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Abstract: In this paper, we study under which conditions the Reissner–Nordström anti-de Sitter
black hole can be a solution of the vacuum mimetic F(R) gravity with Lagrange multiplier
and mimetic scalar potential. As the author demonstrates, the resulting picture in the mimetic
F(R) gravity case is a trivial extension of the standard F(R) approach, and in effect, the metric
perturbations in the mimetic F(R) gravity case, for the Reissner–Nordström anti-de Sitter black hole
metric, at the first order of the perturbed variables are the same at the leading order.

Keywords: mimetic gravity; modified gravity; F(R) gravity

1. Introduction

The striking late 90s observations [1] indicated that the Universe is expanding in an accelerating
way. This observation utterly changed our perception of the late-time Universe, with this late-time
acceleration being attributed by the scientific community to a negative pressure perfect fluid called
dark energy. Modified gravity [2–9] plays an important role towards the consistent modeling of
late-time acceleration, since early-time acceleration [10–17] can also be described with the same
theoretical framework [18–22]. For an important stream of reviews and research articles on the
concept of dark energy, the author refers the reader to [23–28]. The latest observational data coming
from the Planck telescope collaboration [29] indicate that the present time Universe consists of
ordinary matter (Ωm ∼ 4.9%), dark energy (∼ 68.3%) and what is perceived as cold dark matter
(ΩDM ∼ 26.8%). With regards to the latter, a lot of possible models exist that can explain dark matter,
with most of these assuming that dark matter is described by a particle which does not interact with
ordinary matter [30,31].

Recently, a quite elegant description of dark matter was given in reference [32], in which the
conformal degrees of freedom of the metric in an ordinary Einstein–Hilbert action can actually mimic
dark matter. The approach was given the name mimetic dark matter and was further developed
later in [33,34]. The applications and implications of the mimetic approach are numerous and have
been adopted in many theoretical studies [35–47]. In this paper, the author shall be interested in
the vacuum F(R) gravity mimetic approach [36], in which case an ordinary vacuum F(R) gravity
is equipped with a scalar potential and a Lagrange multiplier [48,49]. Particularly, the author
shall study in detail for which conditions a Reissner–Nordström anti-de Sitter (AdS-RN) black
hole can be a solution of a general vacuum mimetic F(R) gravity with Lagrange multiplier and
scalar mimetic potential. Notice that with the terminology mimetic, the author refers to the scalar
gravitational degrees of freedom, so this does not have to be specified this from now on. The study
of Reissner–Nordström solutions for a general vacuum F(R) gravity was performed in [50], where in
order for the Reissner–Nordström black hole spacetime to be a solution of the corresponding Einstein
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equations, certain constraints should be satisfied. It is obvious that in the case of mimetic vacuum
F(R) gravity, the presence of the mimetic potential and the Lagrange multiplier will modify the
resulting picture, with regards to the constraints that have to be satisfied. Indeed, as is demonstrated,
the general set of constraints have differences to the ordinary vacuum F(R) case. For a similar study
but for a Schwarzschild anti-de Sitter black hole in vacuum F(R) gravity, see [51] and also [52].
Moreover, a large number of studies devoted to black hole solutions exist in the context of F(R)
gravity, and, for an incomplete list, the author refers to [53–65] and references therein.

The motivation for studying AdS-RN black holes in the context of mimetic F(R) gravity is mainly
to see whether these constant curvature black hole solutions, which are solutions in the case of metric
F(R) gravity, can also be solutions of mimetic F(R) gravity. This is important for two reasons—firstly,
in order to see if the mimetic F(R) gravity context can support such solutions. This issue in some way
can judge if the mimetic F(R) gravity context is viable, since the existence of compact gravitational
solutions is guaranteed or not. Secondly, if these solutions exist, it is important to see what the
differences are in comparison to the standard metric F(R) approach. For example, the perturbations
of the RN-AdS black hole in the metric F(R) gravity yields anti-evaporation phenomena; therefore,
if the mimetic F(R) solutions are different, this can introduce differences in the perturbations in the
case of mimetic F(R). As is demonstrated, for the constant curvature solutions, the metric F(R) case
and the mimetic F(R) case yield almost the same equations of motion, with a difference being that
the mimetic F(R) and the metric F(R) differ by a constant.

Therefore, the purpose of this paper is twofold: First, the paper will investigate how the presence
of the Lagrange multiplier and of the mimetic potential affects the constraints that need to be satisfied,
in order for the AdS-RN metric to be a solution of the vacuum mimetic F(R) gravity. Secondly, the
paper will focus on how the aforementioned constraints affect the perturbations of the AdS-RN black
hole, studying the problem at first order in the perturbed variables. As is demonstrated, the resulting
mimetic F(R) gravity is a trivial extension of the standard F(R) gravity, and in effect, the metric
perturbations at first order are the same.

The outline of the paper is as follows: In Section 2, the mimetic vacuum F(R) gravity formalism
with Lagrange multiplier and mimetic potential is presented in brief. The reason why the study of the
AdS-RN black hole is important is also discussed, and the paper investigates which constraints have
to be satisfied, so that the AdS-RN black hole is a solution of the vacuum mimetic F(R) gravity. As is
demonstrated, the solutions can be classified into two classes, and only one of these is thoroughly
investigated, since the latter leads to the Schwarzschild anti-de Sitter black hole. Finally, the metric
perturbations in the mimetic case are briefly discussed. The concluding remarks follow at the end of
the paper.

2. Mimetic F(R) Gravity and Reissner–Nordström Black Holes

2.1. The Mimetic F(R) Gravity Theoretical Framework

The mimetic F(R) gravity was first studied in [35], and in the context of mimetic F(R) gravity, the
conformal symmetry is actually an internal degree of freedom [32], which is not violated. The mimetic
gravity approach was introduced by [32], and in the context of mimetic gravity, the physical metric
gµν that describes our Universe, can be written in terms of an auxiliary scalar degree of freedom, the
scalar field φ, and also in terms of an auxiliary metric tensor ĝµν, in the following way:

gµν = −ĝρσ∂ρφ∂σφĝµν (1)
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The equations of motion are obtained by varying the gravitational action with respect to the
auxiliary metric ĝµν and with respect to the extra scalar degree of freedom, instead of varying the
action with respect to the physical metric gµν. From Equation (1), it easily follows that

gµν(ĝµν, φ)∂µφ∂νφ = −1 (2)

As can be easily verified, the Weyl transformation ĝµν = eσ(x)gµν leaves Equation (1) invariant,
and the auxiliary metric ĝµν eventually does not appear in the final action. The Jordan frame mimetic
F(R) gravity action, equipped with a scalar field potential V(φ), and a Lagrange multiplier λ(φ), is
equal to [35]

S =
∫

d4x
√
−g
(

F
(

R(gµν)
)
−V(φ) + λ

(
gµν∂µφ∂νφ + 1

))
(3)

In the following, the author shall refer to the auxiliary scalar potential V(φ), as the mimetic
potential. Notice that the mimetic potential in the case of the mimetic gravity and also in the case of
the mimetic F(R) gravity is arbitrarily chosen, which enables one to use as a specific choice, which in
effect constrains the final form of the Lagrange multiplier and of the F(R) gravity. In Equation (3), it
was assumed that no matter fluids are present, and the vacuum mimetic F(R) gravity with mimetic
potential and Lagrange multiplier is studied. By varying the action of Equation (3), with respect to
the physical metric gµν, the author obtains the following set of equations:

1
2

gµνF(R)− RµνF′(R) +∇µ∇νF′(R)− gµν�F′(R) (4)

+
1
2

gµν

(
−V(φ) + λ

(
gρσ∂ρφ∂σφ + 1

))
− λ∂µφ∂νφ = 0

Moreover, by varying the action of Equation (3), now with respect to the auxiliary scalar field φ,
the author obtains,

− 2∇µ(λ∂µφ)−V′(φ) = 0 (5)

Note that the “prime” in this case denotes differentiation with respect to the auxiliary scalar field,
but in the rest of the paper, this notation will be used to denote differentiation with respect to the Ricci
scalar, unless differently stated. Finally, upon variation of the action Equation (3) with respect to λ(φ),
the result is as follows:

gρσ∂ρφ∂σφ = −1 (6)

and, by noticing Equation (6), it is observed that this result is identical to the one appearing in
Equation (2). In the following sections, the results of this section will be used extensively, in order to
study black hole solutions in vacuum mimetic F(R) gravity.

2.2. Motivation for Studying the Reissner–Nordström Black Holes

Before investigation of the AdS-RN black hole solutions in the mimetic F(R) gravity begins, it is
necessary to discuss in some detail the motivation to study such black hole solutions. The motivation
is twofold, since these black hole solutions have applications in the early Universe [66–68], but
also have applications in condensed matter systems, via the holographic principle and phase
transitions [69–71].

Particularly, it has been known since the work of Hawking [72], that black holes evaporate,
and thus, effectively, their horizon decreases. However, the inverse process for Nariai types black
holes is also possible [73]. Actually, this anti-evaporation procedure is triggered by instabilities of the
perturbations of the Nariai black hole (see reference [73] for further details on this). The Nariai black
holes however, are not black holes that result from the usual gravitational collapse of a star, since
these are not asymptotically flat. Therefore, these black holes are relevant for the early Universe only,
since these can be primordial black holes of some sort.
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It is remarkable that, in the classical F(R) gravity case, anti-evaporation of the Nariai spacetime
can occur at the classical level, without any quantum gravity effects being involved [52]. In addition,
the Reissner–Nordström black holes are solutions of the F(R) gravity even in the absence of abelian
Maxwell fields [74]. As was demonstrated in [50], the AdS-RN black hole is a solution of the F(R)
gravity, if certain constraints are satisfied, and in the present work, the study of [50] shall be extended,
for the case of vacuum mimetic F(R) gravity. Note that the AdS-RN spacetime is similar to the
Nariai black hole, so the results can have relevance to the physics of the early Universe, owing to
the instabilities of the AdS-RN black hole, which in effect can be responsible for the anti-evaporation
of such massive objects.

As already mentioned, the AdS-RN black hole solutions are relevant for the physics of condensed
matter systems, via the holographic principle. Actually, in order to provide a gravitational description
of condensed matter phenomena, it is of fundamental importance to find black hole solutions that
encompass the physical features of a many-body system and its corresponding phase diagram.
Note that the stability of the system depends of course on the field content of the theory. AdS-RN
black holes are relevant in condensed systems study, and these result from an Einstein–Maxwell
classical theory as the only static solutions that remain stable below a critical temperature [69].
Actually, the ground state of such a system is the extremal AdS-RN black hole, which is the case of
black holes studied in this paper. The inclusion of a scalar field in the gravitational action, splits the
possible ground states of the system, and the resulting instability of the AdS-RN black hole, actually
provides the holographic description of the phase transitions that take place in the dual theory [70,71].
This kind of phase transition is expected to occur in superfluid or superconducting systems, and
their study involves linear perturbations of hairy black holes [70,71]. Therefore, the presence of an
instability in an F(R) gravity AdS-RN black hole, without the presence of a Maxwell field, is rather
intriguing to study, since there might be a possible connection to the condensed matter systems yet
to be found.

2.3. General Study of the Solutions

In this section, it shall be investigated under which conditions a static metric with constant
curvature and spherical symmetry can be a solution of a general vacuum mimetic F(R) gravity. In the
following, for convenience, the notation of reference [50] is adopted. As already stated, it is assumed
that the spacetime is described by a spherical symmetric and static metric, gµν with its line element
being of the form,

ds2 = gµνdxµdxν = −A(r)dt2 + B(r)dr2 + r2dΩ2 (7)

In Equation (7), the functions A(r) and B(r) are assumed to be smooth and differentiable
functions of r, and in addition, dΩ2 denotes the metric of unit 2-sphere, that is,

dΩ2 = dθ2 + sin(θ)2dφ2 (8)

It shall be investigated which conditions much hold true in order for black hole solutions in
vacuum mimetic F(R) gravity, to exist, which satisfy the following constraints:

A(r) =
1

B(r)
, R = R0 (9)

where R is the Ricci scalar, and R0 a constant. Therefore, solutions are looked for which lead to a
constant scalar curvature and also for which forms of solutions the functions A(r) and B(r) satisfy
the constraint Equation (9). The Ricci scalar for the metric Equation (7), is equal to,

R = −A′′(r)− 4
r

A′(r)− 2
r2 A(r) +

2
r2 (10)
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Notice that for deriving Equation (10), the constraint Equation (9) for the function A(r) was also
taken into account, and the “prime” denotes, in this case, differentiation with respect to the radial
coordinate r. Since it was assumed that R = R0, the following differential equation is obtained:

− A′′(r)− 4
r

A′(r)− 2
r2 A(r) +

2
r2 = R0 (11)

which can easily be solved to yield

A(r) = 1− r2

12
R0 +

C1

r
+

C2

r2 (12)

By setting C1 = −M and C2 = Q, Equation (12) becomes,

A(r) = 1− R0 r2

12
− M

r
+

Q
r2 (13)

Hence, by combining Equations (7) and (13), the metric becomes,

ds2 = −
(

1− R0 r2

12
− M

r
+

Q
r2

)
dt2 +

1(
1− R0 r2

12 −
M
r + Q

r2

)dr2 + r2dΩ2 (14)

which is the Reissner–Nordström anti-de Sitter black hole spacetime. This black hole solution has
two event horizons and one cosmological horizon, only in the case R0 > 2, which can be easily found
by solving the equation 1

grr
= 0. However, for notational convenience, it is assumed that the event

horizons occur at r = r0 and r = r1, so by choosing the parameters M and Q in the way presented in
the Appendix A,

A(r) = (1− r0

r
)(1− r1

r
)
(

1−
(r + r0)(r + r1) + r2

0 + r2
1

12
R0

)
(15)

from which it can easily be seen that the two event horizons occur at r = r0, r = r1 and the
cosmological horizon at (

1−
(r + r0)(r + r1) + r2

0 + r2
1

12
R0

)
= 0 (16)

2.4. Mimetic F(R) Reissner–Nordström Black Holes: A Study of the Solutions

The focus in this section is to investigate under which conditions, the metric of Equation (14) is
a solution of the mimetic F(R) gravity equations of motion Equation (4), with action Equation (3).
Notice that the conditions appearing in Equation (9) are assumed to hold true. A vacuum mimetic
F(R) solution shall be searched for, meaning that only the mimetic potential V(φ) and the Lagrange
multiplier λ(φ) are present, and no matter fluids are assumed to be present. By combining
Equations (5) and (6), the mimetic F(R) equation of motion of Equation (4), can be cast as follows:

1
2

gµνF(R)− RµνF′(R) +∇µ∇νF′(R)− gµν�F′(R) +
1
2

gµν (−V(φ))− λ∂µφ∂νφ = 0 (17)

which, for constant scalar curvature, it becomes,

1
2

gµνF(R)− RµνF′(R)− 1
2

gµνV(φ)− λ∂µφ∂νφ = 0 (18)

By contracting Equation (18) with the metric gµν, the following equation is received,

2F(R)− RF′(R)− 2V(φ)− λ(φ)gµν∂µφ∂νφ = 0 (19)
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which, in view of Equation (6), leads to the following equation,

2F(R)− RF′(R)− 2V(φ) + λ(φ) = 0 (20)

By solving Equation (20), with respect to F(R), the following result is obtained:

F(R) =
RF′(R)

2
+ V(φ)− λ(φ)

2
(21)

By substituting Equation (21) in Equation (18), the following result is easily received:

1
2

gµν

(
RF′(R)

2
+ V(φ)− λ(φ)

2

)
− RµνF′(R)− 1

2
gµνV(φ)− λ∂µφ∂νφ = 0 (22)

which after some simple algebraic manipulations, becomes,(
gµνR

4
− Rµν

)
F′(R)− gµν

(
λ(φ)

4
+ λ(φ)∂µφ∂µφ

)
= 0 (23)

Finally, by using Equation (6), the Equation (23) can be cast in the following form:(
gµνR

4
− Rµν

)
F′(R)− gµν

(
3λ(φ)

4

)
= 0 (24)

By looking at Equation (24), it is concluded that, since the first term is independent of φ, the
above equation can hold true in the following two cases:

• Case I: Both the first and second term are equal to zero, that is,(
gµνR

4
− Rµν

)
F′(R) = 0, gµν

(
3λ(φ)

4

)
= 0 (25)

• Case II: Both the first term are equal to the same constant, but with opposite signs, that is,(
gµνR

4
− Rµν

)
F′(R) = Γ, gµν

(
3λ(φ)

4

)
= −Γ (26)

where Γ is a positive real matrix.

In the following section, the two cases listed above shall be analyzed in detail, and the
consequences corresponding to each of the two cases will also be discussed in detail. Since it
corresponds to the physical problem that interests the author most, Case I will be first.

2.4.1. Case I

For this scenario, it is analyzed, in some detail, what the constraints Equation (25) imply for the
vacuum mimetic F(R) gravity model at hand. Firstly, the second constraint in Equation (25) can be
true only if λ(φ) = 0, and by using Equation (5), it is easily concluded that the mimetic potential is,
V(φ) = Λ, with Λ some arbitrary real constant, which shall be assumed to be positive, without loss
of generality. Hence, the allowed values of the mimetic potential V(φ) and of the Lagrange multiplier
λ(φ), are given below:

λ(φ) = 0, V(φ) = Λ (27)

Note that Equation (27) results if it is demanded that the spherical symmetric metric with
constant curvature of Equation (14) is a solution of the vacuum mimetic F(R) gravity with mimetic
potential and Lagrange multiplier. The first constraint in Equation (25) is a bit more involved, so the



Universe 2016, 2, 10 7 of 12

author explicitly calculates the expression in order to have a clear picture of the implications that this
constraint generates. By using the metric of Equation (14), the first constraint explicitly reads,

Q(−12Q+r(12M−12r+r3R0))
12r6 0 0 0
0 − 12Q

r2(−12Q+r(12M−12r+r3R0))
0 0

0 0 −Q
r2 0

0 0 0 −Q sin(θ)2

r2

 F′(R0) = 0 (28)

which means that either Q = 0 or F′(R0) = 0. Therefore, the following two scenarios exist:

• Scenario I: This scenario corresponds to Q 6= 0, and therefore the following constraints
correspond to this scenario,

F′(R0) = 0, V(φ) = Λ, λ(φ) = 0 (29)

• Scenario II: This scenario corresponds to Q = 0 and it is described by the following constraints,

Q = 0, V(φ) = Λ, λ(φ) = 0 (30)

Notice that in Scenario I, by using Equation (21), the author gets, F(R0) = Λ, while in Scenario
II, the author obtains F(R0) = R0F′(R0)

2 + Λ. In Table 1, the results for the Scenarios I and II are
included. In conclusion, the resulting picture of the mimetic F(R) gravity, yields different results in
comparison to the non-mimetic F(R) gravity case studied in [50]. Particularly, in the present paper,
the requirement that the AdS-RN black hole is a solution of the mimetic F(R) gravitational system,
results in many different cases for which this can be true, in comparison to the only cases Q = 0 or
F′(R0) = 0 corresponding to the case studied in the ordinary F(R) gravity of reference [50]. This is
easily explained, since the presence of the mimetic potential and of the Lagrange multiplier offers
more freedom in the resulting set of equations that need to be satisfied, namely Equation (23).

Table 1. The Scenarios I and II for the Mimetic F(R) Gravity Reissner–Nordström anti-de Sitter
Black Hole.

Scenario Constraints

Scenario I F′(R0) = 0, V(φ) = Λ, λ(φ) = 0, F(R0) = Λ
Scenario II F′(R0) 6= 0, V(φ) = Λ, λ(φ) = 0, F(R0) =

R0 F′(R0)
2 + Λ

Before closing this section, it should be discussed whether there exists another solution to
Equation (24), different from the one described by Case I. It is worth discussing and studying this
in detail, so by using the metric of Equation (14) and inserting this in Equation (24), the following set
of equations is obtained, which is quoted in matrix form,

(−12Q+r(12M−12r+r3R0))(r4λ+QF′(R0))
12r6 0 0 0

0 − 12(r4λ+QF′(R0))
r2(−12Q+r(12M−12r+r3R0))

0 0

0 0 r2λ− QF′(R0)
r2 0

0 0 0
sin(θ)2(r4λ−QF′(R0))

r2

 = 0 (31)

It is easy to see that the following two equations must simultaneously be satisfied, so that
Equation (31) holds true:

r4λ + QF′(R0) = 0, (32)

r4λ−QF′(R0) = 0
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The system of Equation (32) has as a solution what Case I describes, that is, λ = 0 and
QF′(R0) = 0,; consequently, this validates this paper’s claim that both terms of Equation (24) must
independently be equal to zero.

2.4.2. Case II

In this case, the constraints appearing in Equation (26) must hold true. By observing
Equation (26), it can immediately be seen that neither F′(R0) and Q can be zero, so, for this case,

F′(R0) 6= 0, Q 6= 0 (33)

Let it be investigated whether the constraints of Equation (26) can hold true, starting off
with the second constraint, namely gµν

(
3λ(φ)

4

)
= −Γ, which by using the metric Equation (14),

explicitly reads,
(

Q
r2 − M

r + 1
12
(
12− r2R0

))
λ 0 0 0

0 − λ
Q
r2−

M
r + 1

12 (12−r2R0)
0 0

0 0 −r2λ 0
0 0 0 −r2λ sin(θ)2

 = Γ (34)

and it can easily be seen that the only constant solution for λ is λ = 0, and therefore Γ = 0. Thereby,
since Γ = 0, the first constraint of Equation (26) is satisfied when Q = 0 or F′(R0) = 0, hence ending
up with the first case, namely Case I.

As has been demonstrated, only Case I leads to a black hole solution for the vacuum mimetic
F(R) gravity with Lagrange multiplier and mimetic potential. The requirement that an AdS-RN
black hole is a constant curvature solution of the mimetic F(R) gravity results in a certain number
of constraints, which are different from the ordinary F(R) gravity case studied in reference [50].
Therefore, it is natural to ask if these new conditions that the mimetic F(R) gravity imposes, can
have an effect on the perturbations of the AdS-RN black hole. This is easy to answer, because the
mimetic F(R) solution, which is,

F′(R0) = 0, V(φ) = Λ, λ(φ) = 0, F(R0) = Λ (35)

is a trivial variant of the ordinary F(R), with the mimetic F(R) being different to the ordinary F(R),
up to a constant. The only difference is that F(R0) 6= 0, which however does not alter the perturbation
equations at first order. Therefore, the perturbations in the two cases are the same, and therefore in
the mimetic F(R) case, the resulting equations are [50]:

F′′(R0)
[
− 1

coshx δR + tanh x
∂δR
∂x

+
∂2δR
∂x2

]
= 0 (36)

F′′(R0)
[ 1

coshx δR + δR̈ + tanh x
∂δR
∂x

]
= 0 (37)

F′′(R0)
[∂δṘ

∂x
+ tanh xδṘ

]
= 0 (38)

F′′(R0)
[
δR + cosh2 x

(
−δR̈ +

∂2δR
∂x2

) ]
= 0 (39)

where only first order terms were kept and the following were also used:

R = 2e−2ρ[x,t]
(

e2(ρ[x,t]+ϕ[x,t])M2
− − 3M2

+

(
∂ϕ
∂t̄

)2
−M2

+
∂2ρ

∂t̄2 + 2M2
+

∂2 ϕ

∂t̄2 + 3M2
+

(
∂ϕ
∂x

)2
+ M2

+
∂2ρ

∂x2 − 2M2
+

∂2 ϕ

∂x2

)
(40)
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Clearly, since the perturbation equations are the same, the same anti-evaporation phenomena
that occurred for the ordinary F(R) AdS-RN black holes [50] will also hold true in the mimetic
F(R) case.

Before closing this section, it is noted that the condition F′(R0) = 0 simplifies a lot of the
equations in the mimetic case too; hence, if F′(R0) 6= 0, it is possible that the perturbation equations
in the mimetic and ordinary F(R) gravity cases, are in fact different. This may be the case in
the Schwarzschild de Sitter black hole, which was studied in the context of the F(R) gravity in
reference [51]. The author hopes to address this issue in a future work.

Another interesting task is to investigate what happens if the metric Equation (14) is not assumed
to be the background metric. This study is interesting since if Equation (21) is integrated with respect
to R, the following will be obtained:

F(R) = −Λ
2
+ c1 R2 + V(φ) (41)

with c1 being an arbitrary integration constant. If c1 = 0, this coincides with the case I studied
previously, while c1 6= 0, this describes the case II. Hence, it is possible to obtain the cases studied by
using more general metrics, not just the one of Equation (14). This issue, however, should be carefully
studied, and the author defers this task to a future work, since this exceeds the purposes of this work.

3. Conclusions

In this paper, the AdS-RN black hole was studied, in the context of mimetic F(R) gravity
with Lagrange multiplier and mimetic potential. As was demonstrated, imposing the condition
that the AdS-RN black hole is a solution of the mimetic F(R) gravity results in some constraints,
which are different in comparison to the ones corresponding to the ordinary F(R) gravity case. As
demonstrated, the mimetic case is a trivial extension of the ordinary F(R) gravity case, and therefore
the resulting perturbations equations are not affected.

Motivated by the fact that the reason for having the same perturbations equations for the mimetic
and ordinary F(R) AdS-RN black hole, is the constraint F′(R0) = 0, it is interesting and tempting to
study black holes for which the constraint F′(R0) = 0 no longer applies. This, for example, could be
the case for the charged black hole studied in [50], or in the case of the Schwarzschild-de Sitter black
hole, studied in [51]. It would therefore be quite interesting to study these cases too, which the author
hopes to address in a future publication.

Another interesting possibility for further study is related to primordial black holes, since the
black holes studied in this paper are expected to be primordial black holes. Recently, an interesting
study related to non-Gaussianities and the formation of supermassive black holes was performed
in reference [75]. It is interesting to see if these non-Gaussianities could have some possible effect
on the evolution of primordial black holes. This, for example, could be combined with the study of
gravitational memory of the primordial black holes [76], an effect which could have an imprint on the
primordial black holes at the time of their formation. For a recent study on gravitational memory in
the context of F(R) gravity, see [77].

Finally, since the instability of the AdS-RN black hole provides the holographic description of
the phase transitions that occur in the dual condensed matter theory [70,71] of an Einstein–Maxwell
gravitational theory, it would be interesting to see if there is any possible connection between the F(R)
AdS-RN black hole, and the condensed matter systems, like superfluid or superconducting systems.
Notice that the most interesting feature is that, in the context of F(R) gravity, no abelian Maxwell
fields are needed in order for the AdS-RN black hole to be a solution. The author hopes to address
some of these issues in the future.
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Appendix A. The Parameters M and Q in Terms of r0 and r1

Here, the exact form of the parameters M and Q appearing in the AdS-RN black hole metric of
Equation (14) is quoted. Particularly, the parameter Q is assumed to have the following form:

Q = r0r1

(
1−

(
r2

0 + r2
1 + r0r1

)
R0

12

)
(A1)

and the parameter M is assumed to be,

M = (r0 + r1)

(
1−

(
r2

0 + r2
1
)

R0

12

)
(A2)

By choosing the mass parameter M and the charge parameter Q as in Equations (A1) and (A2),
the two horizons of the AdS-RN black hole occur at r0 and r1, and the function A(r) can take the form
appearing in Equation (15).
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