
universe

Conference Report

How to Reconstruct a Varying Speed of Light Signal
from Baryon Acoustic Oscillations Surveys

Vincenzo Salzano

Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland;
enzo.salzano@wmf.univ.szczecin.pl; Tel.: +48-91-444-1285

Academic Editor: Lorenzo Iorio
Received: 15 January 2017; Accepted: 6 April 2017; Published: 11 April 2017

Abstract: We describe an alternative way to use future Baryon Acoustic Oscillation observations
to perform non-mainstream research. We focus on the so-called Varying Speed of Light theories,
in which the speed of light is made to vary in time. Using prescriptions from future BAO surveys
(BOSS, DESI, WFirst-2.4 and SKA), we show that, within such surveys, a 1% Varying Speed of Light
(VSL) signal could be detected at 3 sigmas confidence level, in the redshift interval [0.75, 1.45]. Smaller
signals will be hardly detected. We also discuss some possible problems related to such kinds of
observation, in particular, the degeneracy between a VSL signal and a non-null spatial curvature.
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1. Introduction

Within the topic “variation of fundamental constants”, the Varying Speed of Light (VSL) theories
have a peculiar position, due to a quite vivid debate about their soundness and usefulness [1–3].
Most of the concerns are related to what can be summarized as the “dimensional vs dimensionless”
question: the speed of light c0

1 is a dimensional quantity and, as such, any investigation about its
variation should be misleading and not well-based, because one can always define a unique set of units
of length and time for which c0 is constant. Namely, units (dimensions) might be changing but not the
speed of light itself. That is why the only reasonable fundamental constants whose variation should be
investigated are dimensionless quantities, for example, the fine structure constant. The tricky point is
that, also, in fixing the “correct” units, the speed of light could be made variable [4,5]. It is worth noting
that many of such concerns might be alleviated if the speed of light were properly introduced after the
Lagrangian definition as a scalar field; this is done in [6], but it is not completely solved, because c
also appears in the line element and whenever the time coordinate happens to be (with consequences,
as described in [7]).

Having in mind such preliminaries, in [8,9] we have found that a constant speed of light or a
more general VSL theory can be intimately related to a dimensionless parameter which is strictly equal
to 1, if the speed of light is constant, and different from 1, if it is varying. The most interesting point is
that such a parameter can be easily measured because it is strictly connected to the typical correlation
length imprinted in the clustering of galaxies and thus is related to the Baryon Acoustic Oscillations
(BAO) observations. In a BAO survey, this correlation length is seen subtending an angle; as such, we
determine an angular diameter distance from it. Starting from its definition (see Equation (1) and [8,9]),
the angular diameter distance has a peculiar property: it is small for close objects, tending to zero for
redshift z → 0; it grows as it goes further from us (grows with redshift); it reaches a maximum and

1 From now on we will define the value of the speed of light we measure here and now as c0.
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then starts to decrease. Thus, objects located at redshifts higher than a certain “maximum redshift”,
zM, appear to be bigger than other objects at smaller redshifts. While this could sound weird, it is
the consequence of a combination of many aspects (metric, spatial curvature). The crucial point is
that, at zM, one can define a dimensionless parameter involving the angular diameter distance and the
expansion rate (the Hubble function H(z)) measured through BAO, and the value of the speed of light,
namely DA(zM)H(zM)/c0, which is equal to 1 only if the speed of light is constant and equal to c0.
Thus, any deviation from such value would point toward a VSL scenario. In [8,9], we have explored the
possibility to measure the speed of light at only the maximum redshift zM through this parameter; here,
we will show how to use BAO surveys to measure a possible VSL signal on an extended redshift range.

2. Build Up the Method: The Theory

The BAO clustering length can be measured in a radial and tangential direction, as c0/H rs and
DA/rs, where rs is the sound horizon at dragging epoch2. Thus, some of the main observational
outcomes of a BAO survey are the angular diameter distance DA, and the expansion rate H. From now
on, we will define the tangible numerical outputs of BAO measurements as Dreal

A and Hreal .
If we assume a Friedmann–Robertson–Walker metric, a spatially flat universe (in the last section,

we will relax this hypothesis), and that the redshift is defined in VSL theories as in a standard
scenario [4,10–12], we can generalize the definition of the angular diameter distance to

DA
.
=

1
1 + z

∫ z

0

c(z′)
H(z′)

dz′, (1)

where c(z) is the speed of light as a—unknown—function of redshift. It is straightforward that this
same relation also remains between observational data, namely we have

Dreal
A

.
=

1
1 + z

∫ z

0

c(z′)
Hreal(z′)

dz′ ; (2)

from this, it is clear that we do not need to express H(z) as a function of any cosmological parameter,
because our method is based entirely on only the use of the outputs of BAO observations.

The focal point is that we do not know if the speed of light appearing in Equation (2) is constant
or not; but we can find this out. In fact, on one hand, we have the direct data:

yreal
r (z) .

=
∂

∂z

[
(1 + z)Dreal

A (z)
]
≡ c(z)

Hreal(z)
, (3)

where the second equivalence derives directly from Equation (2). In our calculations, we will need
only the central expression, making direct use of Dreal

A . Instead, the very last expression should be
compared with the reconstructed set of data:

yrec
r (z) .

=
c0

Hreal(z)
, (4)

which directly involve Hreal . Of course, in Equation (4), we need to assume explicitly that the speed of
light is constant. Thus, we now have two possibilities: if

yreal
r (z) = yrec

r (z) , (5)

2 Just to simplify notation, we will drop the sound horizon from our formulas, as it gives a negligible contribution to
our discussion.
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then the assumption we have made in Equation (4), i.e., constant speed of light, is correct. Otherwise, if

yrec
r (z) 6= yrec

r (z) , (6)

such an assumption is wrong and we might have a VSL. Moreover, we can potentially reconstruct how
the speed of light is changing with redshift using the ratio

yreal
r

yrec
r

=
c(z)
c0

. (7)

Note that, in this way, we are also avoiding the “dimensionless vs dimensional” debate, because
we have defined and will work with a dimensionless ratio.

3. Build Up the Method: In Practice

As we have no real BAO data to test our method, we have to create mock data. Thus, we need to
define a fiducial theoretical background. There is no unique way to develop a VSL theory, but this is
unimportant for our purposes. We have chosen to follow the approach introduced in [13], where a
VSL with a minimal coupling with gravity is considered, leading to the modified versions of the first
Friedmann equation and of the continuity equation:

H2(t) =
8πG

3
ρ(t)− k

a2(t)
c2(t) and ρ̇(t) + 3H(t)

(
ρ(t) +

p(t)
c2(t)

)
=

3k
4πGa2(t)

c(t)ċ(t) , (8)

where ρ and p are, respectively, the mass density and the pressure of any fluid in the Universe; a(t) is
the scale factor; G is the universal gravitational constant; and c(t) is the speed of light as a function
of time. The initial assumption of spatial flatness clearly implies no effective change in both the
continuity equation and in the first Friedmann equation; the only contribution from the VSL theory
comes not from the dynamics, but from the metric (see Equation (1)). Obviously, as we are neglecting
any dynamics of the parameter assumed to vary [14], we also need to give an ansatz for c(z); from [15],
we use c(a) ∝ c0 (1 + a/ac)

n, where a ≡ 1/(1 + z) is the scale factor, and ac sets the transition epoch
from some c(a) 6= c0 (at early times) to c(a)→ c0 (now).

Then, mock data have to be consistent with present observations. Our fiducial cosmological
background is derived from a slightly modified version of the baseline ΛCDM model from Planck
2015 release3, the base_plikHM_TTTEEE_lowTEB_lensing_post_BAO in Planck Legacy Archive. As far
as we are concerned, this model is fully characterized by the dimensionless matter density today,
which is equal to Ωm = 0.31; but the introduction of a VSL signal changes the universe dynamics.
Depending on the VSL, we have to change the value of Ωm to accommodate observations. We have
considered two different VSL scenarios: one, given by the parameters ac = 0.05 and n = −0.001,
corresponds to a ∼ 0.1% variation at redshift 1.5–1.6; the other, given by the parameters ac = 0.05
and n = −0.01, has a ∼ 1% variation at redshift 1.5–1.6. We use this redshift as a reference because it
is the approximate redshift range where the present consensus cosmological model should exhibit a
maximum in DA. In Table I of [9], we show how, in order to have a ΛCDM+VSL signal consistent with
current observations, we have to change the parameter Ωm to, respectively, 0.314 and 0.348.

The next ingredients for our analysis are the expected accuracies from future surveys. In [16],
the errors on DA and H are reported, in redshift bins of 0.1 width, for BOSS (z = 0.05), DESI
(z ∈ [0.15, 0.55]), and WFIRST-2.4 (z ∈ [1.95, 2.75]). We also add SKA forecast from [17] for z ∈ [0.65, 1.85].

Once we have H f id and D f id
A and the corresponding errors, we randomly generate our sets of Hreal

and Dreal
A from a multivariate Gaussian centered on the fiducial values, and with a total covariance

3 http://wiki.cosmos.esa.int/planckpla/index.php/Cosmological_Parameters.
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matrix built up from the errors defined for each survey, plus a correlation factor between H f id and
D f id

A ∼ 0.4 [18]. Finally, in order to infer statistical meaningful considerations, we do not rely only
on one randomly generated set of H and DA; instead, we consider an ensemble of 103 simulations,
i.e., we produce 103 observational scenarios compatible with a ΛCDM model plus the VSL signals we
have specified above.

The main obstacle to the use of Equation (7) is that it relies on the same definition of yreal
r given

by Equation (3): we need to calculate the derivatives with respect to the redshift of a quantity (Dreal
A )

represented by a discrete set of points and with an intrinsic dispersion. Both these properties alter the
calculation of the derivatives and inexorably lead to blown-up errors on any quantity based on such
numerically-calculated derivatives. In any case, we can alleviate this problem: in fact, as we do not
need a cosmological fit of H or DA involving any standard cosmological parameter, we can propose
to fit our mock data with any analytical function. For example, Hreal is well fitted by a sixth-order
redshift polynomial, requesting that H(z) > 0 for z ∈ [0, ∞); while Dreal

A prefers a Padé approximant

Dreal
A (z) =

dt
1 z

1 + db
1 z + db

2 z2
, (9)

which also satisfies the physical conditions, Dreal
A = 0 for z→ 0 and z→ ∞. We additionally require

that Dreal
A > 0 for z ∈ [0, ∞).

Once we have fitted both Hreal and Dreal
A with such functions, we can simply propagate

errors from the related sets of parameters and obtain the polynomial-reconstructed yreal
r and yrec

r ,
with corresponding errors; from them, we can derive the c(z)/c0 ratios and their errors, through
Equation (7).

4. Results and Conclusions

For each one of the 103 simulations, in each redshift bin, we calculate the residuals with respect to
a constant speed of light, i.e., c(z)/c0 = 1. Then, we count the normalized number of simulations for
which such residuals are strictly positive and/or negative, implying a clear detection of a non-constant
c(z)/c0. Such residuals are calculated using the 1σ, 2σ and 3σ limits derived from Equation (7),
indicating a detection of the VSL signal at, respectively, 1σ, 2σ and 3σ confidence level. In more than
95% of our simulations, we can detect a 1% VSL signal at 3σ level in the redshift range [0.75, 1.45],
which corresponds to the range covered by SKA. Among those that we have considered, SKA is the
survey with the best performance, and we need its accuracy results to be the minimal in order to
achieve the detection of a 1% VSL signal, if there is any. We also find that a 0.1% signal will be hardly
detected: a 3σ detection is maximal in the redshift range [0.95, 1.15], which is achieved only in 55% of
our simulations, thus we cannot conclude if its detection can really be achieved or not.

Finally, as pointed out in previous sections, we have to solve the degeneracy between VSL and
spatial curvature. If we relax the spatial flatness hypothesis, the definition of the angular diameter
distance is

DA(z) =


DH√

Ωk(1+z) sinh
(√

Ωk DC(z)
DH

)
for Ωk > 0

DC(z)
1+z for Ωk = 0

DH√
|Ωk |(1+z)

sin
(√

|Ωk |DC(z)
DH

)
for Ωk < 0 ,

(10)

where Ωk ≡ kc2
0/H2

0 is the dimensionless curvature density parameter today; DH = c0/H0 is the
Hubble distance; and the comoving distance is defined as DC(z) = DH

∫ z
0 Fc(z′)/E(z′)dz′, where we
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have made use of the general ansatz c(z) ≡ c0Fc(z), with Fc(z) = 1 for z = 0. Now, Equation (3) will
be modified as

yreal
r (z) ≡


c(z)
H(z) cosh

(√
Ωk DC(z)

DH

)
for Ωk > 0

c(z)
H(z) for Ωk = 0

c(z)
H(z) cos

(√
|Ωk |DC(z)

DH

)
for Ωk < 0 .

(11)

It is straightforward to check whether, even if the speed of light were constant, we would
still have some contribution from the curvature terms if Ωk 6= 0. From the Planck Legacy
Archive, we consider the extension of the baseline ΛCDM model with a free curvature
parameter, named base_omegak_plikHM_TTTEEE_lowTEB_BAO_H070p6_JLA_post_lensing, which has
Ωk = 0.0008± 0.002 at the 68% confidence level (the lower and upper 1σ limits are Ωk = −0.0012 and
Ωk = 0.0028). With these numbers, a realistic contribution from the spatial curvature is . 0.06% at
zM ∼ 1.5− 1.6 for both Ωk = 0.0008 and Ωk = −0.0012; while the upper limit Ωk = 0.0028 gives a
∼0.15% contribution. Clearly, these curvature-signals would be even smaller than the 0.1% VSL signal
which we have stated to be undetectable by the surveys that we have considered. We might also detect
a total signal of a certain amount without being able to decode how much of it depends on the VSL
signal and how much on curvature. Given the actual constraints on spatial curvature, for a total 1%
signal, the VSL signal should be ∼ 0.95% of the total signal for Ωk = 0.0008 and Ωk = −0.0012, and
not less than ∼ 0.85% for Ωk = 0.0028. Thus, curvature should play a negligible role; we were unable
to discriminate between the two sources only in the case of signals smaller than 1% which, however,
represent signals that could possibly be detected in future BAO surveys.
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