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Abstract: We compute the suppression of the bottomonia states Υ(1S), Υ(2S), Υ(3S), χb(1P),
χb(2P), and χb(3P) states in Large Hadron Collider (LHC)

√
sNN = 5.023 TeV Pb-Pb collisions.

For the background evolution we use 3+1d anisotropic hydrodynamics with conditions extrapolated
from

√
sNN = 2.76 TeV and we self-consistently compute bottomonia decay rates including

non-equilibrium corrections to the interaction potential. For our final results, we make predictions for
RAA as function of centrality, rapidity, and pT for the Υ(1S) and Υ(2S) states, including feed down
effects. In order to assess the dependence on some of the model assumptions, we vary the shear
viscosity-to-entropy density ratio, 4πη/s ∈ {1, 2, 3}, and the initial momentum-space anisotropy
parameter, ξ0 ∈ {0, 10, 50}, while holding the total light hadron multiplicity fixed.

Keywords: relativistic heavy ion collisions; quarkonium suppression

1. Introduction

Ultra-relativistic heavy ion collisions (URHICs) carried out at the Large Hadron Collider (LHC)
at CERN and the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory create
super-hot and dense matter. The observed thermal particle spectra and anisotropic collective flow
seen in such collisions has been taken as evidence of the creation of a deconfined high-temperature
quark-gluon plasma (QGP). The existence of the QGP itself is a prediction of finite-temperature
quantum chromodynamics (QCD), and the QGP is believed to have been the state of the early universe.

Comparisons between theory and experiment suggest that LHC URHICs produce a QGP
with an initial temperature on the order of T0 = 500−600 MeV for

√
sNN = 2.76 TeV Pb-Pb

collisions [1,2]. The LHC has recently performed URHICs with nucleon–nucleon center-of-mass
energies of

√
sNN = 5.023 TeV, which are expected to produce initial temperatures on the order of

T0 = 600−700 MeV. Analysis of collective flow data indicate that the QGP behaves like a nearly-perfect
fluid with shear viscosity-to-entropy density ratio η/s approaching the conjectured lower bound
of 1/(4π). Despite being nearly ideal, one complication that must be faced is that, although the QGP
is close to thermal equilibrium at late times, URHICs produce a QGP which is momentum-space
anisotropic in the local rest frame with the degree of momentum-space anisotropy decreasing slowly
as a function of proper time. This can have an impact on the various signatures for QGP formation,
such as heavy quarkonium suppression [3,4].

Heavy quark-bound states are of particular interest because they can survive into the deconfined
phase due to their large binding energy. They are expected to survive up to a few times the
pseudo-critical temperature, Tc; however, at sufficiently high temperatures, even heavy quark bound
states should disassociate. As a result, in the late 1980’s Karsch, Matsui, Mehr, and Satz predicted that
heavy quark–antiquark bound states, known as quarkonia, would be suppressed in heavy ion collisions
compared to proton–proton (p-p) collisions [5,6]. The resulting suppression of heavy quarkonia can
be used to probe the entire history of the QGP, since heavy quarkonium states are produced early
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in the QGP evolution. There has been a significant amount of work dedicated to the study of heavy
quarkonia suppression. For recent related work, see References [7–10]. In this paper, we focus on
bottomonia states which survive up to plasma temperatures of Td ∼ 600, 230, and 170 MeV for Υ(1S),
Υ(2S), and Υ(3S) states, respectively [11]. At these temperatures, the in-medium width of the state
becomes on the order of the real part of its binding energy, and the state quickly dissociates; however,
prior to this disassociation point, the states have large widths (∼50–100 MeV), with the widths for the
excited states being larger than those for the ground state. As a consequence, one expects sequential
melting of heavy bottomonia states in QGP, with excited states melting before the ground state, and
lighter states dissociating before heavier states [12].

In this paper, we focus on bottomonia states since they can be more reliably treated
using potential-based non-relativistic effective field theory (pNRQCD) [13–17]. We include the
effect of in-medium disassociation in the presence of a complex-valued potential obtained using
hard-thermal-loop perturbation theory [18–22]. We also take into account the non-equilibrium
momentum-space anisotropy produced as a result of the rapid longitudinal expansion of the QGP
via modifications to both the real and imaginary parts of the potential [23]. This work extends our
previous work [24–26] to

√
sNN = 5.023 TeV Pb-Pb collisions. As before, we use 3 + 1d anisotropic

hydrodynamics (aHydro) for the background evolution [3,27–31].
For the

√
sNN = 5.023 TeV initial conditions, we extrapolate the initial conditions used at lower

collision energies and make predictions for the inclusive RAA for the Υ(1S) and Υ(2S) states, including
feed down contributions. To assess the dependence on some of the model assumptions, we vary the
shear viscosity-to-entropy density ratio, 4πη/s ∈ {1, 2, 3}, and the initial momentum-space anisotropy
parameter, ξ0 ∈ {0, 10, 50}, while holding the total light hadron multiplicity fixed.

2. 3 + 1d Anisotropic Hydrodynamics

In aHydro, the local rest frame (LRF) partonic distribution is assumed to be of the form [27,28,32]

f (p, x) = feq

(√
p2

T + [1 + ξ(x)]p2
z/Λ(x)

)
, (1)

where −1 ≤ ξ(x) < ∞ is the local momentum-space anisotropy parameter, Λ(x) is the local transverse
temperature of the plasma, and feq is an arbitrary isotropic equilibrium distribution function which
here we take to be a Boltzmann distribution. The local anisotropy ξ(x) encodes the viscous corrections
to an ideal isotropic QGP. Note that, in the most recent applications of aHydro, one allows for the
existence of three independent anisotropy parameters; see e.g., Reference [30]. This takes into account
both bulk and shear viscous effects in the QGP. In this paper, we use the simpler “one anisotropy
parameter” version. This is sufficient for our purposes, since the additional anisotropy parameters
are small and, therefore, subleading. For details concerning the aHydro dynamical equations and the
numerical methods used, see References [33,34].

We start the hydrodynamic evolution of the system at τ0 = 0.3 fm/c. For the initial conditions,
we use the Glauber model with a linear combination of wounded-nucleon and binary collisions.
The fraction of the binary collision component is taken to be κbinary = 0.145. The inelastic cross-section
for
√

sNN = 2.76 TeV collisions is taken to be σ2.76 TeV
NN = 62 mb, while for

√
sNN = 5.023 TeV collisions,

we extrapolate from the results presented in Reference [35] to obtain σ5.023 TeV
NN = 67 mb. In both cases,

we use a standard Woods–Saxon profile for the incoming nuclei with nA(r) = n0/(1 + e(r−R)/d),
where n0 = 0.17 fm−3 is the central nucleon density and is determined via the normalization
limA→∞

∫
d3r nA(r) = A, R = (1.12A1/3 − 0.86A−1/3) fm is the nuclear radius, and d = 0.54 fm

is the skin depth of the nucleus [36].
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The initial longitudinal profile is approximated by distribution featuring a nearly boost-invariant
plateau region for mid-rapidities and a tail characterized by a Gaussian which reflects limiting
fragmentation [37]

F (ς) ≡ exp

[
− (ς− ∆ς)2

2σ2
ς

Θ(|ς| − ∆ς)

]
. (2)

For
√

sNN = 2.76 TeV collisions, fits were made to experimental particle pseudorapidity profiles
which give ∆ς2.76 TeV = 2.5 and σ2.76 TeV

ς = 1.4. For
√

sNN = 5.023 TeV collisions, we use the predictions
of Reference [38], which determined the rapidity profile in the high energy limit. Using the results
of Reference [38], one finds that going from 2.76 TeV collisions to 5.023 TeV collisions, there is an
approximately 12% increase in plateau halfwidth, which gives ∆ς5.023 TeV = 2.8. Based on [38], we
found no observable change of the Gaussian halfwidth in 5.023 TeV collisions, and therefore we take
σ5.023 TeV

ς = 1.4. The combination of Glauber in the transverse plane and the longitudinal profile
function above gives us the full 3d initial energy density profile for the QGP.

The initial plasma temperatures, T0, for 2.76 TeV collisions are taken from our previous work [24]
and are consistent with the analysis of elliptic flow coefficients [39]. In Table 1, we show the initial
conditions used at 2.76 TeV. The values in the center of Tables 1 and 2 are the initial transverse
temperatures of the plasma, which enter into the one-particle distribution function, Equation (1).
Note that unless ξ0 = 0, the transverse temperature cannot be interpreted as temperature. The entry
with ξ0 = 0 and 4πη/s = 1 was obtained via fits to collective flow, and the other entries were obtained
by varying either ξ0 or η/s while holding the total particle multiplicity fixed. Note that, when ξ0 6= 0,
we set the initial condition for the transverse temperature Λ0 instead of the initial temperature due to
the momentum-space anisotropy.

Table 1. Λ0 values for 2.76 TeV collisions in GeV.

4πη/s
ξ0 0 10 50

1 0.552 0.765 0.925
2 0.546 0.752 0.909
3 0.544 0.748 0.906

For 5.023 TeV collisions, we assume that the temperature of the plasma scales proportionally
with the fourth root of the collision energy—i.e., T0 ∝ s1/8

NN . Using this assumption, we predict a 16%
increase in the initial central temperature when going from 2.76 TeV to 5.023 TeV collisions. We apply
this scaling to the 2.76 TeV initial conditions with ξ0 = 0 and 4πη/s = 1 and then, as before, we fill
out the rest of the initial conditions table by holding the total particle multiplicity fixed. The resulting
table of initial conditions is shown in Table 2.

Table 2. Λ0 values for 5.023 TeV collisions in GeV.

4πη/s
ξ0 0 10 50

1 0.641 0.888 1.076
2 0.632 0.869 1.053
3 0.629 0.863 1.046

3. Model Potential

Modeling bottomonia states in a QGP which is anisotropic in momentum-space requires going
beyond the Karsch, Matsui, Mehr, and Satz model which describes the free energy of a static
heavy quark–antiquark pair in an isotropic plasma. It has been shown in References [7,25] that
free-energy-based potential models of the quarkonium pair do not agree with experimental RAA data.
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For this reason, we use the internal energy of the bottomonia pair U = F + TS to provide the model
potential. The masses of heavy quarks allow bottomonia pairs to be treated using pNRQCD methods
which allow us to systematically include relativistic corrections. We use a model which represents
the short- and medium-range gluonic screening of the heavy-quark potential in a momentum-space
anisotropic plasma [19,21,22,25,26]. For the long range real part of the potential, we use the original
Karsh–Mehr–Satz (KMS) form for the free energy. The resulting internal-energy-based model has the
following form for the real part of the heavy quark potential

<[V] = − a
r
(1 + µr)e−µr +

2σ

µ
[1− e−µr]− σre−µr − 0.8σ

m2
br

, (3)

where µ = G(ξ, θ)mD [19,22,25], with θ being the angle between the line connecting the
quark–antiquark pair and the beam-line direction, mD is the isotropic leading-order Debye mass,
a = 0.385, σ = 0.223 GeV2 [40], and mb = 4.7 GeV is the mass of the bottom quark. The last term taken
from Reference [41] accounts for the temperature- and spin-independent finite-quark-mass correction,
to obtain our final complex-valued potential (This term is not particularly important for bottomonia
states. We include it for historical continuity with our previous works, where we also considered
charmonium suppression). For the imaginary part of the potential, we use a small-ξ expansion of the
heavy-quark potential [18,20,21]

=[V] = −αsCFT
{

φ(r̂)− ξ[ψ1(r̂, θ) + ψ2(r̂, θ)]
}

, (4)

where r̂ = rmD, φ(r̂) is defined as

φ(r̂) = 2
∫ ∞

0
dz

z
(z2 + 1)2

[
1− sin (zr̂)

r̂

]
, (5)

and ψ1 and ψ2 are defined as follows

ψ1(r̂, θ) =
∫ ∞

0
dz

z
(z2 + 1)2

(
1− 3

2

[
sin2 θ

sin(z r̂)
z r̂

+ (1− 3 cos2 θ)G(r̂, z)
])

, (6)

ψ2(r̂, θ) = −
∫ ∞

0
dz

4
3 z

(z2 + 1)3

(
1− 3

[(
2
3
− cos2 θ

)
sin(z r̂)

z r̂
+ (1− 3 cos2 θ)G(r̂, z)

])
. (7)

The algorithm from Reference [23,42] is used to solve the resulting 3d Schrödinger equation on a
regular lattice by transforming to imaginary time and using the finite difference time domain (FDTD)
method. Using this method, we compute the real and imaginary parts of the binding energy over
a range of Λ from 144 MeV to 1037 MeV. For each Λ, we compute the real and imaginary binding
energies for a range of anisotropies, ξ, from −0.3 to 200, with an irregular spacing which accounts for
the fact that the majority of the time the system probes small values of ξ. We use a N3 = 2563 lattice
with lattice spacing a = 0.1 GeV−1 ≈ 0.02 fm and a = 0.15 GeV−1 ≈ 0.03 fm for a total box length of
L = Na ≈ 5.04 fm and L = Na ≈ 7.56 fm, for Υ and χb states, respectively. The imaginary-time step
size for the algorithm is taken to be ∆τ = a2/8.

The real and imaginary binding energies are extracted using [25]

Eν,bind ≡ −
(

Eν −m1 −m2 −
〈φν|V∞(θ)|φν〉
〈φν|φν〉

)
, (8)

where
V∞(θ) ≡ lim

|r|→∞
<[V(θ, r)] . (9)
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Negative values of =[Ebind] only occur for large values of ξ, which is a consequence of the
small-ξ expansion. Large values of ξ correspond to a nearly free streaming quark-gluon plasma, so it
is expected that the widths of bottomonia states return to vacuum values, which are on the order
of ∼ keV, which effectively allows us to set =[Ebind] = 0 for this specific case.

4. Bottomonium Suppression

We use the following rate equation to account for in-medium bottomonia state decay,

dn(τ, x⊥, ς)

dτ
= −Γ(τ, x⊥, ς)n(τ, x⊥, ς), (10)

where all variables depend on longitudinal proper time τ =
√

t2 − z2, the transverse coordinate x⊥,
and the spatial rapidity ς = arctanh(z/t). The rate of decay is computed by [25]

Γ(τ, x⊥, ς) =

{
2=[Ebind(τ, x⊥, ς)] <[Ebind(τ, x⊥, ς)] > 0

γdis <[Ebind(τ, x⊥, ς)] ≤ 0.
(11)

where γdis is a large value which is chosen such that a completely unbound state decays quickly.
We emphasize that Ebind and hence Γ are local quantities of τ, x⊥, and ς through the 3 + 1d background
evolution of the transverse temperature Λ(x) and the local momentum-space anisotropy ξ(x).

4.1. Survival Probability

The survival probability is determined by integrating Equation (10) over proper time with the
integration limits set dynamically. The lower integration limit for the proper-time integration is
max(τform, τ0), where τ0 is the initial proper time for plasma evolution and τform is the time-dilated
formation time of the state in question, computed via τform(pT) = γτ0

form = ETτ0
form/M, where M is

the mass of the state. The rest-frame formation time τ0
form for each of the states is taken to be inversely

proportional to the vacuum binding energy of each state [43], and thus, τ0
form = 0.2, 0.4, 0.6, 0.4, 0.6,

and 0.6 fm/c, for Υ(1S), Υ(2S), Υ(3S), χb(1P), χb(2P), and χb(3P), respectively. The upper limit for
the proper-time integration is determined to be the proper time at which the local energy density
becomes less than the energy density of an Nc = 3 and N f = 2 ideal gas of quarks and gluons with a
temperature of Tf = 192 MeV. This is the temperature at which screening effects are assumed to turn
off rapidly due to the transition to the hadronic phase.

Transverse momentum cuts were implemented by assuming that the transverse momentum
distribution of bottomonia states is proportional to E−4

T ,

RAA(x⊥, ς) ≡

∫ pT,max
pT,min

dp2
T RAA(pT , x⊥, ς)/(p2

T + M2)2∫ pT,max
pT,min

dp2
T/(p2

T + M2)2
. (12)

Once the transverse momentum cut is applied, we average RAA over the transverse plane

〈RAA(ς)〉 ≡
∫

x⊥
nAA(x⊥)RAA(x⊥, ς)∫

x⊥
nAA(x⊥)

, (13)

where TA(x, y) =
∫ ∞
−∞ dz nA

(√
x2 + y2 + z2

)
is the nuclear thickness function and nAB = TA(x +

b/2, y)TB(x− b/2, y) is the overlap density function. In the above relations, it is assumed that nAA
sets the probability for bottomonia production at a given point in the transverse plane. After the pT
cuts and spatial averaging are performed, centrality averaging is performed by converting the impact
parameter, b, to centrality, C, using the Glauber model, and then integrating over the centrality cut
with a probability distribution proportional to e−C/20 with 0 < C < 100 [44].
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4.2. Excited State Feed Down

A certain fraction of Υ(1S) and Υ(2S) states produced in URHICs are formed via the decay of
excited states. To compute the post feed down RAA for the Υ(1S) and Υ(2S) states, RAA is computed
taking into account the suppression of excited states which undergo late time feed down. For this
purpose, we use pT-averaged feed down fractions obtained recently from a compilation of p-p data
available from ATLAS, CMS, and LHCb [45]. The fractions f Υ(1s)

i and f Υ(2s)
i are given in Tables 3 and 4,

which specify the fraction of a particular state which contributes to the Υ(1S) and Υ(2S) states.
The inclusive feed down RAA of each of the states is calculated using a linear combination of the
primordial RAA using the respective feed down fractions RΥ(nS)

AA = ∑i ∈ states f Υ(nS)
i RAA,i, where RAA,i

is the primordial suppression for the ith state.

Table 3. Feed down fractions to the Υ(1S) state.

Υ(1S) Feed Down Fractions

Υ(1S) 0.668
Υ(2S) 0.086
Υ(3S) 0.010
χb(1P) 0.170
χb(2P) 0.051
χb(3P) 0.015

Table 4. Feed down fractions to the Υ(2S) state.

Υ(2S) Feed Down Fractions

Υ(2S) 0.604
Υ(3S) 0.043
χb(2P) 0.309
χb(3P) 0.044

4.3. Results

We now turn to our results and predictions. In Figure 1, we show the “primordial” RAA for the six
states as a function of Npart for the case of 4πη/s = 1. The primordial suppression is the result obtained
prior to taking into account feed down effects. The left panel shows the result for

√
sNN = 2.76 TeV,

and the right panel shows our prediction for
√

sNN = 5.023 TeV. From this figure, one can immediately
see the sequential suppression of states, with excited states showing more suppression, which is
a consequence of the lower dissociation temperatures compared to, for example, the Υ(1S) state.
Going from 2.76 TeV to 5.023 TeV, we see increased primordial suppression for all states considered,
with the “primordial” RAA decrease by approximately 31%, 48%, 44%, 51%, 45%, and 44% for the
Υ(1S), Υ(2S), Υ(3S), χb(1P), χb(2P), and χb(3P) states, respectively, for central collisions. Finally, we
note that at both energies, the model predicts significant primordial suppression of the Υ(1S), even
though the temperatures probed in the plasma are below the state’s disassociation temperature for
most of the plasma evolution. The primordial suppression seen is a result of the fact that the decay
rate remains large even below the naive disassociation temperature for a given state.



Universe 2016, 2, 16 7 of 12

� ��� ��� ��� ���
���

���

���

���

���

���

�����

�
�
�

��� = ���� ���

|�| < ���
� < �� < �� ���

�πη/� = �
χ�(��)
χ�(��)
χ�(��)
Υ(��)
Υ(��)
Υ(��)

� ��� ��� ��� ���
���

���

���

���

���

���

�����

�
�
�

��� = ����� ���

|�| < ���
� < �� < �� ���

�πη/� = �
χ�(��)
χ�(��)
χ�(��)
Υ(��)
Υ(��)
Υ(��)

Figure 1. (Color online) Primordial RAA for each modeled state as a function of the number of
participants. Note that the suppression curves for the Υ(3S) and χb(3P) states fall on top of each other.

In Figure 2, we compare the inclusive suppression of the Υ(1S) state at 2.76 TeV and 5.023 TeV as
a function of Npart. The inclusive RAA includes the effect of resonance feed down. For Figure 2,
we integrated over rapidity in the range |y| < 2.4 and transverse momentum in the range
0 < pT < 40 GeV. The top band (light blue) corresponds to

√
sNN = 2.76 TeV, and the bottom band

(light green) corresponds to
√

sNN = 5.023 TeV. In each of the bands, the solid (black), short-dashed
(red), and long-dashed (blue) lines correspond to 4πη/s ∈ {1, 2, 3}. As this figure demonstrates, our
model prediction is that one should see enhanced suppression of the Υ(1S) at

√
sNN = 5.023 TeV

compared to
√

sNN = 2.76 TeV. For a central collision, we see an approximately 34% decrease in the
Υ(1S) RAA for 4πη/s = 1.
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Figure 2. (Color online) Inclusive Υ(1S) state calculated with feed down contributions from
excited states. Here we show a comparison between

√
sNN = 2.76 TeV and

√
sNN = 5.023 TeV

collision energies.

In Figures 3 and 4, we compare the inclusive suppression of the Υ(1S) state at 2.76 TeV and
5.023 TeV as a function of pT and y, respectively. The labelling and line types are the same as in
Figure 2. Due to the large size of the experimental pT bins, for Figure 3 we have binned our predictions
into the experimental bins. From Figures 3 and 4, we find that the model once again predicts enhanced
suppression of the Υ(1S) when going from 2.76 to 5.023 TeV as a function of pT and y. In the lowest
pT bin, we predict a decrease in RAA of approximately 25% for the case 4πη/s = 1. For |y| = 0, we
predict a decrease in RAA of approximately 26% for the same case. We also note that there is a slight
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increase in suppression for forward rapidities, which is due to the increased plateau halfwidth used in
the initial conditions.
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Figure 3. (Color online) Inclusive Υ(1S) state calculated with feed down contributions from
excited states. Here we show a comparison between

√
sNN = 2.76 TeV and

√
sNN = 5.023 TeV

collision energies.
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Figure 4. (Color online) Inclusive Υ(1S) state calculated with feed down contributions from
excited states. Here we show a comparison between

√
sNN = 2.76 TeV and

√
sNN = 5.023 TeV

collision energies.

In Figures 5–7, we collect our predictions for the Υ(1S) and Υ(2S) inclusive RAA for√
sNN = 5.023 TeV collision energy. The line styles are the same as in the previous figures. As can

be seen from these figures, we also predict further suppression of the Υ(2S) at
√

sNN = 5.023 TeV
as a function of Npart, pT , and y. Finally, in Figure 8, we plot the inclusive Υ(1S) suppression as a
function of Npart for the case 4πη/s = 1, but now varying the initial momentum-space anisotropy ξ0

of the QGP. The solid (black) line shows the case ξ0 = 0, which corresponds to a QGP that is perfectly
isotropic at τ0. The short-dashed (red) line and long-dashed (blue) lines correspond to ξ0 = 10 and
ξ0 = 50, respectively. The finite values of ξ0 map to initial pressure anisotropies in the local rest frame
of PL/PT = 0.13 and 0.03, respectively. The presence of an initial momentum-space anisotropy is
predicted by both weak and strong coupling approaches, with weak coupling approaches predicting
larger initial momentum-space anisotropies than the strong coupling approaches [3,4].
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Figure 5. (Color online) Predictions for inclusive Υ(1S) and Υ(2S) suppression for
√

sNN = 5.023 TeV
Pb-Pb collisions.
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Figure 6. (Color online) Predictions for inclusive Υ(1S) and Υ(2S) suppression for
√

sNN = 5.023 TeV
Pb-Pb collisions.
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Figure 8. (Color online) Inclusive Υ(1S) suppression for zero and finite initial anisotropy, ξ0.

As Figure 8 demonstrates, the effect of initial momentum-space anisotropy is to decrease the
amount of Υ(1S) suppression. Going from ξ0 = 0 to ξ0 = 50, we see an approximately 14% increase in
the inclusive Υ(1S) RAA for a central collision. The effect of initial momentum-space anisotropy on
the Υ(2S) is qualitatively similar, however, the effect is larger. We find that the inclusive Υ(2S) RAA
increases by approximately 27% for ξ0 in the same range.

5. Conclusions

The primary goal of this work was to make predictions for bottomonia suppression at the latest
LHC URHIC energy of

√
sNN = 5.023 TeV. In order to make our predictions, we had to make some

extrapolations of the initial conditions for the background. The key changes in going from 2.76 TeV
to 5.023 TeV were a 16% increase in the initial central temperature, an increase in the width of the
central rapidity plateau [38], and a small change in the nucleon–nucleon scattering cross section [35].
With these assumptions, we then made predictions with the same model employed in our prior works
on this subject [24–26]. The model includes the effect of in-medium dissociation of bottomonia, uses a
full 3 + 1d anisotropic viscous hydrodynamics background, and takes into account non-equilibrium
modifications of the heavy quark potential associated with large momentum-space anisotropy. We did
not include any cold nuclear matter effects or regeneration, since these are expected to be small for the
bottomonia states.

Comparing higher energy 5.023 TeV collisions to 2.76 TeV collisions, our model predicts that
one should see enhanced suppression of bottomonia states as a function of centrality, transverse
momentum, and rapidity. We have provided quantitative calculations of RAA for both the Υ(1s) and
Υ(2s), including feed down effects which can be compared with forthcoming data from the LHC.

Finally, in addition to extrapolating our results to the higher energy, we looked at the effect
of initial momentum-space anisotropy on bottomonia suppression. For levels of momentum-space
anisotropy predicted by theoretical models, we find an approximately 14% increase in the Υ(1s)
inclusive RAA. We plan to study this effect in more detail in the future, since it can affect the extracted
value of η/s when comparing with experimental data.
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37. Bożek, P.; Wyskiel-Piekarska, I. Particle spectra in pb-pb collisions at

√
sNN = 2.76 tev. Phys. Rev. C 2012, 85,

064915.
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