DyF,) + DVF/W =0, (79-1)

D, F = —J'(F) (79-2)

Fu = DyA, — D, A,

iy (F)

- T o (79-3)
Jv' =—=(Dy+ =F-k)P"), Zppy = =k (§eukv — grvky).

where 1"‘3;4 is the affine connection: Ff;y = Tﬁy — Kf;y, i’jy is the Christoffel symbol (or the torsion-free

connection), Kgy is the contorsion t(?nsor deﬁr}ed by: KPW = (iméR) /2h) Sou
ou is the torsion given by: T,,, = K, —
invariant mass of the gravitational field), k, = (c/+/g%,0,...,0) (where we supposed ¢ = 1) is the
covariant velocity of particle (or the static observer) in the stationary reference frame, and A, is the

gauge potential vector field. Moreover, in general covariant field Equations (79-1)-(79-3), the covariant

ks (that is anti-symmetric

in the first and last indices), T, Kooy (that generates the

derivative D, has been defined specifically with the torsion field Z.,,, (generating the invariant mass
of gauge field strength tensor F,,, ).

It should be emphasized again that the tensor field Equations (78-1)—(78-3) and (79-1)—(79-3)
(which are obtained respectively from the original Equations (71) and (72), but not vice versa) show
merely the general covariance formalism (including torsions fields T}, and Z;,) of the axiomatically
derived field Equations (71) and (72). The crucial issue here is that the original field Equations (71) and
(72) could not be obtained from the tensor Equations (78-1)—(78-3) and (79-1)—~(79-3). In fact, the tensor
Equations (78-1)—(78-3) and (79-1)—(79-3) don’t represent completely the definite matrix formalism
(compatible with certain Clifford and Weyl algebras) of the axiomatic field Equations (71) and (72).
Hence, based on this mathematical axiomatic formalism and derivation approach of Equations (71) and
(72) (presented in Sections 3.3-3.5), it is concluded that the fundamental force fields of physics cannot
be described completely via the ordinary tensor representations of these fields (in the current standard
classic and quantum relativistic field theoretic formalism of physics), such as the representations
(78-1)—(78-3) and (79-1)—(79-3); and as shown in Sections 3.3-3.5, on the basis of this new mathematical
formalism, all the fundamental force fields of physics could be represented (and described) solely by
the axiomatically determined and formulated field Equations (71) and (72) with their definite covariant
matrix formalisms (given and specified by Formulas (65)—(70) for various space-time dimensions,
compatible with certain Clifford and Weyl algebras).

3.7. Derivation of the Einstein field Equations

Along with the massive gravitational field Equations (78-1)—(78-3) (obtained uniquely from the
originally derived field Equation (71)) that are expressed solely in terms of R, as the field strength
tensor and also torsion’s depended terms, we also assume the following relation as basic definition for
the Ricci tensor (where the Riemann curvature tensor and Ricci tensor obey the interchange symmetries:
Ruvpe 7 Rpouv, Ruv # Ryy, because of the torsion [43]):

= im(()R) - = im(()R) = im(()R)
(Vy+ Tkg) o = (V, + 3 kV)Rﬂp — (VH + TkM)RW (78-4)

where the relation (78-4) particularly remains unchanged by the transformation:
Ryy = Ryy + Aguy (78-5)

(where as would be shown, A is equivalent to the cosmological constant). It should be noted that by
taking A = 0, from the 2nd Bianchi identity of the Riemann curvature tensor and relation (78-4) it
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could be shown that the Ricci tensor is also the contraction of the Riemann tensor, i.e., Ry = RZW
(which is equivalent to the ordinary definition of the Ricci tensor). However, this ordinary definition
for the Ricci tensor, necessarily, doesn’t imply the above transformation. In fact, in the following,
we show that this basic transformation is necessary for having the cosmological constant in the
gravitational field Equations (including the Einstein field equations which could be derived from the
above equations and relations) expressed in terms of the Ricci and stress-energy tensors. As a direct
result, a unique equivalent expression of gravitational field equations, in terms of the Ricci tensor
R,y and stress-energy tensor T}, could be also determined from the basic definition (78-4) (for Ricci
curvature tensor, based on this axiomatic formalism), and field Equations (78-1)—(78-3), along with the
following expression for current ]553 (defined in terms of the stress-energy tensor Ty, T(=TH ,4), and
metric gy, in D-dimensional space-time):

it it ® )

TR = —87[(Vo + 29 ko) T — (Vo + 280 ky) Ton] + 87B[(V + 28—ko) Tg00 — (Vp + 8ko) T3], (78-6)

where Ty, # Ty for m(()R) #0,B=0forD =1,2,and B =1/(D — 2) for D > 3, the Einstein field
Equations (as the massless case) are determined directly as follows:

R]"V = *SH(T}W — BTg;u/) - Ag}ﬂ/ (78_7)

3.8. Showing that Magnetic Monopoles Cannot Exist in Nature

As a direct consequence of the uniquely derived general covariant field Equation (72) that are
specified by the matrices (73)—-(77) and (65)—(70) (or the general covariant field Equations (79-1)—(79-3)
obtained from the original Equation (72)), which, in fact, represent the electromagnetic fields equivalent
to a generalized massive form of the Maxwell’s Equations (as well as a generalized massive form of
the Yang-Mills fields corresponding to certain gauge symmetry groups, see Section 3.15), it is concluded
straightforwardly that magnetic monopoles could not exist in nature.

3.9. Gauge Invariance of (Massive) Tensor Field Equations(79-1)—(79-3) Corresponding to the Maxwell’s (and
Yang-Mills) Equations in (1 + 3) Dimensions, and Dirac Equation in (1 + 2) Dimensions

The Lagrangian density specified for the tensor field F,, in the field Equations (79-1)—~(79-3) is

(supposing ]§F> = 0) [39]:
L(F) = _(1/4\/ _g>F*WF;4v (80)

where g is the metric’s determinant. Moreover, the trace part of torsion field Z.,,, in (79-3) is obtained as:
zh, = 7, = N(iml) /2h)k, = Nak, (81)

where (1 + N) is the number of space-time dimensions and & = % Now based on the definition of
covariant vector k, (as a time-like covariant vector), we simply get: 3¢ : k, = d,¢. This basic property,
along with and Formula (81), imply the general covariant massive field Equations (79-1)-(79-3)
(formulated originally with the torsion field (79-3) generating the invariant mass m(()F) of field
F,y), and the corresponding Lagrangian density (80), be invariant under the U(1) Abelian gauge
group [17,39,44-48]. However, in Section 3.15, we show that assuming the spin-1/2 fermion fields
(describing generally by the field Equation (110-9) compatible with specific gauge symmetry group
(110-12), as shown in Section 3.15, Formulas (110-9)-(110-12)) and their compositions as the source
currents of the (1 + 3)-dimensional cases of general covariant massive field Equation (72) (describing
the spin-1 boson field), then this field equation would be invariant under two types of gauge symmetry
groups, including: SU(2)p ®U(2)r and SU(3), corresponding with a group of seven bosons and a groups
of eight bosons (as shown in Section 3.15, Formulas (114-4)-(114-9)).
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3.10. Identifying a New Particular Massive Gauge Boson

According to Refs. [44—48], in agreement with the recent astronomical data, we can directly

i1 (F)
establish a lower bound for a constant quantity which is equivalent to the constant « = m;% (defined

by the relation (80)) as: |«| > 21. Hence, a new massive particle (corresponding to the U(1) symmetry
group) would be identified with the invariant mass:

M., = 490571 x 10~ kg (82)

that is generated by a coupling torsion field of the type (79-3) of the background curved space-time.
In addition, it should be noted that, in general, based on the covariant massive field Equations (71)
and (72) derived by our axiomatic approach (or field Equations (78-1)—(78-3) and (79-1)—(79-3) obtained
from (71) and (72)), the invariant masses of the elementary particles are generated by torsion fields
of the types (78-3) (for spin-3/2 and spin-2 particles) and (79-3) (for spin-1/2 and spin-1 particles,
see Section 3.15). Hence, this approach could be also applied for massive neutrinos concluding that
their masses are generated by the coupling torsion fields (of the type (79-3)). Such massive particle
fields coupled with the torsions (of the type (79-3)) of the background space-time geometry could be
completely responsible for the mysteries of dark energy and dark matter [49,50].

3.11. Quantum Representations of C, P and T Symmetries of the Axiomatically Derived General Covariant
Massive (Tensor) Field Equations (71) and (72)

As shown in Sections 3.3-3.5, the general covariant massive (tensor) field Equations (71) and (72)
as the unique axiomatically determined Equations (representing the fundamental field of physics,
as assumed in Section 3.1), are represented originally with definite matrix formalisms constructed from
the combination of two specific matrix classes including the column matrices (73)—(77), ... compatible
with the Weyl algebras (based on the isomorphism (71-1)—(72-1)), and the square matrices (65)—(70),
... that are compatible with the Clifford algebras and their generalizations; see Sections 3.3-3.5 and
also Appendix A for detail).

In agreement with the principles of relativistic quantum theory [6], and also as another primary
assumption in addition to the basic assumption (3) defined in Section 3.1, we basically represent the C,
P and T symmetries of the source-free cases of by the following quantum matrix operators (with the
same forms in both flat and curved space-time), respectively:

(Note: In Section 3.13, we show that only a certain simultaneous combination of the C, Pand T
transformations could be defined for the field Equations (71) and (72) with non-zero source currents.)

(1)- Parity Symmetry (P-Symmetry):

p—vp—lol ?] (83)

where [ is the identity matrix, and the size of matrix " in (1 + N)-dimensional space-time is 2V x 2N.
The operator P obeys the relations:

det(P) = —1,P2=1,P =P = p* = pT (83-1)
(2)- Time-Reversal Symmetry (T-Symmetry):
T = TR = inPy“"K (84)

where the operator K denotes complex conjugation, the operator 4" defined by Formula (83) and the
operator 7 in (1 + 1) and (1 + 2) space-time dimensions, is given by:

ch | 0 I
v [1 0], (84-1)
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and in (1 + 3) and higher space-time dimensions, 7" is denoted by:

0 I
Ch
4-2
7 [—i[ 0] (84-2)

where the size of matrix 7" in (1 + N)-dimensional space-time is: 2N x 2N Moreover, in (1 + 1)
and (1 + 2) space-time dimensions, the time reversal operator T (84) and the Hermitian operator
To = joyPyCh (specified in the Formula (84)) obey the relations:

Th=-1To=T'=1T5 = -1], (84-3)

and in (1 + 3) and higher space-time dimensions, T and T}, obey the relations:

Th=1T=T'=T =17 (84-4)

Concerning the time reversal symmetry, it should be noted that relations (84-3) are solely
compatible with the fermionic fields and relations (84-4) are solely compatible with the bosonic
fields. In addition, it should be noted that these basic quantum mechanical properties (i.e., the
relations (84-3) and (84-4)) of the time reversal symmetry (84), are fully compatible with corresponding
properties of the field tensors F,, and Ry, presented in Section 3.15, where the tensor field Fy,
(describing by general covariant field Equation (72)) represents (asymptotically) solely a massive
bispinor field of spin-1/2 particles (as a new general covariant massive formulation of the Dirac
equation) in (1 + 2) space-time dimensions, and also represents a massive bispinor field of spin-1—as
new massive general covariant (matrix) formulations of both Maxwell and Yang-Mills field equations
are compatible with specified gauge symmetry groups—in (1 + 3) space-time dimensions; and tensor
field Rpsyv (describing by general covariant field Equation (71)) represents (asymptotically) solely a
bispinor field of spin-3/2 particles (as a new massive general covariant form of the Rarita-Schwinger
equation) in (1 + 2) space-time dimensions , and also represents a massive bispinor field spin-2 particles
(equivalent to a generalized massive form of the Einstein equations) in (1 + 3) space-time dimensions.

(3)- Charge Conjugation Symmetry (C-Symmetry):
(¥r)c = C¥r = iIR¥R, (¥F)c == CY¥r = i[K¥r (85)

where C = iIR, I is the identity matrix, the operator K denotes complex conjugation, and the charge
conjugation operator C defined by: (¥r)c = CA(?R)T, (¥r)c = C(?p)T. The charge conjugation
operator C obeys the following relations:

A A A

CCr=1,C=-C1=-C=C"T (85-1)

As a basic additional issue, it is worth noting that the time-reversal operator (84) could be also
expressed basically in terms of the parity matrix operator 4 (83), matrix operator C = iR given bythe
definition of charge-conjugated transformation (85), and matrix ¥ defined by Formulas (84-1) and
(84-2), as follows:

APyChC =T (85-2)
where we have: 1Py = —7CltqyP,

Remark 2. The Main Properties of Matrix Operator 7" (Defined by Unitary Matrices (84-1) and (84-2))

In this Section, the main properties of matrix operator " (defined by unitary matrices (84-1)
and (84-2)) have been presented. Each of the general covariant (tensor) field Equations (71) and
(72) (including their source-free and non-source-free cases), as a system of differential equations, is
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symmetric and has the same spectrum as a result of multiplying by matrix 7. The multiplied

column matrices ‘I’%Ch) = 7“"¥y and ‘I’(FCh) = Y“"¥; then obey the Equations (71) and (72),

respectively, but with opposite sign in mass term such that: (iia!V,, + m((]R)E”ky)\IJ%Ch) = 0,

(iha' V7, +mi e, ) ¥ = 0.
(Ch) (Ch)

As a general additional issue concerning the column matrices ¥/ = y*"¥r and ¥ = 7“"¥p,
should be also added that the sign change of the mass terms introduced in the field Equations (71)
and (72) is immaterial (the same property also holds for the ordinary formulation of Dirac equation,

and so on [51]). In other words, the field Equation (71) of the form (iha# VH + m(()R)bU‘ky)‘I’R =0 are

equivalent, and similarly the field Equation (72) of the form (ifa"V,, + m(gF)BZVkV)‘I’p = 0 would be
equivalent as well. However, since the algebraic column matrix S in the matrix Equation (64) (derived
and represented uniquely in terms of the matrices (66)—(70), ... corresponding to various space-time
dimensions), is not symmetric by multiplying by matrix 7" (84-1) and (84-2) (except for (1 + 2) and
(1 + 3)-dimensional cases of column matrix S, based on the definite algebraic properties of matrix S
presented in Remark 1, (in Section 3.3), it is concluded that except the (1 + 2) and (1 + 3)-dimensional
cases of the fundamental field Equations (71) and (72), these field equations could not be defined with
the column matrices of the types ‘I’%Ch) (= v“"¥R) and ‘I’ETCh) (= Y“"¥F) (if assuming that the column
matrices Y and Y are defined with field Equations (71) and (72), i.e., they have the formulations
similar to the formulations of originally derived column matrices (73)—(77), ... corresponding to
various space-time dimensions). This conclusion follows from this fact that the filed Equations (71)
and (72) have been derived (and defined) uniquely from the matrix Equation (64) via the axiomatic
derivation approach (including the first quantization procedure) presented in Sections 3.4 and 3.5.
In Section 3.12, using this property (i.e., multiplication of column matrices ¥ and ¥ defined in the
fundamental field Equations (71) and (72), by matrix " (84-1) and (84-2) from the left), this crucial
and essential issue would be concluded directly that by assuming the time-reversal invariance of the
general covariant filed Equations (71) and (72) (represented by the transformations T¥g and TY¥p,
where the quantum operator T is given uniquely by Formula (84), i.e.: T = T,K = in"y“"K), these
fundamental field equations could be defined solely in (1 + 2) and (1 + 3) space-time dimensions (with
the column matrices of the forms (96-1) and (98-2), respectively). Subsequently, in Section 3.13, it would
be also shown that only a definite simultaneous combination of all the transformations C, P, Tand
also matrix " (given by quantum operators (83)—(87)) could be defined for the field Equations (71)
and (72) with non-zero source currents. In addition, the matrix operator " in (1 + 1) and (1 + 2)
space-time dimensions obeys the relations:

Ch)2 -1

(v A= ()T = () = (M, (86)

and in the (1 + 3) and higher dimensions obeys the following relations as well:

(7 = 1,9 = (v = (4 = —(4)T (87)

Furthermore, in Section 3.14, the matrix 7" would be also used basically for defining and
representing the left-handed and right-handed components of the column field matrices ¥ and Y
defined originally in the field Equations (71) and (72).

3.12. Showing That the Universe Could Be Realized Solely by the (1 + 2) and (1 + 3)-Dimensional Space-Times

The proof of this essential property of nature within the new mathematical axiomatic formalism
presented in this article is mainly based on the T-symmetry (represented by quantum matrix
operators (84)) of the fundamentally derived general covariant field Equations (71) and (72). As shown
in Section 3.11, the source-free cases (as basic cases) of field Equations (71) and (72) are invariant
under the time-reversal transformation defined by matrix operator (84). Moreover, in Section 3.13,
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it would be also shown that these field equations with non-zero source currents are solely invariant
under the simultaneous transformations of all the C, P, and T (83)—(85), multiplied by matrix 7"
(given by Formulas (84-1) and (84-2)). Now, following the definite mathematical formalism of the
axiomatic derivation approach of fundamental field Equations (71) and (72), assuming that any column
matrix Xg, or Yr, expressible in the tensor formulation of general covariant field Equation (71) or (72),
is basically definable, if and only if, it could be also derived originally as a column matrix via the
axiomatic derivation approach presented in Sections 3.4 and 3.5.

On this basis, it could be shown that the time-reversal transformed forms of the column matrices
Yr and Yr given bythe expressions of source-free cases of field Equations (71) and (72), are definable
solely in (1 + 2) and (1 + 3)-dimensional space-times. Based on this result, along with the basic
assumption (3) in Section 3.1, it is concluded directly that the universe could be realized solely with
the (1 + 2) and (1 + 3)-dimensional space-times. We show this in the following in detail.

As noted, in fact, the above conclusion follows directly from the formulations of uniquely
determined time-reversal transformed forms of column matrices ¥z and ¥ given by the expressions
of source-free cases of field Equations (71) and (72). Denoting these column matrices by Yr = T¥x
and Yr = TY¥r, where the time-reversal operator (84) is defined by:T = TOK = iy PyCIK, they would
be determined as follows in various dimensions:

For (1 + 1)-dimensional space-time we have:

R R 0 A . 0
Yrix, t) = TYr(x,t) = To¥5h(x,t) = | . , Ye(x, t) = TYrp(x, t) = To¥r(xt) = | ., ; (88
R(x1) = T¥r(xt) = To¥i(x 1) { R0 } F(t) = T¥p(x 1) = To¥j (v, 1) [ —— } (88)
For (1 + 2)-dimensional space-time it is obtained:
—iR o (%, ) —iF} (% 1)
R e 0 s g 0 ,
Yr(x,t) = T¥R(x, t) = To¥x(x,t) = iRyt | Ye(x,t) = TYr(x, t) = To¥5(x t) = Fot) | (89)
iRGy00 (%, 1) iFy (%, 1)
For (1 + 3)-dimensional space-time we get:
[ —iRpms(x 1) ] [ —iFg(xt) ]
_iR;oﬁl (x,1) —iF5 (x, t)
—iR 5 (%, 1) —iF} (%, 1)
N - B 0 . P 0
Yr(x, t) = Tr(x, ) = To¥i(x,t) = Rt | Ye(x,t) = T¥r(x,t) = To¥E(x, t) = i () (90)
iRY 10 (%, 1) iBy(x,t)
iR 30(%, ) iFy(x,t)
0 | o
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For (1 + 4)-dimensional space-time we have:

0 0
iRjg3(x,t) —iFf(x, 1)
iR;Mz (% 1) —iF}(x,t)
iRG 4 (%, 1) —iFf; (x, 1)

—iR;U32 (%, 1) —iF}(x,t)
At
—iR} 5 (%, 1) —iE ()
. —iFy (x,t
—iRS 51 (%, 1) n(xh)
YR(x,t) = TTR(JC, t) = To‘FTg(x,t) = 0 , Y[:(x, t) = T‘PF(JC, t) = To‘{ﬁf(x, t) = 0 ; (91)
iR310(%, 1) iFp(xt)
iR 0 (%, 1) iFp(xt)
IRG 30 (%, 1) (1)
0 0
lszrO4 (% 1) iFyy (%, 1)
0 0
0 0
L O - L 0 -
For (1 + 5)-dimensional space-time we obtain:
. 0 . _ _
0 0
0 "
—iR? 45(x, t)
pods —iFj5(x,t)
0 0
—iR}y53(x, 1) .
po53\ % —iFg(x, t)
R (1) i (e 1)
IRpgs1 (1) —iF (x, )
0 0
iRj34(%,t) —iF, (%, 1)
—iRGu (%, 1) —iF(x,t)
—iR%14(x, 1) —iFfy(x,t)
—iRGo3 (% 1) —iF(x,t)
—iR}3(x 1) —iFfy(x, 1)
—iR x,t N N —iF}(x,t)
Yr(x,t) = TWp(x,t) = Ty¥h(x,t) = pon (1) L Ye(xt) = T¥p(x, 1) = To¥i(x,t) = :) ; 92)
0

zRWm( t) iFy(xt)

iRGyo0 (%, 1) Fo(x,)

iR 50 (%, 1) iFg(x, 1)

0
0
. iFjo(x, t
zR;MO(x,t) 40; )
0 0
0 0
0
iFZy(x,t)
lRplfSO( > 500
0 0
0 0
0 0
0 0
0 0
0 0
L 0 d ) .
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Now based on the formulations of the derived time-reversal transformed column matrices
Yr and Yr (88)-(92), although they could be expressed merely by the tensor formulations of field
Equations (71) and (72), however, except the (1 + 2) and (1 + 3)-dimensional cases of these transformed
column matrices, all the other cases cannot be derived originally as a column matrix via the axiomatic
derivation approach presented in Sections 3.4 and 3.5 (following the formulation of originally derived
column matrices (73)-(77)). Below this conclusion (and subsequent remarkable results) is discussed in
more detail.

In addition, it is also worth noting that on the basis of our derivation approach, since there are not
the corresponding isomorphism (that could be represented by the unique mappings (71-1) and (72-1),
in Section 3.5) between the entries of column matrices Yg and Y (88), (91), (92), ... and the entries
(with the exactly same indices) of column matrix S (in the algebraic matrix Equation (64), where its last
entry, i.e., arbitrary parameter “s” is zero compatible with the source-free cases of the field Equations
(71) and (72)) that are given uniquely as follows in (1 + 1) and (1 + 4), (1 + 5),... and higher space-time
dimensions, respectively, using the definitions (66)—(70), ... (in Section 3.3), and also the algebraic
properties of column matrix S (presented in Remark 1 in Section 3.3) representing in terms of two
S/

half-sized 2V~1 x 1 column matrices S’ and S” such that: S = [ o

] (where ug, uq,up,us, ..., uN,

vo,V1,V2,03,...,UN, W are arbitrary parameters):
For (1 + 1)-dimensional space-time we have:

_ s _ (ugv1 — uqvg)w .
- (2] em)

For (1 + 4), (1 + 5)-dimensional space-times we get, respectively:
[ (uov1 — wyvg)w | I 0 i

(11200 — t1gv2)w (uov1 — uyv9)w 0

0
(1gv3 — uzvp)w (11902 — upvo)w (1504 — ugvs)w
S = 0 (103 — u3v0)w 0
(ugvg — upvg)w 0 (u3vs — usv3)W
0 (11004 — ugvo)w (1507 — upvs)wW
0 0
0 0 (w105 — usv1)w
g/ _ i s , "
s=| o |/ 0 is=| | 5= 0 , 8" = 0 i (94)
(u3v4 — M4ZJ3)ZU (u07)5 — u5vo)w (M4U3 - M3'04)ZU
(upv4 — ugvy)w 0 (u204 — ugva)w
(1104 — ugor)w 8 (ug01 — uyvg)w
S// —
(1203 — uzv2)w 0 (1203 — uzvp)w
(1103 — uzvy)w 8 (4301 — uyvz)w
(w0 — upvy)w 0 (w102 — upvy)wz
0 | L 0 |

it would be directly concluded thatin (1 + 1) and (1 + 4), (1 + 5),... and higher space-time dimensions,
the column matrices Y and Yr could not be defined as the column matrices in unique formulations
of the axiomatically derived general covariant field Equations (71) and (72). In other words, for the
(1 + 2)-dimensional cases of the transformed column matrices Yr and Yr (89), the corresponding
isomorphism (represented uniquely by the mappings (71-1) and (72-1)) could be defined between
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the components of these matrices and the entries of column matrix S (67), for s = 0 (compatible with
¢£,§) =0, ¢'F) = 0), if and only if: iRZ500(x,1) = 0 and iFg, (x,t) = 0. This could be shown as follows:

Derivation Procedure iR*
—iR% o (x,1)

(uov1 — uyvp)w —iF} (%, 1)
(4200 — Hov2)w (First Quantization) 0 0 1yDy — gDy = 0,
§= - Ye=| iRt | YE=| iFxn || = . (95)
(w107 — upvy)w 00 1Rpt702(x, t) =0,iF5(x,t) = 0.
H il
0 iR 0 (%, ) iFg (x, 1)

where for appeared parametric condition: uyvy — ugv, = 0, as it would be shown in Remark 3
(in Section 3.12), it could be supposed solely: u, = v, vy = 1, implying conditions: Rys02 = 0 and
Fo2 = 0, which could be assumed for the field strength tensors Rpsy and Fyy in (1 + 2)-dimensional
space-time (without vanishing these tensor fields), based on their basic definitions given by Formulas
(71-1) and (72-1).

Hence, definite mathematical framework of our axiomatic derivation approach (presented in
Section 3.4), in addition to the time-reversal invariance (represented by the quantum operator (84)) of
source-free cases of general covariant field Equations (71) and (72), imply the (1 + 2)-dimensional case
of column matrices ¥z and Y given by relations (74) (where we assumed 4),[()5) =0, ¢(F ) = 0), could
be given solely as follows, to be compatible with the above assumed conditions (i.e., being compatible
with the mathematical framework of axiomatic derivation of field Equations (71) and (72), and also the
time-reversal invariance defined by quantum operator (84)), and consequently, as the column matrices
could be defined in the formulations of the fundamental tensor field Equations (71) and (72), respectively:

Rper10 Fio
Yr = 0 RS 0 (96)
Rpo21 Fy
0 0

The formulations (96) that are represented the column matrices ¥ and ¥r in the field
Equations (71) and (72) compatible with the above basic conditions, are also represented these matrices
in the field Equations (71) and (72) with non-zero source currents compatible with two basic conditions
(similar to above conditions) including a unique combination of the C, P and T symmetries (that
have been represented by quantum operators (83)—(85)) for these cases of field Equations (71) and
(72), and also the mathematical framework of axiomatic derivation of Equations (71) and (72). In fact,
as it has been shown in Remark 2 (in Section 3.11), the field Equations (71) and (72) with non-zero
source currents could have solely a certain combination (given by Formulas (86) and (87)) of the C,
P and T symmetries (that are represented by the operators (83), (84) and (85)). This unique combined
symmetry in addition to the unique formulations (96) of source-free cases of column matrices Y and
Yrin (1 + 2)-dimensional space-time, implies these matrices could take solely the following forms to
be defined in the formulations of the fundamental tensor field Equations (71) and (72) (with non-zero
source currents):

RpalO FlO ®
o 0 |y 0 I8 = —(v, + 20k, )R, o61)
R — R 7 F — F 7 ) -
i ol = (D k)
boo pF)

In the same manner, concerning the (1 + 4)-dimensional cases of column matrices Yr and Yr
(91), there would be a mapping between the entries of these matrices and entries (with the same

indices) of algebraic column matrix S (69), where s = 0 (compatible with (ng) =0, <p(F ) = 0), if and
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only if: iR;UlO(x,t) =0, iR;U41 (x,t) =0, iR*

soa1 (% 1) = 0,iR% 51 (x,£) = 0, iFjy (x, 1) = 0, iFy; (x, 1) = 0,
i (x,t) = 0, iF5 (x,t) = 0, ie.:

0021

[ (uov1 — uyvg)w | [ 0
(1ov1 — u10p) SR (0 h) .
B (2 71F43(x,t)
(1200 — ugv2)w R
ZiR* (%t -
(19v3 — uzvp)w iR, (%, 8) —iFp(xt)
0 71R;a41 (% 1) —iFj (%, )
UL0Y — UV )W —iR% (%, 1) —iF% (x,t
P 32
0 —iR%, (%, 1) —iF} (x,1) up=0,0,=0,
g IE)Fe'rivagon Prloca‘iw)e —iR’ oy (%, 1) —iF}, (x,1) iR 10(x, 1) =0, iFjp(x,t) =0,
irst Quantization Tk T
S = 0 — Yr = 0 , Y= 0 = lRpaZl(x/ t) =0, lFZl(x/ t) =0, (97)
(u304 — ugv3)w iR{10(%/t) iFp(x 1) iR? 5y (x, 1) = 0, iF} (x,) =0,
. s
(1204 — ugvr)w iR} 00 (%, 1) iFgp (x, ) iR? 4y (x,1) = 0, iFfy (x,) = 0.
(1104 — ugvy)w iRY 30 (%) iFy(x,t)
(upv3 — uzvy)w 0 0
. iFy (x, t
(w93 — uzvy)w 1R;(704(x,t) iFgy (x, 1)
0
(u10p — upvq)w 0 0
0
0 0 0

This means that in (1 + 4) space-time dimensions, the mathematical framework of our axiomatic
derivation approach (described in Section 3.4) in addition to the time reversal invariance (defined
by the quantum operator (84)) of the source-free case of the derived general covariant fundamental
field Equations (71) and (72) imply the column matrices ¥ and ¥ (76) (for 4)};5) =0, cp(F ) = 0)
could take solely the following forms (in general) to be defined in the formulations of the field
Equations (71) and (72):

0 0
Rpo02 Fop
Rpo30 F3o

0 0
Rp004 Foa

0 0

0 0

0 0

Yr= o |’ Yr= 0 (98)
Rpra3 Fy3
Rpra2 Fpp

0 0
Rpo32 F3

0 0

0 0

- 0 . L 0 -

which are equivalent to the (1 + 3)-dimensional source-free cases of column matrices ¥g and ¥r
(represented uniquely by Formulas (75)). In addition, similar to the formulations (96-1), as it has
been shown in Remark 2 (in Section 3.11), the field Equations (71) and (72) with non-zero source
currents have a certain (and unique) combination of the C, P and T symmetries (that have been defined
by the operators (83), (84) and (85)). This combined symmetry in addition to the forms (98), imply
also the (1 + 4)-dimensional cases of column matrices ¥ and ¥r represented by Formula (76) could
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take solely the following forms (in general) to be defined in the formulations of fundamental field

Equations (71) and (72):

0
Rp1702
Rpo30

0
Rpo04

| o]

Fop
F3o

(R) _ i\ (R)
I8 = — (v, + M0k, )R,
pov ( v | f( V)¢p0 (98—1)
I = —(Dy + M0k, )g(F)

Consequently, the (1 + 4)-dimensional cases of column matrices ¥ and ¥ that are originally given
by formulations (76), are reduced to Formulas (98-1) which are equivalent to the (1 + 3)-dimensional
cases of these matrices (given originally by column matrices of the forms (75)), i.e.,:

Rp(rl()
RpaZO
vaBO

0
Rp¢723

Rp(731

Rp¢712

Lo

Fio
Fxo
F3o

. (R
zm(())

kV)gbf()g)/

k,)pF).

]‘1(3512 = _(vv +

=

(98-2)

. (F)
1m0

JIEF) = _(Dv+ i

Moreover, as it would be also noted in Section 3.15, it is noteworthy to add that the tensor
field Rpsyy in column matrix Yg (98-2) (expressing the general representation of column matrices
definable in the formulation of (1 + 3)-dimensional case of general covariant field Equation (71)),
in fact, equivalently represents a massive bispinor field of spin-2 particles in (1 + 3) space-time
dimensions (which could be identified as a definite generalized massive matrix formulation of the
Einstein gravitational field, as it has been also shown in Section 3.6), and the tensor field F,;, in the
column matrix Yr (98-2) (expressing the general representation of column matrices definable in the
formulation of (1 + 3)-dimensional case of general covariant field Equation (72)), in fact, equivalently
represents a massive bispinor field of spin-1 particles in (1 + 3) space-time dimensions (which could

be identified as definite generalized massive formulation of the Maxwell electromagnetic field, as it
has been also shown in Sections 3.6 and 3.9; and also Yang-Mills fields compatible with specific gauge
groups, as it would be shown in Section 3.15).
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Summing up, in this Section (Section 3.12) we showed that the axiomatic approach of derivation
of the field Equations (71) and (72) (described in Sections 3.1, 3.3 and 3.4) in addition to their time
reversal invariance (represented basically by the quantum operator (84)), imply these fundamentally
derived equations could be solely defined in (1 + 2) and (1 + 3) space-time dimensions. “Hence, based
on the later conclusion and also the basic assumption (3) (defined in Section 3.1), we may conclude directly that
the universe could be realized solely with the (1 + 2) and (1 + 3)-dimensional space-times, and cannot have more
than four space-time dimensions.”

Based on the axiomatic arguments and relevant results presented and obtained in this Section,
in the following Sections we consider solely the (1 + 2) and (1 + 3)-dimensional cases of general
covariant field Equations (71) and (72) that are defined solely with the column matrices of the
forms (96-1) and (98-2).

Equivalent (Asymptotically) Representations of the Bispinor Fields of Spin-3/2 and Spin-1/2
Particles, Respectively, by General Covariant Field Equations (71) and (72) (Formulated Solely with
Column Matrices of the Types (96-1)) in (1 + 2) Space-Time Dimensions

It is noteworthy that according to the Ref. [52] and also based on the basic properties of the
Riemann curvature tensor Ry, in (1 + 2) space-time dimensions [53] (in particular the identity:

Roouy = e’gaewﬁ Gf , where GE is the Einstein tensor and), it would be concluded that Rys,y which is
defined by (1 + 2)-dimensional case of the general covariant massive field Equation (71) (which
could be defined solely with a column matrix of the type Yz (96-1)), represents asymptotically
a general covariant bispinor field of spin-3/2 particles (that would be asymptotically equivalent
to the Rarita-Schwinger equation). In a similar manner, according to the Ref. [52], and also
following the basic properties of field strength tensor F,, in (1 + 2) space-time dimensions (that
as a rank two anti-symmetric with three independent components holding, in particular, the identities:
Fu = epa T, T* = (1/ Z)S“VVFW, showing that F,;, could be represented equivalently by a vector
T* with three independent components as well) it would be concluded that F,,, which is defined by
(1 + 2)-dimensional case of the general covariant massive (tensor) field Equation (72) (which could
be defined solely with a column matrix of the type Yr (96-1)), represents asymptotically a general
covariant bispinor field of spin-1/2 particles (that would be asymptotically equivalent to the Dirac
equation [52]). Furthermore, as shown in Section 3.15, the general covariant field Equations (72)
(representing asymptotically the spin-1/2 fermion fields) is also compatible with the SU(2); @ U(2)r
symmetry group (representing “1 + 3” generations for both lepton and quark fields including a new
charge-less fermion).

Remark 3. Equivalent Representations of the Bispinor Fields of Spin-2 and Spin-1 Particles,
Respectively, by General Covariant Field Equations (71) and (72) (Defined Solely with Column
Matrices of the Types (98-2)) in (1 + 3) Space-Time Dimensions

It should be also noted that according to the Refs. [5-7,51,54-56], the basic properties of the
Riemann curvature tensor including the relevant results presented in Section 3.6, it would be concluded
that the field strength tensor Rysyv (i.e., the Riemann tensor) the in (1 + 3) space-time dimensions by
general covariant massive (tensor) field Equation (71) (formulated solely with a column matrix of
the type Y (98-2)), represents a general covariant bispinor field of spin-2 particles (as a generalized
massive formulation of the Einstein gravitational field equation). In a similar manner, according
to the Refs. [5-7,51,54-56], the field strength tensor F,, which is defined in (1 + 3) space-time
dimensions by the general covariant massive (tensor) field Equation (72) (formulated solely by a
column matrix of the type Yr (98-2)), and represents a general covariant bispinor field of spin-1
particles (representing new generalized massive formulations of the Maxwell’s equations, and also
Yang-Mills field equations). Furthermore, as it would be shown in Section 3.15, the general covariant
tield Equation (72) (representing the spin-1 boson fields coupling to the spin-1/2 fermionic currents) is
also compatible with the SU(2); ®U(2)r and SU(3) symmetry groups.
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Moreover, based on these determined gauge symmetries for the derived fermion and boson
field equations, four new charge-less spin-1/2 fermions (represented by “ze , zn ; zu , 24", Where two
right-handed charhe-less quarks z, and z4 emerge specifically in two subgroups with anti-quarks
such that: (5, T, b, zy) and (G, d, t, zq)), and also three new massive spin-1 bosons (represented by

~ ~ — —
W+, W™, Z, where in particular Z is the complementary right-handed particle of ordinary Z boson),
are predicted uniquely by this new mathematical axiomatic approach.

3.13. Showing that Only a Definite Simultaneous Combination of the Quantum Mechanical Transformations C,

P, T and v". (Given Uniquely by the Matrix Operators (83)~(87)) Could Be Defined for the General Covariant
Massive (Tensor) Field Equations (71) and (72) with Non-Zero Source Currents

As it has been shown in Remark 1 (in Section 3.11) and Section 3.12, since the algebraic
column matrix S in the matrix Equation (64) (derived and represented uniquely in terms of the
matrices (66)—(70), ... corresponding to various space-time dimensions), is not symmetric by
multiplying by matrix ¥C" (84-1) and (84-2) (except for (1 + 2) and (1 + 3)-dimensional cases of column
matrix S, based on the definite algebraic properties of matrix S presented in Remark 1 in Section 3.3), it is
concluded that except the (1 + 2) and (1 + 3)-dimensional cases of the fundamental field Equations (71)

and (72), these field equations could not be defined with column matrices of the type ‘I’%Ch) (= v“"¥R)

and ‘I’éCh) (= 'yCh‘I’ r) (if assuming that the column matrices ¥ g and ¥ are defined with field Equations
(71) and (72), i.e., they have the formulations similar to the formulations of originally derived column
matrices (73)-(77), ... corresponding to various space-time dimensions). This conclusion follows
from this fact that the filed Equations (71) and (72) have been derived (and defined) uniquely from
the matrix Equation (64) via the axiomatic derivation approach (including the first quantization
procedure) presented in Sections 3.4 and 3.5. As it has been shown in Section 3.12, using this property
(i.e., multiplication of column matrices Y and Y, defined in the unique expressions of fundamental
field Equations (71) and (72), by matrix <" from the left), this crucial and essential issue is concluded
directly that by assuming the time-reversal invariance of the general covariant filed Equations (71)
and (72) (represented by the transformations T¥ and T¥r, where the quantum operator T is given
uniquely by Formula (84), i.e.; T = T,K = iy"y“"K), these fundamental field equations could be
defined solely in (1 + 2) and (1 + 3) space-time dimensions (with the column matrices of the forms (96-1)
and (98-2), respectively).

Hence, the definite mathematical formalism of the axiomatic approach of derivation of
fundamental field Equations (71) and (72), along with the C, P and T symmetries (represented by
the quantum matrix operators (83)—(87), in Section 3.11) of source-free cases (as basic cases) of these
equations, in fact, imply these equations with non-zero source currents, would be invariant solely
under the simultaneous combination of all the transformations C, P, and T (83)—(85), multiplied by
matrix 7" (defined by Formulas (84-1) and (84-2)). This unique combined transformation could be
expressed uniquely as follows, respectively, for the particle fields (represented by column matrices
Yr(—7,t), ¥p(—7,t)) and their corresponding antiparticle fields (represented by column matrices
Ye(r,—t), ¥ (7, —t) given solely with reversed signs of the temporal and spatial coordinates):

- A A —

Zecomp¥r(—7,t) = —y"TPC ¥R(—7,1), ©9)
- A A N

ZcompYr(—71,t) = —yMTPC Yp(—71,t);

S - A N

Zeomp¥r (7, —t) = M TPC Wi (7, —t), (100)

=4 AA A —

Zcomp¥r(r,—t) = Y TPC YL (7, —t)

The unique combined form of transformation Zcomp (99) (and also Z;OMB (100), where
Zcoms = —2co Mp) is based on the following two basic issues:
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Firstly, it follows from the definite formulations of uniquely determined column matrices (73)—(77),

. (corresponding to various space-time dimensions, however, as noted above, based on the arguments
presented in Section 3.12, the only definable column matrices in the formulations of field n, are of
the types Yr and Yr represented by Formulas (96-1) and (98-2), in (1 + 2) and (1 + 3) space-time
(F)

dimensions, respectively), where the source currents ]pm, and J, ’ should be expressible by these

conditional relatlons (in terms of the arbitrary covariant quantities 4>,§§) and ¢F), respectively:

]551), = (V + lmo ky )4),(,5), LEF) = —(vv ,)¢F). In other words, the unique formulation of
derived combmed symmetries Zcoyp and Zcoump represented by the quantum operators ZCoMB

(99) and Zcopp (100), in particular, is a direct consequent of the above conditional expressions for

source currents ]F(,(I,{B and ]y:). As noted in Section 3.5, these relations appear as necessary conditions
in the course of the axiomatic derivation of general covariant field Equations (71) and (72). In fact,
in the field Equations (71) and (72) the uniquely derived column matrices Yz and ¥r (73)-(77), ...,
not only contain all the components of tensor fields R,y and Fyy, but also contain the components

of arbitrary covariant quantities 47,(75) and ¢(F) (as the initially given quantities) which define the

~ . (R
source currents ]1(753 and jﬁp) by the above expressions, respectively, i.e.,: ]553 =—(V,+ ng ku)cpél;),
- . (F)
y: )= _ (V, + ng k,)$F). Now based on these conditional expressions in addition to this natural

and basic circumstance that the source currents J, ,553 and ],SF) should be also transferred respectively as
arank three tensor and a vector, under the parity, time-reversal and charge conjugation transformations
(defined by Formulas (83)—(85)) of the field Equations (71) and (72), it would be concluded directly
that the transformations (99) and (100) are the only simultaneous combinations of transformations C,
P, T (also including the matrix 7", necessarily, as it would be shown in the following paragraph),
which could be defined for the field Equations (71) and (72) with “non-zero” source currents.

Secondly, appearing the matrix operator 7" in simultaneous combinations —y“*TPC and
¥“"TPC in the combined transformations (99) and (100), follows simply from the basic arguments
presented in Section 3.12. In fact, in these uniquely determined combinations, the simultaneous
multiplication by matrix ’yCh (from the left) is a necessary cond1t10n for that the transformed column
matrices: ZCOMB‘YR(_ r, i’) ZCOMBIFR< r, —t) ZCOMBTF(_ r, t) ZCOMB‘PP( r, —t) (glven bythe
transformations (99) and (100)) could be also defined in the field Equations (71) and (72), based
on the formulations of column matrices (96-1) and (98-2), as mentioned in Section 3.12 (however, it
is worth notingthat this argument is not merely limited to the definability of column matrices of the
types (96-1) and (98-2), and it could be also represented on the basis of unique formulations of all the
originally derived column matrices (73)-(77), ... corresponding to various space-time dimensions).

In the next Section, we show how the ‘CPT’ theorem in addition to the unique formulations of
the combined transformations (99) and (100) (representing the only definable transformation forms,
including C, P and T quantum mechanical transformations, for the field Equations (71) and (72) with
“non-zero” source currents), imply only the left-handed particle fields (along with their complementary
right-handed fields) could be coupled to the corresponding (any) source currents.

3.14. Showing that Only the Left-Handed Particle (along with Their Complementary Right-Handed
Antiparticle) Fields Could Be Coupled to the Corresponding Source Currents

On the basis of the ‘CPT’ theorem [6,7], it would be concluded directly that the unique
combined forms of transformations (99) and (100) (representing the only combination of C, P, and T
transformations multiplied by matrix 7", that could be defined as a symmetry for general covariant
field Equations (71) and (72) with non-zero source currents), should be equivalent only to simultaneous
combination of C, P, and T transformations (that have been defined uniquely by Formulas (83)—(85)).
Moreover, based on the ‘CPT’ theorem, the simultaneous combination of transformations C, P, and T
should: “interchange the particle field and its corresponding antiparticle field; inverts the spatial
coordinates ¥ — — 7 ; reverse the spin of all particle fields; leave the direction of the momentum



Universe 2017, 3, 67 56 of 74

invariant; and, therefore, should interchange the left-handed and right-handed components of both
particle field and its corresponding antiparticle field”. Hence, we should have:

Zeom[¥r(— ) (Left) = — Y TPEER(= 7)) (1efty = — 1M FR (P (Right) = (¥R (7)) (ight): 1o1)
ZCOMB[‘YF(—7)](Left) = —WCthC[‘YF(—7)}(Left) = _'YCh[‘P;—"(7)](Right) = [‘Yp(7)](1<ight);
Zeoms[¥r(— ) (rignty = — 7" TPEIFR(= 1) (righty = 7" ¥R (P (Lefty = [¥R(F)(Lefe): 102)
Zeom[¥r (=) (rignty = — Y TPEYr(— 7)) (rignty = Y T¥E(F) (ef) = (¥ () (Lefnys

Zeoms[¥R (M) (epn) = YHTPEY R (F)] (Legr) = Y ¥R(— 7)) (Righ) = [¥R(— )] (ight): 03
ZCOMB[T/F(7)](Left) = WCthC[T%(7)](Left) = Y (—7 |(Right) = [‘I’F(*7)](Right)?
Zeoms [ (F))(rignty = Y TPETR (7)) (Righty = T ER(— 7)) zefty = [FR (=7 )] (Lepr),

(104)

A

Zeoms ¥ (M) righn) = Y TPEYE(F)) (Righty = T EE (=7 ) (rep) = [¥F (= 7)) (Lefr)-
—

where the column matrices ¥g(— ) and ¥p (—7) represent the particle field and ¥} (7 ) and ¥} (7)

denote the transformed forms of column matrices of ‘I’R(—7) and ¥Yr ( —7), respectively, under

the simultaneous combination of transformations C, P, and T (83)—(85). Furthermore, in agreement
and based on the definitions and properties of quantum operators C, P, T and matrix 7" given by
Formulas (83)-(87), the left-handed and right-handed components of column matrices of the types
(96-1) and (98-2) (representing the unique formulations of column matrices that could be defined in the
field Equations (71) and (72), as mentioned in Section 3.12) are defined solely as follows for the column

—
—r

matrices Yr(—7), ¥r (77) and also ‘I’%(?), ‘I”F(7) (as the transformed forms of column matrices

Yr( —7) and ¥r (—7) under the CPT transformation, respectively):
[Fr (= erry = 3¥r (= 7)1 (= 7)), (= (=) irighy = 2[¥=(=7) = 7" ¥R (= 7)), (105)
(¥ (=P izerry = 0¥ (=) +21Fe (= ) DBr (=) migny = 20¥6 (=) =79 (= 7))
— — — —
YR () rern) = 3[¥(7) + Y] (V)]/ [‘YR(V)](Rigm) = 3[¥r(7) — ¥R (7)) (106
— — — —
5 (P ))icery = 3 (F) +95 (D) ¥ (] rigny = 305 (F) =75 (7))
where we have:
¥r(=7) = (¥R (=)o + ¥R (=P liwigny, Fr(=7) = Fr(= Pl zep) + ¥ (=) rign) 107)
Ve (—7) = [¥r (= F))iree) + [¥r *7)](Rzgm)/ ‘Y%(*m— (95 (= ) (ep) + (¥ (= 7)) (Right)-

Now using the definitions (105) and (106) in the Formulas (101)—(104), we obtain:
YOER(=F )] (tepry = 37 ER (= 7) + 7R (= 7)) = Ly ¥R(=7) + ¥R(=7)] = [¥r(= )] epry (o)
YOEE(= ) ey = 21 EE (= 7) + 21 (= 7)) = AR (= 7) + ¥r(= 7)) = [¥r(= 7 ) epry

Y ER (=7 ) (rignn) = 37 ¥R (= 7) =1 ¥R (= 7)) = IR (= 7) = ¥R(=7)] # [FR(— )] Right) (1021
YO EE (= 7)) righ) = 31 e (=) =79 (= 7)) = A CER (= 7) = ¥r(= 7)) £ [¥E(= )] (Rigty

(P = 31 (1)1 (P =3P () = (A P
~ (D ey = =3 R (F) + 79 (7)) = 2=y (7) = ¥ () # (7)) ey
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— 7R ()] rign) = — 37 [¥r (F) = 1R (7)) = F=r ¥R (F) + ¥ (F)] = ¥R (D) (rigs
— YR (P ighe) = — 37 TR (F) = R (7)) = Fl=r 5 (7) + ¥ (F)] = [¥0(F) ] rignn-

Based on the relations (101-1)—(104-1), it would be concluded directly that only the left-handed
— — .
=7 )Mrefry, [¥F(=1)](1ef1), and the right-handed
components of their corresponding antiparticle fields represented by [‘I’%(?)] (Right)” [‘I’}(?)] (Right)
(as the transformed forms of column matrices [‘I’R(—?)](Left) and [‘I’p(—?)](uﬂ) under the C P T
transformation, respectively), obey the transformations (101-1) and (104-1) (as the necessary conditions
given respectively by relations (101) and (104)). On the other hand, the right-handed components of
particle fields represented by [¥g(—7)] (Right)” [¥r(—7)] (Right)- and the left-handed components of
their corresponding antiparticle fields represented by [‘I’%(?)] (Left)r [‘-P’F(7)] (Left) (as the transformed

(104-1)

components of particle fields represented by [¥r(

forms of column matrices [‘I’R(—7)](Right) and [TF(_?)](Right) under the C P T transformation,
respectively), obey the transformations (102-1) and (103-1) (as the necessary conditions given
respectively by relations (102) and (103)). Hence (and also following the basic assumption (3) defined
in Section 3.1), it is concluded directly that only the left-handed particle fields (along with their
complementary right-handed fields) could be coupled to the corresponding (any) source currents.
This means that only left-handed bosonic fields (along with their complementary right-handed
fields) could be coupled to the corresponding fermionic source currents; which also means that
only left-handed fermions (along with their complementary right-handed fermions) can participate
in any interaction with the bosons (which consequently would be only left-handed bosons or their
complementary right-handed bosons).

3.15. Showing the Gauge Invariance of Axiomatically Derived General Covariant (Tensor) Field Equation (72)
in (1 + 2)-Dimensional Space-time (Definable with Column Matrices of the Type Y (96-1), Representing the
Spin-1/2 Fermion Fields) under the SU(2); @U(2)r Symmetry Group, and also Invariance of This Equation in
(1 + 3)- Dimensional Space-time (Definable Column Matrices of the Type Y (98-2), Representing the Spin-1
Boson Fields Coupled to the Fermionic Source Currents) under the SU(2)p @U(2)g and SU(3) Symmetry Group

One of the natural and basic properties of the (1 + 2)-dimensional space-time geometry is that the
metric tensor can be “diagonalized” [57]. Using this basic property, the invariant energy-momentum
quadratic relation (52) (in Section 3.1) would be expressed as follows:

2
8%(po)* — 82" + &M (p1)* + g2 (p2)> = 0 (108)

that is equivalent to: goo(p0)2 + g“(m)2 + gzz(pz)2 = (mgc)?, where (as defined in Section 3.1) g
and p, are the particle’s rest mass and momentum (3-momentum), pff = moky, and ky = (ko,0,0) =
(c/+/g%,0,0) denotes the covariant form of the 3-velocity of particle in stationary reference frame.
As it would be shown in the following, a crucial and essential property of the quadratic relation (108)
is its invariance under a certain set of sign inversions of the components of particle’s momentum:
(po, p1, p2), along with similar inversions for the components: (pgl, pf, p3!), where p§' = moko, p5' =
pst = 0. This set includes seven different types of the sign inversions (in total), which could be
represented simply by the following symmetric group of transformations (based on the formalism of
the corresponding Lorentz symmetry group of invariant relation (108)), respectively:

(Po, 15, p1, p2) = (po, P, —p1,p2) = (p$Y, p ™, p1, pi1)) (108-1)
(Po, 15, p1,p2) = (po, P, pr —p2) = (0, Py @, p2), p?) (108-2)
(Po. B, p1,p2) = (po, pi —p1, —p2) = (b5, o5, p), pi?)) (108-3)

(Po, 1, p1,p2) = (—po, =1, —p1, —p2) = (32, o, pl, i) (108-4)
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(Po, 18 p1 p2) = (—po, — it pr —p2) = (p§ @), p, pS) (108-5)
(Po, 15 p1 p2) = (=po, =8, —p1,p2) = (p, ), pl®, pi®) (108-6)
(Po, 15 p1 p2) = (=po, =it prp2) = (05, 057, 07, ) (108-7)

Moreover, although, following noncomplex- algebraic values of momentum’s components p,
(P, = py), the corresponding complex representations of transformations (108-1)-(108-7) is not a
necessary issue in general, however, if the invariant relation (108) is represented formally by equivalent
complex form:

g0 (pops) — 8% (piipe™) + 8 (p1pi) + 82 (p2p3) =0 (108-8)

then, along with the set seven real-valued transformations (108-1)—(108-7), this relation would be also
invariant under these corresponding sets of complex transformations (fora = 1,2,3,...,7):

(po P8 w1, p2) = Cripl" iy " ipl™" £ipy")pi, i piws) — Gripg”, Fipy ™ wipl”, Fipy))  (108-9)
As the next step, in the following, using the transformations (108-1)—(108-7) (along with their
corresponding complex forms (108-9)), a certain set of seven simultaneous (different) general covariant
field Equations (corresponding to a group of seven bispinor fields of spin-1/2 particles) would be
determined as particular cases of the (1 + 2)-dimensional form of general covariant field Equation (72)
(defined with a column matrix of the type (96-1)).

Based on the definite formulation of (1 + 2)-dimensional case of system of linear Equation (64)
(formulated in terms of the matrices (67)), for the energy-momentum relation (108) (along with the
transformations (108-1)—-(108-7)), the following set of seven systems of linear Equations (with different
parametric formalisms) is determined uniquely. The general parametric solution of each of these
systems of linear equations, obeys also the quadratic relation (108) (representing a set of seven forms,
with different parametric formulations, of the general parametric solutions of quadratic relation (108)).
This set of the seven systems of linear equations could be represented uniformly by a matrix equation
as follows:

(ap — mPark,)s@ =0 (109)
wherea =1,2,3,...,7, p;t(”) = m(()a)ky, at and &# are two contravariant 4 x 4 real matrices (compatible

with matrix representations of the Clifford algebra C/; ) defined solely by Formulas (65) and (67),
and parametric column matrix (@ is also given uniquely as follows (formulated on the basis of definite
parametric formulation of column matrix S (67) in (1 + 2) space-time dimensions):

[ ( (a) (a) _ (a) (a)

Uy vy — Uy Oy )W
(@) (@) _ (@) (a)
s _ | (2% ~Hp v )w (109-1)
(@ _ 0l

u vy —uy vy )w

S

which includes seven cases with specific parametric formulations expressed respectively in terms
of seven groups of independent arbitrary parameters: u(()”), ugu), u§u>, v(()a>, ZJEH), vé”), and two common
arbitrary parameters s and w (i.e., having the same forms in all of the seven cases of column matrix
S(@). In addition, concerning the specific parametric expression (109-1) of column matrix S in the
formulation of matrix Equation (109), it is necessary to add that this parametric expression has been
determined specifically by assuming (as a basic assumption in addition to the systematic natural
approach of formulating the matrix Equation (109), based on the definite formulation of axiomatically
determined matrix Equation (64)) the minimum value for total number of the arbitrary parameters in all

of seven cases of column matrix $(%), which implies equivalently the minimum value for total number
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of the arbitrary parameters in all of seven simultaneous (different) cases of matrix Equation (109)
(necessarily with seven independent parametric solutions representing a certain set of seven different
equivalent forms of the general parametric solution of quadratic relation (108), based on the general
conditions of basic definition of the systems of linear equations corresponding to homogeneous
quadratic and higher degree equations, presented in Section 2, and Sections 2.2-2.4 and 3.1 concerning
the homogenous quadratic equations).

In the following, in the derivation of the corresponding field Equations (from matrix Equation (109)),
we will also use the above particular algebraic property of parameters s which has been expressed
commonly in the expressions of all of seven simultaneous cases of matrix Equation (109) (and as shown
below, concerning the (1 + 3)-dimensional corresponding form of matrix Equation (109), which holds
the similar property).

In addition, along with the transformations (108-1)-(108-7) and algebraic matrix Equation (109),
using the corresponding complex transformations (108-9), we may also formally have the following
equivalent matrix Equation (with the complex expression):

(i p{* — im{V@k,)5@ = 0 (109-2)
wherea = 1,2,3,...,7, and pi,t(“) = m(()“)ky. Although, based on the real value of momentum pg)‘)
(pi,“) = p;(”) ), the complex expression of each of the seven cases of algebraic matrix Equation (109),

definitely, is not a necessary issue at the present stage. However, since the corresponding momentum
operator ﬁ;(f) has a complex value (where ﬁy) #+ ﬁ;(”)), in the following, using this basic property of
the momentum operator, we derive a certain set of seven different simultaneous general covariant field
equations from the matrix Equations (109) and (109-2) (based on the general axiomatic approach of
derivation of general covariant massive field Equation (72), presented in Sections 3.4-3.10 in addition
to certain forms of quantum representations of the C, P and T symmetries of this field equation,
presented in Sections 3.11-3.14). Furthermore, in the following, it would be also shown that the
uniform representation of this determined set of seven simultaneous field equations, describe a certain
group of seven simultaneous bispinor fields of spin-1/2 particles (corresponding, respectively, to a
new right-handed charge-less fermion in addition to three right-handed anti-fermions, along with
their three complementary left-handed fermions).

Furthermore, concerning the gravitational field Equation (71), it should be noted that following
from the fact that the general covariant field Equation (71) should describe, uniquely and uniformly,
the background space-time geometry via a certain form of the Riemann curvature tensor (which should
be determined from the tensor field Equation (71)), the matrix Equation (109) could not be used for the
derivation of a set of simultaneous different spin-3/2 fermion fields in (1 + 2) dimensions (there would
be the same condition for the field Equation (71) in higher-dimensional space-times).

Hence, based on the axiomatic approach of derivation of (1 + 2)-dimensional case of field
Equation (72) (defined solely by a column matrix of the form (96-1) in (1 + 2) space-time dimensions,
as shown in Section 3.12), from the matrix Equation (109) and (109-2) (defined solely by column matrix
(109-1)), and also taking into account the momentum operator’s property: p, # py, the following
group of seven simultaneous (different) general covariant field equations could be determined:

(i D) — m{Dark, ¥ =0 (110)

specifying by the following group of transformations (based on the corresponding group of
transformations (108-1)—(108-7) and (108-9)), for f =1,2,3,...,7, respectively

(D(()l)/m(()l)/ Dgl)/ Dél)) = (DO/ mgy, —Dy, D2) (110-1)

(Déz), m(()z), D§2)/ D£2)) = (DO/ My, Dlr _DZ) (110-2)
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(O, 2,02 D) = (D Dy, D) (109
(0§, m{?, DY, DY) = (—iD§, —imy, —iD;, —iD3) (110-4)
(0P, ml, D, Dy = (=D, —imq, iD;, —iD3) (110-5)
(D, ml®, DI, DIy = (—iD, —img, —iDs,iD3) (110-6)

(DY, m{7, D\, D"y = (=iD}, —imy,iD5,iD3) (110-7)

) would be also given as follows (based on the definite formulation of
column matrix ¥ (96-1) in Section 3.12, expressing the general representation of column matrices
definable in the formulation of (1 + 2)-dimensional case of general covariant field Equation (72)):

where the column matrix ‘I’g:f

£

(f) 100 (f) () img)

A N I i 7 k)¢ (110-8)
¢r

where in all of the seven simultaneous cases of field Equation (110) defined respectively by the
column matrices ‘I’ (110 8) (for f = 1,2,3,...,7), the scalar quantity ¢r (that as a given initial

quantity, defines the source currents ]V (110-8)), necessarily, has the same value, based on the definite
parametric formulation of the algebraic column matrix (109-1) (in particular, the common form of the
corresponding arbitrary parameter s in the expressions of all of the seven simultaneous cases of matrix
Equation (109)).

Following the definite formulations of set of seven general covariant (massive) field Equations
(110) (specified, respectively, by the group of seven transformations (110-1)—(110-7)), the set of these
could be represented uniformly by the following general covariant field equation as well (defined
solely in (1 + 2) space-time dimensions):

(iha* D), — moat'ky)¥p = 0 (110-9)

where the column matrix ¥ given by:
im —

Y= Ju=—(D, + Toky)% (110-10)

and the field strength tensor F,,, scalar ¢, along with the source current ], are defined as follows:

im 7 (f)
2 D5 ~L(D, + k) Z (o + ¢F_2]y =], (110-11)
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1
where [ is the 2 x 2 identity matrix, and TF = 7f (for f =1,2,3,...,7) are a set of seven 2 x 2 complex
matrices given by,

I
y=2{ o o Iy 3= o o ) (110-12)

Is, lg, Iy
0 1 0 —i 1 0
1 0| i 0 | 0 -1

which as would be shown in the following, represents uniformly a combined gauge symmetry group
of the form: SU(2), ®U(2)r , where the sub-set of three matrices “1q, 7o, 73" corresponds to SU(2),
group, and subset of four matrices “14, 75, T4, T7” corresponds to U(2)r group.

Now based on the matrix formulation of field strength tensor F,,, (defined by the general covariant
field Equation (110-9)), and on the basis of C, P and T symmetries of this field Equation (as a particular
form of the (1 + 2)-dimensional case of field Equation (72)) that have been represented basically
by their corresponding quantum operators (in Sections 3.5-3.14), it would be concluded that the
general covariant field Equation (110-9) describes uniformly a group of seven spin-1/2 fermion fields
corresponding to, respectively: “three left-handed fermions (for f = 1,2,3), in addition to their
three complementary right-handed anti-fermions (for f = 5, 6,7), and also a new single charge-less
right-handed spin-1/2 fermion (for f = 4).” Hence, following the basic algebraic properties of
seven matrices 7r (110-12), and the gauge symmetry group of the type: SU(2)L®U(2)r generated
by these matrices, the three matrices 17, 7o, 73 (corresponding with SU(2);) represent respectively
“three left-handed fermions”, and four matrices 4, 75, 76, 77 (corresponding with U(2)r) represent
respectively: “a new single right-handed charge-less spin-1/2 fermion, and three right-handed spin-1/2
fermions as the complementary particles of the three left-handed spin-1/2 fermions represented by
matrices 11, T, 13”.

Furthermore, as noted previously and shown below, as a natural assumption, by assuming the
seven types of spin-1/2 fermion fields that are described by general covariant field Equation (110-9),
as the source currents of spin-1 boson fields (that will be represented by two determined unique groups
describing respectively by general covariant field Equations (114-4) and (114-5)), it would be concluded
that there should be, in total, four specific groups of seven spin-1/2 fermion fields (each) with certain

properties, corresponding to “1 + 3” generations of four fermions, including two groups of four leptons
each, and two groups of four quarks each. Moreover, based on this basic circumstances, two groups
of leptons would be represented uniquely by: “[(vy, €7, V1), (Vu, €, Ve Ze)] and [(n™, Ve, T7), (1,
Ve, T", zn)], respectively, where each group includes a new single right-handed charge-less lepton,
represented by: ze and z,”; and two groups of quarks would be also represented uniquely by: “[(s, u, b),
(s, U, b, zo)] and [(c,d, 1), (c, d, T, zq)], respectively, where similar to leptons, each group includes a
new single right-handed charge-less quark, represented by: z, and z4”. In addition, emerging two
right-handed charhe-less quarks z, and zq specifically in two subgroups with anti-quarks (5, U, b, zy)
and (¢, d, t, zg), could explain the baryon asymmetry, and subsequently, the asymmetry between
matter and antimatter in the universe.

Assuming the spin-1/2 fermion fields describing by general covariant massive field
Equations (110-9) (defined by column matrix (110-10) in (1 + 2) space-time dimensions with a
digonalized metric), as the coupling source currents of spin-1 boson fields (describing generally
by (1 + 3)-dimensional case of general covariant field Equation (72) formulated with a column matrix
of the type Yr (98-2)), it is concluded that the (1 + 3)-dimensional metric could be also diagonalized for
corresponding spin-1 boson fields. This conclusion follows directly from the above assumption that
the (1 + 3)-dimensional metric of spin-1 boson fields (coupled to the corresponding fermionic source
currents) would be also partially diagonalized such that for u, v =0, 1,2 and y # v: gy = 0, which
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subsequently impliy go3 = g13 = g23 = 0. Hence, the invariant energy-momentum relation (52) will be
expressed as follows in (1 + 3)-dimensional space-time with diagonalized metric:

g% (p0)* — g% (p)” + g (1) + &2(p2)* + 3 (p3)* = 0 (111)

that is equivalent to: g% (po) + ¢ (p1)* + §2(p2)* + &% (p3)* = (moc)?, where (similar to the (1 + 2)-
dimensional case in Section 3.1) m, and p, are the particle’s rest mass and momentum (4-momentum),
p?f = moky, and k;, = (ko,0,0,0) = (c/ \/@, 0,0,0) denotes the covariant form of the 4-velocity
of particle in stationary reference frame. Now similar to the transformations (108-1)-(108-7), as it
would be shown in the following, a crucial property of the quadratic relation (111) would be also
its invariance under two certain sets of sign inversions of the components of particle’s momentum:
(po, 1, pz, p3), along with similar inversions for the components: p§/, p3’, p3/, p§f (as particular cases),
where p§f = moko, pj' = p5' = p§' = 0. The first set of these includes seven different odd types of the
sign inversions (i.e., with odd inversions), and the second set includes eight different even types of
the sign inversions (i.e., with even inversions), which could be represented simply by the following
two symmetric groups of transformations (based on the formalism of the Lorentz symmetry group of
invariant relation (111)), respectively:
The first group includes,

(po, P&, p1 2, p3) = (po, it —pr —paops) = (08 oy, ptY, o, ps1) (111-1)

(po, P& P P2, p3) = (po i 1 —p2—p3) = (p pg 2 pP, 05 o) (111-2)

(po, P& P, P2, p3) = (po, i —prpa—pa) = (08 pg O 0, 05 o) (111-3)

(o, 5 p1 2, p3) = (=po, =i —p1 —p2 —p3) = (057, oy o, o3, b)) (111-4)
(po, 3, p1 P2, p3) = (—po,— P pr b2 —p3) = (05 05, 0, 08, b)) (111-5)
(po, P P P2, p3) = (—po,— 18 —prp2ps) = (0 g @t o, p) (111-6)
(po, P P P2, p3) = (—po,— 18 pr—p2ps) = (05 g Op) 0y, ) (111-7)

And the second group is given by, respectively:

8 8

(Po, P&, P12, p3) = (po. v —p1 2 ps) = (08 g, 1, 03 b)) (111-8)

9 9 9
(Po, 15 P12, 13) = (po, P, p1, —p2,p3) = (08, 05, 01, 8, ) (111-9)
(po, 1§, 1, P2, p3) = (p0, 15, 1, pas —p3) = (p{0, pi 10, {10 p{10), 100 (111-10)
(Po, 15, P1, P2 p3) = (Po, P, —p1, —p2, —p3) = (5, pr Y, pitH pith) pltiy (111-11)
(Po, B, p1, P2, p3) = (—po, — 18 p1 p2 1) = (32, 32, o2, 2, p2)) (111-12)
(Po, B, p1, P2, p3) = (—po, — 15 p1, —p2, —p3) = (P52, pf ) p{13) pi13) pl13)y (111-13)
(Po, B, P1, P2, p3) = (—po, — 15, —p1 p2, —p3) = (p54, pf 04, pl14) pi14) plia)y (111-14)
(Po, P 1 P2, 13) = (=0, =P8, —p1, =2, p3) = (05, il 19, 1) p{19) p{1%)) (111-15)

where, similar to the transformations (108-9) (as equivalent complex representations of the
determined group of transformations (108-1)—(108-7), in (1 + 2)-dimensional space-time), following
noncomplex-algebraic values of momentum’s components p,(p, = p,,), the corresponding complex
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representations of transformations (111-1)—(111-15) is not a necessary issue in general, however, if the
invariant relation (111) is represented formally by equivalent complex form:

P (pops) — &% (pilp™) + & (p1pi) + 82 (p2p3) + 82 (p3p3) = 0 (111-16)

then, along with the set fifteen real-valued transformations (111-1)-(111-15), this relation would be
also invariant under these corresponding sets of complex transformations (for b = 1,2,3,...,15):

. (b)x . b)x . (b)x . (b)* . (b)x
(Po 5 P1 Do ) — (ipl, 2ips ™, £iplV*, +ipl"*, +ipl""),

stk (b) st(b) (b) (b) (b)

. S . ; ‘ , , (111-17)
(po, Py P15, p3) — (Fipy ', Fipy  Fipy , Fipy ', Fipy ')

In addition, in the following, we show that using the transformations (111-1)—(111-15) (along with
their corresponding complex forms (111-17)), a set of fifteen different general covariant field equations
would be determined, including two certain groups of simultaneous field Equations (corresponding,
respectively, to a group of seven bispinor fields and a group of eight bispinor fields of spin-1 particles)
as the particular cases of the (1 + 3)-dimensional form of field Equation (72) (defined with a column
matrix of the type (98-2)).

Similar to the set of seven algebraic matrix Equations (109) (determined uniquely as the algebraic
equivalent matrix representation of the energy-momentum relation (108)), based on the definite
formulation of the system of linear Equation (64) in (1 + 3) space-time dimensions (formulated in
terms of the matrices (68)), for the energy-momentum relation (111) (along with the transformations
(111-1)-(111-15)) the following two sets of systems of linear equations are also determined uniquely,
including respectively a set of seven and a set of eight systems of Equations (with different parametric
formalisms). The general parametric solution of each of these systems of linear equations, obeys also
the quadratic relation (111) (representing a set of fifteen forms, with different parametric formulations,
of the general parametric solutions of quadratic relation (111)). Each of these sets of the systems of
linear equations could be represented uniformly by a matrix equation as follows, respectively:

(Dcyp;lbl) _ m(()bl)BZVkP)S(b]) =0, (112-1)
(“HPLbZ) _ m(()bZ)bﬁ‘kﬂ)S(bZ) -0 (112-2)

where by = 1,2,3,...,7, by = 8,9,...,15, pi ") = m{"i,, pit") — i, 4k and @ are two
contravariant 8 x 8 real matrices (compatible with matrix representations of the Clifford algebra C/; 3)
defined solely by Formulas (65) and (68), and parametric column matrices S1) and $(12) are also
given uniquely as follows by two distinct expressions (formulated on the basis of definite parametric

formulation of column matrix S (68) in (1 + 3) space-time dimensions):

(o) _ )0y, ] (o _ )y, ]
(W) o) (W)
(uébl)vgbl) — ugbl)vébl))w (u(()bZ)véhZ) — ugbZ)v(()bZ))w
0= | o oo |57 | e o |09
(ughl)vébl) — ughl)vgbl))w (ugbZ)vébZ) — uéBZ)vth))w
() ()
s s’
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which column matrix $(®) includes seven cases with specific parametric formulations
expressed respectively in terms of seven groups of independent arbitrary parameters:
u(()bl), ughl)l ughl), v(()bl), vgbl)l vgbl)
forms in all of the seven cases of column matrix $(1)), and column matrix $(%2) also includes eight cases
with specific parametric formulations expressed respectively in terms of eight groups of independent
arbitrary parameters: u(()bZ), ugbZ), ugbZ), U(()bZ), vgbZ) , Uébz), and two common arbitrary parameters s’ and
w (with the same forms in all of seven cases of the column matrix S (bZ)). In addition, similar to
the column matrix 5(?) represented soley by Formula (109-1), the specific parametric expressions
(113) of column matrices $("1) and $(*2) in the formulation of matrix Equations (112-1) and (112-2),
have been determined specifically by assuming (as a basic assumption in addition to the systematic
natural approach of formulating the matrix Equations (112-1) and (112-2), based on the definite
formulation of axiomatically determined matrix Equation (64)) the minimum value for total number of
arbitrary parameters in both column matrices $(1) and $(%2), which implies equivalently the minimum
value for total number of arbitrary parameters in all of the fifteen simultaneous (different) cases
of matrix Equations (112-1) and (112-2) (necessarily with fifteen independent parametric solutions
representing totally a certain set of fifteen different equivalent forms of the general parametric solution
of quadratic relation (111), based on the general conditions of basic definition of the systems of
linear equations corresponding to homogeneous quadratic and higher degree equations, presented

, and two common arbitrary parameters s and w (i.e., having the same

in Section 2, and Sections 2.2-2.4 and 3.1 concerning the homogenous quadratic equations). In the
following, similar to the fundamental general covariant field Equation (109-2), in the derivation of the
corresponding field Equations (from matrix Equations (112-1) and (112-2), respectively), we will also
use the above particular algebraic properties of parameters s and s’ which, respectively, have been
expressed commonly in the expressions of all of seven simultaneous cases of matrix Equation (112-1),
and in the expressions of all of eight cases of matrix Equation (112-1).

Moreover, similar to the invariant relation (108) and derived matrix Equation (109), along with
the transformations (111-1)-(111-15) and algebraic matrix Equations (112-1) and (112-2), using the
corresponding complex transformations (111-17), we may also formally have the following equivalent
matrix Equations (with the complex expression), respectively (for b; =1,2,3,...,7, b, =8,9,...,15):

(i — im{"ark,) st = o, (112-3)
(i pP" — im{Park,)st2) = o (112-4)

Where p?f(bl) = m(()b] )ky, p;,t(bZ) = mébZ)ky. Similar to the matrix Equation (109-2), though based on the
real value of momentum p, (p;; = p,,), the complex expression of each of the seven cases of algebraic
matrix Equation (112-1), and also each of the eight cases of algebraic matrix Equation (112-2), definitely,
is not a necessary issue at the present stage. However, since the corresponding momentum operator
P, has a complex value (where p,, # p};), in the following, using this basic property of the operator p,,
we derive, distinctly, two certain groups of the general covariant field equations, including a group of
seven different simultaneous field equations from the matrix Equations (112-1) and (112-3), and a group
of eight different simultaneous field equations from the matrix Equations (112-2) and (112-4) (based
on the general axiomatic approach of derivation of general covariant massive field Equations (72)
presented in Sections 3.4-3.10, and the quantum representations of C, P and T symmetries of this
equation, presented in Sections 3.10-3.14). Furthermore, in the following, it is also shown that each of
these determined two sets of seven and eight simultaneous field equations describe, respectively, a
uniform group of seven spin-1boson fields (corresponding to two left-handed massive charged bosons,
along with their two complementary right-handed bosons; a left-handed massive charge-less boson,
along with its complementary right-handed boson; and a single right-handed massless and charge-less
boson), and a uniform group of eight spin-1 boson field (corresponding to eight massless charged
bosons).
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Hence, similar to the (1 + 2)-dimensional general covariant field Equation (114), based on the
axiomatic approach of derivation of the (1 + 3)-dimensional case of field Equation (72) (defined solely
by a column matrix of the form (98-2) in (1 + 3) space-time dimensions, as shown in Section 3.12),
from the matrix Equations (112-1), (112-3) and (112-2), (112-4) (defined solely by column matrices
(113)) and taking into account this basic momentum operator’s property: p;, # p,, the following two
unique groups of seven and eight simultaneous general covariant field equations are determined solely,
respectively:

(i DY — "Wk, @ P = 0 (114-1)
(i D" — ! Gk, )@ = 0 (114-2)

specifying by the following two groups of transformations (based on their two corresponding groups
of (sign) transformations (111-1)-(111-7), (111-8)—(111-15) and (111-17)), for by = 1,2,3,...,7 and
by =1,2,3,...,8, respectively:

The first group includes,

(D(()l)r m(()1>; Dgl)r Dél)r Dél)) = (DOI my, _Dl/ _DZI D3) (114_1_1)
(D, 2, D, D, D2) = (Do my Dy, D3, D 11
(DgY,m, DY, DY), DY) = (Do, my, — D1, Dy, —Ds) (114-1-3)
(Di,m, 0¥, D¥ DWWy = (~iDg, —imy, —iD;, —iD3, —iD}) (114-1-4)
(D, m{, 0¥, D, D)) = (—iDj, —imy, iD},iD;, —iD3) (114-1-5)
(DS, m®, D\, DI, D)) = (—iDj, —imy, —iD},iD3,iD3) (114-1-6)
(DY, m{"),0\", D", D)) = (=iDj, —imy, iD}, —iD3,iD3) (114-1-7)

and the second group is given as follows, respectively:

o', w0, 'V, 'V = (Dy, my, — Dy, Dy, D) (114-2-1)
(O'P,w'?, 0 0P, 0Py = (Dy, my, D;, —Dy, D3) (114-2-2)
o', w'®, 0% 0¥, 0"y = (D), my, D;, D,, —Ds) (114-2-3)
(', m' P, 0" 'Y, DYy = (Dy, my, D1, —Dy, —D3) (114-2-4)
(D' ', 0P, 0P, DY) = (=iDg, —imy,iD3,iD;,iD3) (114-2-5)
(0" ', 0 ) D) = (—iDg, —imy,iD;, —iD;, —iD3) (114-2-6)
o' w0V, 0, ') = (-iDj, —imy, —iD;,iDj, —iD3) (114-2-7)
(0'® w'®, p'® ® ¥y = (—iDg, —im,, —iD;, —iD3,iD3) (114-2-8)

where the column matrices CIJ(Zbl) and qbgl) are also given as follows, written on the basis of definite

formulations of algebraic column matrices (113) and in addition to the unique formulation of column
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matrix (98-2) (expressing the general representation of column matrices definable in the formulation of
(1 + 3)-dimensional case of general covariant field Equation (72)):

o b
Ziol) G§02)
b b
Zéol) GEOZ)
4 o
b 0 b by i b 0 b by i)
oy = ) | ) = — (DY + k)9, o = Gl |’ I = (D0 + kg (114-3)
23 23
b b
Zéll) GélZ)
b b
Zéll) GélZ)
| ¢z | | ¢¢ |

where in all of the seven simultaneous (different) field Equations (112-1) formulated with column
matrix CD(Zbl) (for by =1,2,3,...,7), and also in all of the eight simultaneous (different) field Equations
(112-2) formulated with column matrix CIDgJ 2) (for b, =1,2,3,...,8), the scalar quantity ¢, (as initially
given quantity) defines a commonly set of seven source currents ]P(Lbl), and scalar quantity ¢ also

defines commonly set of eight source currents ]’ ;bZ).

Following the definite formulations of a set of seven field Equation (114-1), and set of
eight field Equation (114-2) specified, respectively, by the transformations (114-1-1)-(114-1-7) and
(114-2-1)—(114-2-8), these two sets of the field equations could be represented uniformly by the
following general covariant field equations as well (defined solely in (1 + 3) space-time dimensions),
respectively:

(iha' D, — moal'ky)®, =0 (114-4)

where the column matrices ®, and ®, are given by:

[ Zyo ] Gio
Zao 20
Zy Gy

Pz = z0 o Ju=—(Dut Mok,) 95, 06 = O = (D, + Mo Vpe  (1146)
23 h Gy ¥ Ty

Z3 31
Zy Gy

L 97 | L 9c
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and the field strength tensors Z,,,, G, and scalars ¢, and ¢ ;, along with the source currents ], and

J i are defined as follows:

wv’

Z Zp(zlz/l)’fblr Z G}IV)AhZI
imy .\ 4 (br) 7 ()
_IZ(DV + Tkﬂ)ﬁbz = hzl —(Dy ky)ﬁ”z = Z ];4 T, = Jur (114-7)
1= =1
im, ~ 8
~I(D,, + k) § = bzl—(Dif’z) + 7 g = z P Ay =1,
ol

1
where I, I3 are 2 x 2 and 3 x 3 identity matrices, and 7, = % (for b1 =1,2,3,...,7) are the following
set of seven 2 X 2 complex matrices:
0 —i 0 1 —i 0
—i 0 | -1 0| 0 il

Ty, = = o o I, p= o ° , (114-8)

15/ l6/ l7
0 1 0 —i 1 0
1 0| i 0 | 0 -1

which are similar to the set of matrices (110-12), and uniformly represent a combined gauge symmetry
group of the form: SU(2); ®U(2)r, where the subset of three matrices “11, 75, 73” corresponds to SU(2)r,
group, and subset of four matrices “14, 75, T4, 77" corresponds to U(2)r group.

The matrices A, = (1/ 2))\;,2 (for by = 1,2,3,...,8) are also the following set of eight 3 x 3
complex matrices equivalent to the Gell-Mann matrices (representing the SU(3) gauge symmetry
group):

010 0 —i 0 1 0 0
10 0], i 0|, 0 -1 0|,
000 0 0 0 0 0 0
_ M, Ay, Az, fo01] [oo —i]
Aby = 3M {4 As, A5, o = 00 0|, 00 0 |, o (114-9)
Ao, A7, Ag 100 i 00
fooo0o] [o0oo0 o] 10 0
001,00—1‘,%010
010 0 i 0 00 -2

Now based on the definite matrix formalisms of the field strength tensors Z,, and G, (114-7)
(described respectively by general covariant massive field Equations (114-4) and (114-5)), and on
the basis of C, P and T symmetries of these field Equations (as two particular forms of the (1 + 3)-
dimensional case of tensor field Equation (72)), represented by their corresponding quantum operators
(defined in Sections 3.11-3.14), it could be concluded that the field Equation (114-4) describes uniformly
a definite group of seven simultaneous bispinor fields of spin-1 particles (corresponding to seven
matrices Ty, T2, T3, T4, Ts, Tg, T7 (114 8)), including, respectively: “three left-handed massive bosons that

could be denoted by W=, W+, Z (represented respectively by three matrices 14, T2, 73, corresponding
with SU(2)), a right-handed Charge -less spin-1 boson and also three right-handed spin-1 (massive)

bosons denoted by ¢, W+, W— Z (represented respectively by four matrices 14, 75, 74, 77, corresponding
with U(2)Rr), as the complementary particles of three left-handed bosons represented by matrices
7,72, T3 "
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In addition, following the definite representations of these determined seven bosons, it could

i
be concluded that four bosons (¢, W~,W™,Z) correspond to the known bosons including
photon (determined as a right-handed charge-less boson, compatible with the positive-frequency
corresponding to the right-handed circular polarization state of photon), and W~, W™, Z bosons.

Hence, particles Wt W, 2 represent three new massive spin-1 bosons (where, in particular, Z is
the complementary right-handed particle of ordinary Z boson), predicted uniquely by this new
mathematical axiomatic approach. Furthermore, the field Equation (114-5) would also describe
umformly ac def1n1te e group « of eight spin-1 boson fields (corresponding respectively to eight matrices

Al, Az, /\3, /\4, /\5, A6, )\7, )\8, representing the SU(3) gauge group).

Furthermore, by assuming the group of seven spin-1/2 fermion fields (described by field
Equations (110-9)—(110-12)) as the source currents of spin-1 boson fields, it would be also concluded that
the group of seven uniform spin-1 boson fields Z}(ﬁ}) represented by (W=, W+, E) and (p, WH, W, Z)
(describing by general covariant field Equation (114-4)), and the group of eight uniform spin-1 boson
fields G](f?) (describing by general covariant field Equation (114-5)), hold certain properties (including
the electrical and color charges, so on) compatible with the known properties of ordinary bosons
W™, W™, Z and photon, and also eight gluon fields (with their known definite properties, including
the color charges represented by ‘color octet” [6,7]). In addition, based on the group representation of
three additional new bosons that are predicted uniquely by this new mathematical axiomatic approach,

~ ~ —
denoted by: W, W™, Z, these new bosons could have properties similar to the ordinary bosons

W™, W, Z; where in particular new boson E (as the complementary right-handed particle of ordinary
Z boson), can mix with Z boson.

Moreover, as mentioned in Section 3.15, by assuming (as a basic natural assumption) the seven
types of spin-1/2 fermion fields describing by general covariant field Equation (110-9), as the source
currents of the uniquely determined two groups of seven and eight spin-1 boson fields (describing
respectively by general covariant field Equations (114-4) and (114-5)), it would be concluded that
there should be, in total, four specific groups of seven spin-1/2 fermion fields (each) with certain
properties, corresponding to “1 + 3” generations of four fermions, including two groups of four leptons
each, and two groups of four quarks each. Moreover, based on this basic circumstances, two groups
of leptons would be represented uniquely by: “[(v,, e™, V1), V., €, Vir ze)] and [(L™, Ve, T7), (1F,
Ve, T", zn)], respectively, where each group includes a new single right-handed charge-less lepton,
represented by: z and z,”; and two groups of quarks would be also represented uniquely by: “[(s, u, b),
(s, U, b, zy)] and [(c,d, 1), (c, d, T, zq)], respectively, where similar to leptons, each group includes a
new single right-handed charge -less quark, represented by: z, and z4”. In addition, emerging two
right-handed charhe-less quarks z, and zq specifically in two subgroups with anti-quarks (5, U, b, z)
and (¢, d, t, zg), could explain the baryon asymmetry, and subsequently, the asymmetry between
matter and antimatter in the universe.

4. Conclusions

The main results obtained in this article, are mainly, the outcomes of the new algebraic axiom (17)
(along with the basic assumptions (2)—(3) defined in Section 3.1). This new axiom as a definite
generalized form of the ordinary axiom of “no zero divisors” of integral domains (including the
domain of integers), has been formulated soley in terms of square matrices (with integer entries,
appeared as primary objects for representing the integer elements in their corresponding algebraic
axiomatic formalism). In Section 3 of this article, as a new mathematical approach to origin of the
laws of nature, using a new basic algebraic axiomatic (matrix) formalism based on the ring theory and
Clifford algebras (presented in Section 2), “it is shown that certain mathematical forms of fundamental
laws of nature, including laws governing the fundamental forces of nature (represented by a set of two
definite classes of general covariant massive field equations, with new matrix formalisms), are derived
uniquely from only a very few axioms”; where as a basic additional assumption (that is the assumption
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(2) in Section 3.1), in agreement with the rational Lorentz symmetry group, it has been also assumed
that the components of relativistic energy-momentum (D-momentum) can only take the rational values.
Concerning the basic assumption of rationality of relativistic energy-momentum, it is necessary to
add (as mentioned in Section 3.1) that the rational Lorentz symmetry group is not only dense in the
general form of Lorentz group, but also is compatible with the necessary conditions required basically
for the formalism of a consistent relativistic quantum theory [15]. In essence, the main scheme of the
new mathematical axiomatic approach to fundamental laws of nature presented in Section 3, is as
follows. First in Section 3.1, based on the assumption of rationality of D-momentum, by linearization
(along with a parameterization procedure) of the Lorentz invariant energy-momentum quadratic
relation, a unique set of Lorentz invariant systems of homogeneous linear Equations (with matrix
formalisms compatible with certain Clifford, and symmetric algebras) has been derived. Then in
Section 3.4, by first quantization (followed by a basic procedure of minimal coupling to space-time
geometry) of these determined systems of linear equations, a set of two classes of general covariant
massive (tensor) field Equations (with matrix formalisms compatible with certain Clifford, and Weyl
algebras) has been derived uniquely as well. Each class of the derived general covariant field equations
also includes a definite form of torsion field appeared as generator of the corresponding field” invariant
mass. In addition, in Sections 3.4-3.11, it has been shown that the (1 + 3)-dimensional cases of two
classes of derived field equations represent a new general covariant massive formalism of bispinor
fields of spin-2, and spin-1 particles, respectively. In fact, these uniquely determined bispinor fields
represent a unique set of new generalized massive forms of the laws governing the fundamental
forces of nature, including the Einstein (gravitational), Maxwell (electromagnetic) and Yang-Mills
(nuclear) field equations. Moreover, it has been also shown that the (1 + 2)-dimensional cases of two
classes of these field equations represent (asymptotically) a new general covariant massive formalism
of bispinor fields of spin-3/2 and spin-1/2 particles, respectively, corresponding to the Dirac and
Rarita-Schwinger equations.

As a particular consequence, in Section 3.6, it has been shown that a certain massive formalism
of general relativity—with a definite form of torsion field appeared originally as the generator of
gravitational field’s invariant mass—is obtained only by first quantization (followed by a basic procedure
of minimal coupling to space-time geometry) of a certain set of special relativistic algebraic matrix
equations. In Section 3.9, it has been also proved that Lagrangian densities specified for the originally
derived new massive forms of the Maxwell, Yang-Mills and Dirac field equations, are also gauge
invariant, where the invariant mass of each field is generated solely by the corresponding torsion
field. In addition, in Section 3.10, in agreement with recent astronomical data, a new particular
form of massive boson has been identified (corresponding to U(1) gauge group) with invariant mass:
m, &~ 4.90571 x 10~ kg, which is specially generated by a coupled torsion field of the background
space-time geometry.

Moreover, in Section 3.12, based on the definite mathematical formalism of this new axiomatic
approach, along with the C, P and T symmetries (represented basically by the corresponding
quantum matrix operators) of uniquely derived two fundamental classes of general covariant field
equations, it has been concluded that the universe could be realized solely with the (1 + 2) and
(1 + 3)-dimensional space-times (where this conclusion, in particular, is based on the time-reversal
symmetry). In Sections 3.13 and 3.14, it has been proved that ‘CPT’ is the only (unique) combination
of C, P, and T symmetries that could be defined as a symmetry for interacting fields. In addition,
in Section 3.14, on the basis of these discrete symmetries of derived field equations, it has been also
shown that only left-handed particle fields (along with their complementary right-handed fields)
could be coupled to the corresponding (any) source currents. Furthermore, in Section 3.15, it has
been shown that metric of the background space-time is diagonalized for the uniquely derived
fermion field Equations (defined and expressed solely in (1 + 2)-dimensional space-time), where this
property generates a certain set of additional symmetries corresponding uniquely to the SU(2); ®@U(2)r
symmetry group for spin-1/2 fermion fields (representing “1 + 3” generations of four fermions,
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including a group of eight leptons and a group of eight quarks), and also the SU(2);, ®U(2)r and SU(3)
gauge symmetry groups for spin-1 boson fields coupled to the spin-1/2 fermionic source currents.
Hence, along with the known elementary particles, eight new elementary particles, including: four
new charge-less right-handed spin-1/2 fermions (two leptons and two quarks, represented by “z. , zn

~ ~ —
and zy, zq4"), a spin-3/2 fermion, and also three new spin-1 massive bosons (represented by W+H,W-,Z,

where in particular, the new boson Z is complementary right-handed particle of ordinary Z boson),
have been predicted uniquely by this fundamental axiomatic approach. As a particular result, in
Section 3.6, based on the definite and unique formulation of the derived Maxwell’s Equations (and also
determined Yang-Mills equations, represented uniquely with two specific forms of gauge symmetries),
it has been also concluded generally that magnetic monopoles could not exist in nature.

The new results obtained in this article, which are connecting with a number of longstanding
essential issues in science and philosophy, demonstrate the wide efficiency of a new fundamental
algebraic-axiomatic formalism presented in Section 2 of this article.
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Appendix A

The matrix Equation (64) in Minkowski flat space-time (with metric signature (+ — ... -)) would be
represented simply by:
(al'py —mol)S =0 (A1)

where I is the identity matrix, and column matrix S is defined uniquely by Formulas (66)—(70), ... in
(1+1),1+2),(1+3),(1+4),(1+5),... space-time dimensions. The general contravariant forms of
real matrices a¥ that generate the Clifford algebra C/; v (for N > 2) in (1 + N)-dimensional space-time,
are (as mentioned in Section 3.3), are expressed by Formulas (66)—(70), ... in various space-times
dimensions. Moreover, following the axiomatic approach of derivation of matrix Equation (64),
matrices a¥ in Minkowski flat space-time also hold the Hermiticity and anti-Hermiticity properties
such that: 2 = (4°)" (compatible with (040)2 = 1), and a* = —(a)" (compatible with (ah)? = —1,
foru=1,2,3,...).

These matrices in the (1 + 1), (1 + 2), (1 + 3) and (1 + 4)-dimensional Minkowski
space-time (as special cases of their general contravariant forms (65)—(69), ... ), have the following
representations, respectively:

For (1 + 1)-dimensional space-time we have:

o 1 07 4 [o 1
"‘_[o —1]’“‘[—1 0] (A2)
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For (1 + 2)-dimensional case we get:

(A3)

7

1
-1 0 0

0 0 -1
0

0

-1 0 0

In (1 + 3) dimensions, we have:

0
0
0
0

1 000
01 00
-1

0 010

0 001

0 00O
0 00O
0 00O
0 00O

-1

0
0
0

(A4)

0
—(2"+h

70+t

0
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-1 0 0

0
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00

0

0
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