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Abstract

Recently, a link between gravitational tension (GT) and energy density via the Kretschmann
scalar (KS) was proposed to construct regular black holes (RBHs) in pure Lovelock (PL)
gravity. However, including a negative cosmological constant in PL gravity leads to a
curvature singularity. Here, we choose the coupling constants such that the Lovelock
equations admit an n-fold degenerate AdS vacuum (LnFDGS), allowing us to construct
an RBH with Λ < 0, where the energy density is analogous to the previously mentioned
model. To achieve this, we propose alternative definitions for both the KS and GT. We find
that, for mass parameter values greater than the extremal value Mmin, our RBH solution
becomes indistinguishable from the AdS vacuum black hole from inside the event horizon
out to infinity. At small scales, quantum effects modify the geometry and thermodynamics,
removing the singularity. Furthermore, due to the lack of analytical relationships between
the event horizon, photon sphere, and shadow in LnFDGS, we propose a numerical method
to represent these quantities.

Keywords: regular black holes; lovelock gravity; black hole thermodynamics

1. Introduction
The detection of gravitational waves [1,2] has significantly strengthened the position

of general relativity (GR), even surpassing its already well-established success at the Solar
System scale [3]. Nevertheless, some inconsistencies in GR at quantum scales, along with
the still unknown nature of dark energy and dark matter, have driven the scientific com-
munity to investigate modified theories of gravity. As a first example of these alternative
frameworks, the Horndeski scalar–tensor theory [4] generalizes GR by introducing one or
more scalar degrees of freedom. This theory is carefully constructed so that its equations of
motion prevent the emergence of an unwanted extra degree of freedom, commonly referred
to as a ‘ghost’, which would carry negative energy. As a second example, we consider the
f (R) theories of gravity [5]. As noted in reference [6], this framework offers a gravitational
alternative for a unified description of inflation, dark energy, and dark matter, without
the need to manually introduce an inflaton field or additional dark components. It is also
worth mentioning that black hole solutions have been studied within this theory [7].

In line with the previous paragraph, in recent decades, modified gravity theories pre-
dicting the existence of extra dimensions have also attracted significant attention. Although
several experiments have attempted to test this hypothesis, extra dimensions have not
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yet been observed. As a result, any theory that incorporates extra dimensions must be
consistent with general relativity in four dimensions. One such theory is Lovelock gravity.
The Lagrangian of Lovelock gravity incorporates higher curvature terms as corrections to
the Einstein–Hilbert action [8]. Additionally, Lovelock’s theories respect the core principles
of general relativity; for instance, their equations of motion are of second order. It is worth
noting that one particular case of Lovelock theories, namely, Einstein–Gauss–Bonnet grav-
ity, has gained attention in recent years in the context of inflationary models and has been
confronted with the GW170817 observational results [9,10].

On the other hand, it is well known that vacuum solutions describing black holes
possess a physical singularity, referring to a location where curvature invariants diverge
and the tidal forces near a black hole’s singularity become infinite, which can lead to the
unbounded stretching of an object, a phenomenon known as spaghettification. One way to
address the existence of physical singularities is to define appropriate forms for the matter
sources in the energy–momentum tensor such that the central singularity is suppressed.
Black holes that are free of a physical singularity are usually referred to as regular black
holes (RBHs).

In recent years, the relationship between the gravitational tension associated with the
Kretschmann scalar in the vacuum case and the energy density has been investigated to
eliminate the existence of singularities. The Kretschmann scalar is an invariant associated
with the measurement of tidal forces [11]. In a four-dimensional, vacuum, spherically
symmetric space, this scalar is proportional to K ∼ M2/r6, leading to infinite tidal forces at
the origin. Gravitational field tension in the spherically symmetric case is characterized
by the curvature term given by the square root of the Kretschmann scalar of the vacuum
solution: F ∼

√
KSchw ∼ M

r3 in 4D. This correlation is logical, as the spacetime tension
should increase with the mass of the vacuum source [12]. In this connection, as a way
to address the problem of singularities while including an appropriate structure for the
energy–momentum tensor, a higher-dimensional model was recently constructed in refer-
ence [13] for pure Lovelock (PL) gravity, where the energy density encodes the gravitational
information of the vacuum solution through the Kretschmann scalar. Near the radial origin,
where tidal forces and the gravitational tension in the vacuum solution diverge, the tidal
forces in the model become finite. Specifically, the energy density is written as

ρ ∼ exp
(
− Fc

F

)
(1)

with Fc and a being constants. In summary, the model proposed in [13] is such that its
energy density encodes the gravitational information of the vacuum solution. Thus, near
the central singularity, where the gravitational tension and tidal forces of the vacuum
black hole become infinite, the energy density of the model remains finite, suppressing the
singularity and giving rise to a regular black hole (RBH). This model coincides with the
RBH of Dymnikova [14] in the four-dimensional case. On the other hand, in a speculative
sense, in four dimensions, this way of relating gravitational tension to energy density is
analogous to the particle production ratio in the quantum Schwinger effect [15]. We can
find studies related to this latter topic in references [12,16,17]. However, this is a topic that
requires deeper investigation.

Since the origin of general relativity, there has been an interest in understanding the
role of the cosmological constant. The observed accelerated expansion of the universe can
be attributed to a small, yet strictly positive, four-dimensional cosmological constant of
approximately Λ ∼ 10−121 Planck units ∼ 10−52[m−2] ∼ 10−3[(eV)4] [18]. Unfortunately,
a positive cosmological constant introduces several technical complications. First, the pres-
ence of a positive cosmological constant leads to the existence of a cosmological horizon;



Universe 2025, 11, 338 3 of 25

thus, it prevents the definition of a proper asymptotic regime and complicates an unambigu-
ous identification of a black hole’s ADM mass. Second, a positive cosmological constant is
commonly linked to negative pressure, which implies thermodynamic instability.

During the last three decades, primarily due to the AdS/CFT conjecture, considering
a negative cosmological constant has been of paramount interest in theoretical physics.
From a theoretical point of view, considering asymptotically AdS spaces has advantages,
such as the construction of a proper action principle—one that admits the definition of an
asymptotic boundary where well-defined boundary conditions can be imposed and where
unambiguous conserved charges can be computed.

Despite the above-mentioned issues regarding physical problems being addressed by
including a negative cosmological constant, there has been little speculation in the literature
about a possible negative numerical value for this constant. For example, references [19,20],
using observations of stars near the Galactic Center, estimate a negative value for the
cosmological constant, in [19], for anti-de Sitter spacetimes, corresponding to a negative Λ
term of approximately −0.4 × 10−20 m−2. The authors claim that this value is consistent
with some ideas within the framework of a certain class of multidimensional string models.
In [20], also using observations of stars near the Galactic Center, the orbital precession in the
Reissner–Nordström–AdS solution is studied, obtaining values of −4.68 × 10−39 cm−2 <

Λ < 0. The authors state that their constraints on the cosmological constant are much
weaker not only than their cosmological estimates but also than the constraints obtained
from Solar System data.

In the context of this work, that is, within Lovelock theories, some authors assume that
the coupling constants of the theory could be of the order of Planck scale quantities [21].
This makes sense if one considers that the theory might only be testable at high energies.
As we will see in detail below, the zeroth-order coupling constant is proportional to the
cosmological constant. Under this idea, a negative cosmological constant would be of the
order of powers of the Planck length, Λ ∼ −ℓ−2n

p . That is, an AdS radius on the order of
the Planck length. However, there are also works that define intermediate energies as those
which are weak enough to be testable at energy scales below the Planck scale, but still high
enough to feel the effects of the higher-curvature terms in Lovelock theory [22]. Under this
latter assumption, Λ ∼ −ℓ̄−2n, with ℓ̄ > ℓp. That is, an AdS radius sufficiently larger than
the Planck length, in order to satisfy what has been mentioned above.

When higher dimensions (d > 4) are considered, several families of gravitational
theories emerge that satisfy the same conditions of general relativity, such as second-order
differential equations. Arguably, the simplest of these families is the d-dimensional Love-
lock gravity, which corresponds to the addition of all of the lower-dimensional topological
densities. General relativity corresponds to the simplest case.

A special case of Lovelock theories is pure Lovelock theory (PL) [23,24]. This theory
considers only a single term in the Lagrangian. Related to those theories discussed above,
a disadvantage of PL theory is that considering the presence of a negative cosmological
constant in a spherically symmetric spacetime leads to the appearance of a curvature
singularity [23]. This singularity is such that, although the metric tensor is regular for a
radius greater than the event horizon, the Ricci and Kretschmann invariants diverge at a
point within this location. This issue has not been extensively investigated; therefore, it
may be related to a potential breakdown of spacetime. Thus, studying the recent analogy
between gravitational tension and energy density, as carried out in [13], appears to be
unfeasible within the framework of PL theory in the presence of a negative cosmological
constant for the construction of RBH solutions.

To address the issue above—namely, the apparent impossibility of studying the recent
analogy between gravitational tension and energy density in pure Lovelock theory under
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the influence of a negative cosmological constant—this work will take the following into
account: One potential drawback of generic Lovelock gravity is the existence of multi-
ple ground states, meaning more than one solution with constant curvature spaces, or
equivalently, more than one potential effective cosmological constant [25]. These effective
cosmological constants can be complex numbers, which can lead to instability of the ground
states under dynamical evolution. To address this issue, one can choose the coupling con-
stant in such a way that the equations of motion roughly take the form (R−Λ)n = 0 [26]. In
this case, there is a single ground state, but it is n-fold degenerate with constant curvature.
This scenario is referred to as Lovelock with an n-fold degenerate ground state (LnFDGS).
This is also known as the degenerate vacuum. In the context of this work, this coupling
constant structure allows for the observation of a single negative effective cosmological
constant, which, among other things, has facilitated the development of techniques for
determining conserved charges [27]. This also seems to make sense in the framework of
the AdS/CFT correspondence, as two or more negative cosmological constants would lead
to different asymptotic boundary structures for the same background; see some recent
applications of LnFDGS theory in references [27–32].

PL has significant differences compared to the LnFDGS theory [26,27]. While PL
considers only a single term from the Lovelock series, LnFDGS includes all the terms from
this series up to n = [d/2], where the square brackets represent the floor function. Moreover,
PL cannot be factored into several equivalent negative effective cosmological constants,
unlike LnFDGS. Remarkably, LnFDGS does not exhibit a curvature singularity of the type
mentioned earlier. This offers the advantage of displaying a well-defined asymptotically
AdS structure. In the context of this work, the absence of the aforementioned pathology in
LnFDGS enables the construction of RBH solutions with a negative cosmological constant,
allowing for the testing of the physical consequences of its presence from both geometric
and thermodynamic perspectives.

On the other hand, it is well known that light is not directly observable at the event
horizon of a black hole. Instead, what can be detected is the so-called shadow of a black hole,
a dark region surrounded by light, resulting from gravitational lensing around the event
horizon. One of the major achievements of the Event Horizon Telescope (EHT) collaboration
has been the imaging of the shadows of the supermassive black holes M87 [33] and Sgr
A [34]. It is worth mentioning that, given the theoretical interest driven by the presence of
a negative cosmological constant, the study of shadows in an asymptotically AdS regime
has also been explored in some references (see, for example, [35,36]). In this context, there
has also been strong motivation, from a theoretical perspective, to study shadows in extra-
dimensional scenarios; see, for example, reference [37] for scalar–tensor–vector theories,
and reference [38] (and references therein) for rotating black hole shadows; see also [39].
As previously mentioned, the study of the physical properties of black holes in Lovelock
gravity has attracted considerable attention in recent years [27–31,40,41]. Along this line, it
is natural to investigate the physical properties of their shadows. It is worth noting that in
reference [42], analytical relations were established for the photon sphere radius and the
shadow radius of singular vacuum black holes in pure Lovelock (PL) gravity. However,
for most specific cases within Lovelock theory, such analytical results are not attainable.
Therefore, it is of physical interest to develop a numerical methodology for representing
black hole shadows.

Regarding the points above, in this work, we provide a methodology to study the
analogy between gravitational tension and energy density, aiming to construct regular
black hole solutions in LnFDGS gravity in the presence of a negative cosmological constant.
It is worth mentioning that directly relating the gravitational tension to the Kretschmann
scalar of the vacuum LnFDGS solution, in the same way as for PL theory, is complicated
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because several additional terms would appear in the gravitational tension. Due to this,
unlike [13], we define an alternative version of the Kretschmann scalar suitable for the
LnFDGS AdS theory, and consequently, a redefinition of the gravitational tension. We
test how the presence of the negative cosmological constant influences the obtained RBH
solution, both in terms of its geometric and thermodynamic properties. Additionally, since
it is not possible to find analytical relationships between the event horizon, the photon
sphere radius, and the shadow size in LnFDGS, we propose a method to numerically and
graphically obtain these relationships and analyze their physical behavior.

2. A Brief Revision of Lovelock Gravity with n-Fold Degenerate
Ground State

Given that this family of theories is well known, it is only worthwhile recalling the
features relevant for the discussion. First, the d-dimensional Lovelock (LL) Lagrangian is
given by

L =
n=[d/2]

∑
p=0

1
2p αpδ

ν1 ...ν2 p
µ1 ...µ2 pRµ1µ2

ν1ν2 . . . R
µ2p−1µ2p

ν2p−1ν2p (2)

where Rµα
νβ is the Riemann tensor, [X] stands for the integer part of X, and {αp} is a set

of dimensionful constants. As mentioned in the introduction, since they are dimensionful
coupling constants, they can be defined such that they have units of αp ∼ [length]2p−d [43].
Thus, it is possible to define α0 ∼ Λαn, with Λ having units of Λ ∼ [length]−2n. Therefore,
for n = 1, corresponding to the Einstein–Hilbert case, we have Λ ∼ [length]−2. The LL
equations of motion can be written as

Gα
β =

n=[d/2]

∑
p=0

d − 2p
2p αpδ

αν1 ...ν2 p
βµ1 ...µ2 pRµ1µ2

ν1ν2 . . . R
µ2p−1µ2p

ν2p−1ν2p . (3)

Here, G(n)
αβ denotes an n-th order generalization of the Einstein tensor, which is influ-

enced by the order of the Riemann tensor of the Lagrangian L. For instance, G(1)
αβ represents

the Einstein tensor associated with the Ricci scalar (with the Einstein–Hilbert theory being
a specific case of Lovelock theory), G(2)

αβ corresponds to the Lanczos tensor related to the

Gauss–Bonnet Lagrangian, and G(3)
αβ corresponds to the cubic tensor.

It is straightforward to notice that not even in a vacuum can these equations of motion
be solved for an arbitrary set of α’s. Not even the ground-states, i.e., the locally constant
curvature solutions, can be obtained in d > 8 for a general set of α’s. The problem of
obtaining these constant curvature solutions reduces to obtaining the roots of a polynomial
of order [d/2], which, as it is well known, is not unattainable for [d/2] > 4. Moreover,
these roots can be complex numbers with nonvanishing imaginary parts. A way to avoid
this discussion is to fix the asymptotic behavior to a single asymptotically locally flat or
AdS behavior.

As mentioned in the Introduction, Lovelock theory can be factorized into several
effective cosmological constants [25]. In this connection, for αp = 0 and from p > I, the
vacuum equations of motion can be written as [27]

Gµ

(LL) ν
∝ δ

α1β1 ...αI β I µ
µ1ν1 ...µI νI ν (Rν1µ1

α1β1
+ κ1δ

µ1ν1
α1β1

) . . . (RνI µI
αI β I

+ κIδ
µI νI

αI αI ) = 0. (4)
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This shows, as expected, that the Lovelock gravity can be factorized into several
ground states of constant curvature. In this work, we aim to complete the analysis consid-
ering asymptotically locally AdS spaces, i.e., spaces satisfying

Rµα
νβ

∣∣∣
x→ALAdS region

−→ − 1
l2 δ

µα
νβ (5)

In the simplest cases where Equation (5) is satisfied, the vacuum is n-fold degenerate,
and the EOMs in Equations (3) and (4), after an appropriate choice of the coupling
constants [26,40], take the simple form

Gα
β = α0δαν1 ...ν2n

βµ1 ...µ2n

(
Rµ1µ2

ν1ν2 +
1
l2 δ

µ1µ2
ν1ν2

)
. . .
(

R
µ2p−1µ2p

ν2n−1ν2n +
1
l2 δ

µ2n−1µ2n
ν2n−1ν2n

)
(6)

with 0 < n < [d/2].
The static vacuum solution of (6) was obtained in [26,40]. In Schwarzschild coordinates,

this is given by

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2dΩd−2 (7)

where dΩd−2 corresponds to the transversal section of a (d − 2)-sphere. The vacuum
solution is

f (r) = 1 +
r2

l2 −
(

2M
rd−2n−1

) 1
n

. (8)

It must be stressed that (X)1/n stands for any of the n different roots of (X). It is straight-
forward to check the presence of a singularity at r = 0. Nonetheless, this is not enough,
and in general, what characterizes the interesting physical solutions is that they satisfy
f (r)2 ∈ R, for r > 0. If ∃ r∗ such that f (r∗)2 = 0, this defines a Killing horizon and thus
the line element above Equations (7) and (8) describe a black hole geometry. One can notice
how similar this solution is to the corresponding Schwarzschild solution. (Nonetheless,
there is at least one significant difference. For an n even integer, since there are always two
± real roots in the expression, M < 0 can be considered allowed).

It is worth stressing that, as mentioned in the Introduction, the structure of the equa-
tions of motion leading to the last solution is quite different from that of PL, as PL considers
only a single term in the Lovelock series. At the same time, LnFDGS includes all the terms
of the mentioned series up to n = [d/2] under the particular choice of coupling constants
previously mentioned. This choice allows the equations of motion to be factorized into AdS
vacua, as described above (which is not possible for PL).

3. About the Nature of the Matter Source Proposed for Lovelock with
n-Fold Degenerate Ground State AdS

Given the aforementioned differences between PL and LnFDGS theories, providing a
form for the energy density analogous to the one described earlier is not straightforward.
This is because several additional terms would appear when directly substituting the
Kretschmann scalar of the vacuum LnFDGS solution. To address this, we will provide some
of the necessary ingredients. First, we will define gravitational tension through the gauge
curvature tensor Fµν, which is the Poincaré (group) curvature. Second, we will define an
appropriate tensor for LnFDGS, which we will refer to as the Poincaré AdS-like curvature.
From this, we will provide an alternative version of the Kretschmann scalar associated with
gravitational tension. Finally, we will describe, from a physical perspective, the resulting
structure of the energy density.
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3.1. Defining Gravitational Tension Through the Gauge Curvature and a Glimpse of the Analogy
with the Schwinger Effect

Although the analogy between gravitational tension and the production ratio in the
Schwinger effect requires further study, this work provides some insights into the subject,
allowing us to speculate. As discussed in [14,16], one could argue that the Schwinger
effect should play a role in one of two ways. Firstly, it would give rise to corrections to
the vacuum expectation value of the fields. These corrections can be expressed in terms of
powers of the Riemann tensor [44]. Furthermore, gravitation itself should self-correct due
to the presence of singularities. It is expected that these effects cannot be separated for large
curvature. To address any of these approximations, after considering Equation (1), one can
recall that in asymptotically (Riemannian) flat spaces (i.e., with a vanishing cosmological
constant), one analogy to the gauge curvature Fµν is the Poincaré (group) curvature. In this
way, we can also interpret the gravitational tension as F =

√
FµνFµν, where

FP
µν = ea

λeb
ρRλρ

µν Jab + ea
ρTρ

µνPa (9)

where (Jab, Pc) span the Poincare algebra. Here, Rλρ
µν is the curvature tensor and Tρ

µν the
torsion tensor. However, since on a Riemannian manifold the torsion tensor vanishes and
the curvature tensor is the Riemann tensor, the Schwinger effect could be characterized by
the Kretschmann scalar [11,15,16]:

FµνFµν ≜ K = Rλρ
µνRµν

λρ. (10)

Now, as mentioned earlier, in order to propose an energy density, one can observe that
for the four-dimensional Schwarzschild solution, the Kretschmann scalar is proportional to
K ∼ 1/r6, and thus, by substituting it into Equation (1), the energy density proposed by
Dymnikova is reproduced.

Before proceeding, it is worth mentioning that the prescription above has been further
explored in many works; see [12,15–17]. Essentially, the results are regular black hole and
wormhole solutions. In [45,46], the mentioned relationship between the Kretschmann scalar
and the Schwinger effect was explored in a different (gravitational) context.

3.2. An Alternative Definition of the Kretschmann Scalar for Our Anti-De Sitter Space

To extend the framework to asymptotically (locally) anti-de Sitter spaces, it is enough
to consider an SO(d − 1, 2) curvature [47] instead of the Poincare one. One option is [48]

FAdS
µν = ea

λeb
ρ

(
Rλρ

µν +
1
l2 δ

λρ
µν

)
Jab + ea

ρTρ
µν Ja, (11)

In this work, for simplicity, we will refer to the tensor FAdS
µν as Poincaré AdS-like curvature,

where l is called the AdS radius and Jab, Ja are a set of generators of SO(d − 1, 2). Since
the discussion is for a Riemannian manifold, where Tρ

µν = 0, in order to simplify the
calculations, one can define an adequate Kretschmann scalar K′:

(Fµν)
AdS(Fµν)AdS ≜ K′ =

(
Rλρ

µν +
1
l2 δ

λρ
µν

)(
R µν

λρ +
1
l2 δ

µν
λρ

)
= K +

8
l2 R +

2
l4 (d − 1). (12)

As above, one can evaluate K′ on the four-dimensional Schwarzschild-AdS solution, which
yields

K′ ∼ 1
r6 . (13)

This leads to the same energy density, see Equation (1), as in the Λ = 0 case. This must be
expected as for r ≈ 0 the effects of the different asymptotical structure should be irrelevant.
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3.3. The Proposed Model

As mentioned earlier, to define the energy density in (1), we associate the gravitational
tension with the value of our definition provided above for the Kretschmann scalar for the
vacuum AdS LnFDGS solution. From Equations (6) and (12),

K′ =

(
d2

dr2 g(r)
)2

+
2(d − 2)

r2

(
d
dr

g(r)
)2

+
2(d − 2)(d − 3)

r4 (g(r))2 (14)

where

g(r) = 1 +
r2

l2 − f (r). (15)

Now, evaluating, using (8), yields

K′ =

(
(d − n − 1)2

n4 + 2(d − 2)
(

1
n2 + (d − 3)

))
(2M)

2
n

r
2
n (d−1)

(16)

Building on the idea previously described, where gravitational tension is proportional to
the square root of the Kretschmann scalar of the vacuum solution,

F ∼
√

K′ ∼ M
1
n

r
d−1

n
(17)

In this way, the steps previously taken, namely, defining a tensor analogous to the gauge
curvature, which we call the Poincaré AdS-like curvature, and providing an alternative
definition for the Kretschmann scalar, now allow us to model an energy density. Thus, in
analogy with (1), the energy density can be defined as

ρ = A exp

(
− r(d−1)/n

a(d−1)/n

)
(18)

where, for simplicity, the constant A has been adjusted to

A =
d − 2

n
M

ad−1/(d − 1)
(19)

where a is an arbitrary constant. It is worth mentioning that this density model satisfies
what was described earlier. While the gravitational tension associated with the tidal forces
of the vacuum LnFDGS AdS solution diverges near the origin, the energy density encodes
the information of the aforementioned case in such a way that, at the origin, the density
takes a finite value, which, as we will see below, is associated with the suppression of the
singularity usually present at the radial origin.

4. A New Static Regular Solution in Lovelock with n-Fold Degenerate
Ground State AdS

The energy–momentum tensor corresponds to a neutral perfect fluid:

Tµ
ν = diag(−ρ, pr, pθ , pθ , ...), (20)

On the one hand, it is well known that this form of the metric imposes the condition
ρ = −pr. To obtain the regular solution it is enough to solve (6)

Gα
β = Tα

β (21)
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The components (t, t) and (r, r) of the equations of motion take the form

d
dr

(
rd−1

(
f̄ (r) +

1
l2

)n)
=

2
d − 2

rd−2ρ, (22)

where l corresponds to the AdS radius, which is related to the cosmological constant such
that Λ = − (d−1)(d−2)

2l2 and where

f̄ (r) =
1 − f (r)

r2 (23)

On the other hand, due to the transverse symmetry, we have pθ = pϕ = pt = . . . for all
the (d − 2) angular coordinates. Thus, using the aforementioned condition ρ = −pr, the
conservation law Tαβ

;β = 0 gives

pt = − r
d − 2

ρ′ − ρ (24)

Using the static ansatz (7) with

f (r) = 1 +
r2

l2 −
(

2m(r)
rd−2n−1

) 1
n

(25)

the direct integration yields

m(r) =
1

d − 2

∫
ρrd−2dr (26)

We replace the energy density in the last equation using Equations (18) and (19), obtaining
the mass function.

By choosing M · (n − 1)! as the integration constant, the mass function is given by

m(r) = M

(
(n − 1)! − Γ

[
n ,

r(d−1)/n

a(d−1)/n

])
(27)

In the expression above, we have chosen M · (n − 1)! as the integration constant. As we
will see below, this choice allows the function to behave as a de Sitter core close to the
origin, and thus, the solution is regular.

It is worth noting that the coordinate r defines the regions of interest. While r → ∞
corresponds to the asymptotic region, r → 0 must define the center of the solution. Below,
we analyze the regions associated with the event horizons present in the solution.

4.1. Structure of Horizons

We begin by mentioning that the mass parameter at which our solution, Equations (25) and (26),
vanishes is given by the following expression:

M(r̄) =
r̄−1+d−2n

(
1 + r̄2

l2

)n

2
(
(−1 + n)! − Γ

[
n,
( r̄

a
) d−1

n

]) (28)

where r̄ is such that f (r = r̄) = 0.
In Figure 1, we can observe the generic behavior of the mass parameter as a function

of the radial values where the function f (r) vanishes. The behavior in the vacuum LnFDGS
AdS case [26,40] is shown in dashed red, while the behavior of our RBH LUV AdS solution
with our matter sources is shown in blue. Thus, the regions where M decreases correspond
to the values of the inner horizon r̄ = r−, and the regions where M increases correspond to
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the values of the black hole horizon r̄ = r+ in our solution. Therefore, for M > Mmin, there
exist an inner horizon r− and a black hole horizon r+ for the same value of the parameter
M. The value Mmin corresponds to the point where the inner and black hole horizons
coincide, i.e., an extremal black hole.

A remarkable feature is that, under a small rightward deviation in the value of the
extremal radius rext = r− = r+, that is, r̄ = r∗ > rext (which corresponds to a small
upper-right deviation in the value of M with respect to Mmin), our regular AdS solution
and its vacuum AdS counterpart become indistinguishable, as the dashed red and blue
curves also become indistinguishable. More specifically, for a value slightly above Mmin,
both the vacuum solution and the regular solution share the same event horizon radius. In
this case, the two solutions can only be distinguished inside the event horizon.

1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

MofRBH

Mofvacuum

Figure 1. On horizontal axis: r̄. On vertical axis: M of our RBH is shown in blue and M in the vacuum
case [40] in dashed red. We have used d = 6, n = 2, l = 10, a = 1. We can check that this behavior
is generic by using other parameter values. The decreasing part of the blue curve corresponds to
the inner horizon of the RBH solution, while the increasing part represents the event horizon. The
minimum point marks the extremal radius. The red curve represents the vacuum AdS solution. For a
value slightly greater than the extremal radius, both solutions become indistinguishable for radial
values equal to or greater than the event horizon.

For values on the vertical axis smaller than Mmin, our solution exhibits a regular
geometry without horizons. It is worthwhile to stress that, unlike the vacuum LnFDGS
AdS solutions in [26,40], due to the absence of singularities, regular solutions do not need
to be black holes; i.e., they do not require the presence of a horizon to be well defined. In
other words, regular solutions are not constrained by the cosmic censorship hypothesis.

If we take the Planck length as a reference on the horizontal axis of the figure, such that
the extremal radius is rext ∼ 1.6, ℓp and Mmin ∼ ℓp, then for values slightly greater than
these, r∗ > rext, both solutions become indistinguishable. In this scenario, physics at Planck
scales becomes particularly interesting, as the nature of the matter sources contributes to
the suppression of the singularity.

As a consequence of the above, we also note that for values considerably larger than
the Planck scales, such as the observed values of mass and radius of rotating black holes
observed in LIGO GW150914, about 35 solar masses [49], both the vacuum and regular
solutions are also indistinguishable. Thus, it becomes intriguing to observe the properties
of black holes at scales much smaller than those that have been observed to date.

It is worth discussing the potential case where r+ ≫ a, in which, as a consequence
of the previous discussion, the Schwarzschild LnFDGS AdS solution [26,40] becomes
indistinguishable from our regular black hole (RBH) solution with LnFDGS AdS. This
scenario makes sense if one considers the case in which the parameter a is of the order of
the Planck length, a ∼ ℓp, and the radius is of the order of the rotating black hole observed
in LIGO GW150914 [49], r+ ∼ 103 km. In this way, the parameter a can be interpreted
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essentially as the length scale at which quantum corrections become not only non-negligible
but also relevant. Depending on the model considered, this length scale can be as small as
the Planck length.

4.2. Merging Zone

A remarkable feature of our regular solution is the existence, in general, of a radial
coordinate value at which the regular solution converges toward the vacuum LnFDGS AdS
solution found in Refs. [26,40], which corresponds to Equation (8). However, analytically
estimating the precise radial value beyond which our regular AdS solution and its vacuum
AdS counterpart become indistinguishable is difficult. Numerically, we observe in the
first panel of Figure 2 that, for a value of the mass parameter Mmin, associated with
the existence of an extremal horizon rext, both solutions become indistinguishable for
a radial value greater than the extremal horizon. In the second panel, we observe that
for mass values greater than Mmin, corresponding to an event horizon r∗ = r+ > rext,
both solutions become indistinguishable before reaching the mentioned event horizon.
It is straightforward to verify that the behavior shown in this figure is generic for other
parameter choices. In this way, the obtained solution is such that, for a mass parameter
value slightly greater than Mmin (associated with an extremal radius), our RBH solution
LnFDGS becomes indistinguishable from its vacuum counterpart LnFDGS [26,40] inside
the event horizon, from a radial value r = r∗ < r+ up to infinity. If r∗ is on the order of the
Planck scale, the geometric differences between both solutions, particularly the suppression
of the singularity, would occur at quantum scales.

1 2 3 4 5 6

-0.5

0.0

0.5

1.0

f RBHforM_{ext} ~1.01

f vacuumforM_{ext} ~1.01

1 2 3 4 5 6

-0.5

0.0

0.5

1.0

f RBHfor M = 1.2 > M_{ext}

f vacuumfor for M = 1.2 > M_{ext}

Figure 2. Cont.
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1 2 3 4 5 6

-0.5

0.0

0.5

1.0

f RBHfor M = 2 > M_{ext}

f vacuumfor for M = 2 > M_{ext}

Figure 2. On the horizontal axis: r. On the vertical axis: the function f (r) for M = Mext ≈ 1.01,
M = 1.2 > Mext, and M = 2 > Mext in the first, second, and third panels, respectively. We have used
d = 6, n = 2, l = 10, a = 1. We can check that this behavior is generic for other parameter values. We
observe that for mass parameter values greater than the extremal mass, M > Mext, both solutions
become indistinguishable from within the event horizon.

4.3. Behavior near r = 0 Region

One must analyze the region near r = 0, which essentially separates the regular
solution from its black hole counterpart. At r = 0, the absence of any singularity can be
demonstrated. This becomes evident simply by taking the limit:

lim
r→0

f (r) → 1 −
((

2M
n

) 1
n
− a2

l2

)
r2

a2 . (29)

In principle, this defines a (nearly) (anti-) de Sitter or flat region near r = 0. However, the
presence of the term a2/l2 can be observed, and therefore, given that in a realistic physical
setup a/l ≪ 1, where l represents the AdS radius, even for small masses M, a de Sitter-like
region is expected near r = 0.

From the last equation, it is straightforward to check that the Kretschmann invariant
takes a finite value near the origin:

lim
r→0

K =
2(d2 − 5d + 8)

a4

(
2M
n

)2/n
(30)

4.4. AdS Asymptotic Region

Firstly, one needs to address how our regular solution, Equations (25) and (26), evolves
as the asymptotic region is approached, roughly as r → ∞. As expected, the regular
solution, as r → ∞,

lim
r→∞

f (r) ≈ 1 +
r2

l2 −
(

2M
rd−2n−1

) 1
n

(31)

defining an asymptotically locally AdS space as r grows but also a merging into the vacuum
solution counterpart [26,40]. As is well known, an asymptotically AdS behavior allows
for a proper definition of conserved quantities at the boundary [50]. Along these lines,
shadows have also been studied in spacetimes with this type of asymptotics [35,36].

5. Shadows
We study the spherically symmetric line element given by (7). Thus, the transversal

section can be written as

dΩD−2 = dθ2
1 +

D−2

∑
j=2

dθ2
j

(
j−1

∏
k=1

sin2 θk

)
(32)

We can notice that the metric tensor is independent of the angular coordinate θD−2 = ϕ

and the temporal coordinate. In this way, we can identify the following Killing vectors:
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Kµ = (− f (r), 0, 0, 0, ...) (33)

Kµ =

(
0, 0, 0, ..., r2

(
D−3

∏
k=1

sin2 θk

))
(34)

These Killing vectors lead to conserved quantities such that

Kµ ẋµ = constant (35)

where the dot indicates the derivative with respect to the affine parameter. We consider a
movement of a photon in an equatorial plane described by θ1 = θ2 = . . . = θD−3 = π/2,
with θD−3 being constant. Thus,

f (r)ṫ = E (36)

r2ϕ̇ = L (37)

where, in our case, E and L represent the energy and angular momentum of the photon as
measured by an observer at infinity.

It is straightforward to check that the norm of the tangent vector to the geodesic is also
conserved. In this line, we have

ϵ = −gµν ẋµ ẋν (38)

We use ϵ = 0 for null geodesics; for time-like geodesics (massive particles), ϵ = 1, and
for space-like geodesics, ϵ = −1. As indicated in [42], due to the spherical symmetry, it is
sufficient to consider the motion of null geodesics in an equatorial plane. From the previous
equations, we obtain

ṙ2

L2 + Ve f f (r) =
1
b2 (39)

where the effective potential is

Ve f f (r) =
f (r)
r2 (40)

and where the impact parameter b is the perpendicular distance between the position of a
photon moving towards the black hole and its center.

We say that the radius of each circular orbit is the distance between the center of the
black hole and a point in spacetime where photons follow a circular motion. The geodesic
for these distances is a closed circle. This forms the so-called photon sphere, whose radius
we denote as rsp.

Minima in the effective potential function correspond to stable circular orbits. Maxima,
on the other hand, correspond to unstable circular orbits. It is important to mention that in
several solutions, such as the Schwarzschild solution or the vacuum black hole solution
of pure Lovelock, the photon sphere is unstable because it corresponds to a maximum
of the effective potential [42]. However, it plays an important physical role. The photon
sphere is the union of all closed null geodesics. Thus, there are no other types of closed
null geodesics in the spacetime. Photons tangential to the photon sphere will remain on
the photon sphere. However, since the photon sphere is unstable, small perturbations will
cause the photon to either fall into the black hole or escape from it. In this way, the radius
of the photon sphere is determined by the following equation:

0 =
dVe f f

dr

∣∣∣∣
r=rsp

= r−3
sp

(
rsp f ′(r)|r=rsp − 2 f (rsp)

)
⇒ rsp f ′(r)|r=rsp − 2 f (rsp) = 0 (41)

where the prime indicates differentiation with respect to the radial coordinate. Following
reference [42], for simplicity, we assume that all light sources are placed uniformly at infinity.
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The critical impact parameter of the system bcr is the impact parameter for which the photon
will precisely fall into the circular orbit around the black hole. For an impact parameter smaller
than the critical impact parameter, the photon will always end up inside the black hole. For
an impact parameter larger than the critical impact parameter, the photon will end up at an
infinite distance from the black hole. Following [42], an observer located at infinity leads to
the critical impact parameter being equal to the shadow radius, rsh = bcr; see the scheme in
Figure 3. This can be computed by setting ṙ = 0, r = rsp in Equation (41):

rsh = bcr =
1√
Ve f f

=
2
√

f (rsp)

f ′(r)|r=rsp

(42)

Figure 3. Scheme: We observe that photons launched with an impact parameter smaller than the
shadow radius fall into the black hole. Photons with an impact parameter equal to the shadow radius
fall into an unstable circular orbit. Photons launched with an impact parameter greater than the
shadow radius escape toward the boundary of spacetime.

As previously mentioned, the study of black holes in Lovelock gravity has attracted
significant attention in recent years from a theoretical perspective. This naturally motivates
the investigation of their shadow properties. In this regard, given the lack of analytical
expressions for the event horizon, the photon sphere radius, and the shadow size in our
case study, it is particularly interesting to establish numerical relationships between these
shadow-related features within the context of Lovelock theories. In what follows, we
propose a numerical methodology to achieve this. In the subsection below, we propose a
method to achieve this. We use the case n = 2, d = 7 as an example, but it is straightforward
to check that our proposal is applicable to other values of n and d.

A Recipe for Determining the Size of the Photon Sphere and the Shadow

1. First, since it is not possible to obtain an analytical value for the photon sphere radius
from Equation (41), we obtain the mass parameter from this equation for our RBH
solution, Equations (25) and (27).

M(rsp) =

21− 1
n e
( rsp

a

) d−1
n

n2

(
(−1 + n)! − Γ

[
n,
(

rsp
a

) d−1
n

])
r(1−d)

sp

(
(−1 + n)! − Γ

[
n,
(

rsp
a

) d−1
n

])− 1
n

(−1 + d)r2
sp

−
((

rsp
a

) d−1
n

)n

+ e
( rsp

a

) d−1
n

n(−1 + n)! − e
( rsp

a

) d−1
n

nΓ

[
n,
(

rsp
a

) d−1
n

] (43)

As an example, we study the case n = 2, d = 7 in Figure 4. The values of the
ascending curve (in the example, as shown by the orange dashed vertical line; values
greater than ∼6.5 on the horizontal axis) represent the candidate values of the photon
sphere radius. We use the word “candidate” because later we need to ensure that
the condition rsp > r+ is satisfied. The vertical axis shows the values of the mass
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parameter. Thus, each ordered pair
(
rsp, M(rsp)

)
represents values of the candidate

photon sphere and the mass parameter in the parameter space such that Equation (41)
is satisfied, i.e., where the potential reaches an unstable maximum. On the other hand,
the orange dashed horizontal line in Figure 4 represents the maximum value of the
mass parameter for the parameters used. Below, we detail what the black horizontal
line in the figure represents.

5 10 15 20 25 30 35
0

50

100

150

200

250

300

r_{sp}

M(r_{sp})

M(r_{sp})=M(r_+)_{min}~20

M(r_{sp})_{max} ~ 288

Figure 4. This figure displays the range of possible values for the photon sphere. On the horizontal
axis: the candidate values of the photon sphere radius rsp. On the vertical axis: the mass parameter
M(rsp). Using n = 2, d = 7, a = 4.

2. From Equation (42) we can obtain the following relation between the photon sphere
radius and the shadow’s radius:

rsh =
rsp√√√√√√√√1 +

r2
sp
l2 +

2e
( rsp

a
) d−1

n
n2

(
(−1+n)!−Γ

[
n,
( rsp

a

) d−1
n
])

(−1+d)

( rsp
a

)(d−1)
−e
( rsp

a
) d−1

n
n(−1+n)!+e

( rsp
a
) d−1

n
nΓ

[
n,
( rsp

a

) d−1
n
]

(44)

We are interested in testing the parameter values that satisfy the condition that the
shadow radius is greater than the photon sphere radius, rsh > rsp. Due to the highly
nonlinear nature of our equations, obtaining analytical relations for this condition
becomes extremely difficult.
From Equation (43) and Figure 4, we extract the ordered pairs

(
rsp, M(rsp)

)
, which

allow us to identify the possible values of the photon sphere radius. On the other
hand, from Equation (44), we obtain the corresponding shadow radius values. Using
this information, we determine the potential values of both the photon sphere radius
and the shadow radius as given by Equation (44).
However, as previously mentioned, we are interested in identifying the values of
the parameter l that satisfy the condition that the shadow radius is greater than the
photon sphere radius. To this end, using Equations (43) and (44), we employ the
RegionPlot command in Mathematica. This is facilitated by the fact that Equation (43)
is independent of the parameter l.
As shown in Figure 5, for the parameters considered, the condition rsch > rsp is
fulfilled for approximately l > 41 across all values of rsp. Therefore, in the following
step, we must use a value of l that satisfies this condition.
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Figure 5. In blue, we observe the values of the photon sphere radius rsp and the AdS radius l that
satisfy the condition rsh > rsp, using n = 2, d = 7, a = 4.

3. To display the numerical behavior of the mass parameter, we use Equation (28), where,
as previously mentioned, the values on the horizontal axis in the ascending curve
correspond to the values taken by the event horizon, r̄ = r+.
In Figure 6, we display the behavior of the mass parameter. We must be consistent
with the previous point and choose a value of l that satisfies the description provided
there. In this way, on the ascending curve, we have an ordered pair of the form
(r+, M(r+)). The black dashed horizontal line represents the extremal minimum
value of the mass for the chosen parameters, emphasizing that l is not arbitrary.

5 10 15 20
0

50

100
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200

250

300

r_+

M(r_+)

M(r_+)_{min} ~20

Figure 6. This figure displays the values of the event horizon corresponding to different values of the
mass parameter. The values on the horizontal axis of the ascending curve represent the event horizon
radius r+. On the vertical axis, we have the mass parameter M(r+). Using n = 2, d = 7, a = 4, l = 100.
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4. In Figure 4, we have the ordered pairs
(
rsp, M(rsp)

)
, while in Figure 6, we have the

ordered pairs (r+, M(r+)). In this regard, we note the following:

• The mass parameter must be the same in both cases when the remaining parame-
ters are fixed. This is because M represents the mass parameter of the solution
and must have the same value for both rsp and r+. Thus, to numerically test the
relationship between r+ and rsp, we must consider that

M(rsp) = M(r+) (45)

• Following this condition, the minimum value of the mass parameter is given by
the extremal value, represented by the black dashed horizontal line in Figure 6:
M(r+)min = M(rext) (in the example, ∼ 20). Therefore, the lower bound for the
photon sphere radius is given by rsp such that M(rsp) = M(r+)min = M(rext)

(vertical line in Figure 4, where rsp ∼ 9.8 and M(rsp ∼ 9.8) ∼ 20).
On the other hand, as shown by the orange dashed line in Figure 4, the parameter
M(rsp) reaches a maximum value. This last value sets the upper bound for the
photon sphere and event horizon such that condition (45) is satisfied (rsp ∼ 36
and r+ ∼ 23.5 in the examples of Figures 4 and 6, respectively).

• Once the appropriate ranges for r+ and rsp have been determined in the previous
steps, we can numerically plot the relationship between r+ and rsp in Figure 7,
using condition (45) on the ordered pairs

(
rsp, M(rsp)

)
and (r+, M(r+)) from

Figures 4 and 6, respectively. As expected, we observe that the value of the
photon sphere is greater than that of the event horizon. That is, photons follow
a circular motion due to the geometric distortion of spacetime caused by the
presence of the black hole. We also note that as r+ increases, the value of rsp also
increases in the parameter space.
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Figure 7. This figure displays the values of the photon sphere radius versus the values of the event
horizon radius. The values on the horizontal axis represent the event horizon radius r+. The values
on the vertical axis represent the sphere photon radius rsp. Using n = 2, d = 7, a = 4, l = 100.
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5. Once the appropriate ranges for rsp and l have been determined in the previous steps,
using Equation (44), we plot the relationship between the photon sphere radius and
the shadow radius in Figure 8. As expected, we observe that the value of the photon
sphere radius is smaller than that of the shadow radius. That is, photons that are
directed with an impact parameter equal to rsh towards the black hole curve their
trajectory towards the unstable photon sphere.
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Figure 8. This figure displays the values of the shadow radius corresponding to different values of
the photon sphere radius. Using n = 2, d = 7, a = 4, l = 100.

Following the methodology described earlier, in Figure 9 we display the behavior of
the event horizon versus the photon sphere radius for n = 2, d = 6, 7, 8 (left panel) and
n = 3, d = 8, 9, 10 (right panel). It is important to note that, in agreement with the analysis
carried out above, for each case, depending on the values of n, d, l, a in the parameter space,
there are different ranges for the values of the event horizon and the photon sphere radius.
We can note that if we use a common event horizon value as a reference for the same value of
n, the photon sphere radius decreases as the number of dimensions increases.
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Figure 9. This figure displays the values of the photon sphere radius corresponding to different
values of the event horizon radius. The values on the horizontal axis represent the event horizon
radius r+. The values on the vertical axis represent the sphere photon radius rsp. In the left panel we
have used n = 2, a = 4, l = 100, d = 6 (red), d = 7 (blue), and d = 8 (black). In the right panel we
have used n = 3, a = 4, l = 100, d = 8 (red), d = 9 (blue), and d = 10 (black).
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In Figure 10, we display the behavior of the photon sphere radius versus the black
hole shadow radius for n = 2, d = 6, 7, 8 (left panel) and n = 3, d = 8, 9, 10 (right panel).
In the same way as in the previous figure, and in agreement with the analysis carried out
above, for each case, depending on the values of n, d, l, a in the parameter space, there are
different ranges for the values of the photon sphere radius and the shadow radius. We
can note that if we use a common photon sphere radius value as a reference for the same
value of n, the size of the black hole shadow radius tends to decrease as the number of
dimensions increases.

From a physical point of view, our methodology allows us to estimate the parameter
ranges for which the condition that the shadow radius fully encloses the photon sphere
radius, and the latter, in turn, fully encloses the event horizon, is satisfied, that is, the
condition r+ < rsp < rsh holds. This is consistent with the analytical treatment of the
vacuum pure Lovelock case presented in Reference [42], which appears to be the only
analytically solvable case currently known for Lovelock gravity.

In this way, our numerical approach could eventually be used for a deeper investi-
gation in a future work, enabling, for example, the estimation of the deflection angle or
the characterization of a linearly uniformly accelerated trajectory. In addition to the above,
we would like to point out that establishing a direct comparison between the AdS radius
values used in our figures and those estimated by other authors in the context of Lovelock
theories would require, at the very least, theoretical justification regarding the behavior
of the full set of black hole parameters within the AdS–Lovelock framework. This latter
aspect goes beyond the scope of the present work. As mentioned, the values of the AdS
radius currently available in the literature for Lovelock gravity remain speculative [21,22].
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Figure 10. This figure displays the values of the shadow radius corresponding to different values
of the photon sphere radius. The values on the horizontal axis represent the sphere photon radius
rsp. The values on the vertical axis represent the shadow radius rsh. In the left panel we have used
n = 2, a = 4, l = 100, d = 6 (red), d = 7 (blue), and d = 8 (black). In the right panel we have used
n = 3, a = 4, l = 100, d = 8 (red), d = 9 (blue), and d = 10 (black).

6. Thermodynamics
First of all, it is worth noting that the energy can be computed as a conserved charge

by following the methodology in Reference [40], which involves a regularization process.
In this case, the conserved charge associated with the energy, computed using a time-like
Killing vector, is obtained in an analogous way to Reference [27]:

E = M (46)

In this way, the black hole energy is directly related to the parameter M.
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On the other hand, in Reference [31] it was shown, using the conditions f (r+, M) = 0
and δ f (r+, M) = 0, which can be viewed as constraints on the evolution along the space of
parameters, that the first law of thermodynamics takes the form

∂m
∂M

dM =

(
1

4π
f ′
∣∣
r=r+

)2πnrd−2n−1
+

(
1 +

r2
+

l2

)n−1

dr+

. (47)

The above equation can be rewritten as

du = TdS, (48)

where we can identify the temperature and entropy terms as

T =
1

4π
f ′
∣∣
r=r+

(49)

dS =2πnrd−2n−1
+

(
1 +

r2
+

l2

)n−1

dr+ (50)

where du corresponds to a local definition of the variation of the energy at the horizon. On
the other hand, the definitions of entropy and temperature coincide with those of the vacuum
case. That is, our matter sources influence the behavior of the aforementioned definition du.

In this section, we study the thermodynamics at the event horizon, that is, where the
mass parameter satisfies M ≥ Mmin, where Mmin, as previously mentioned, is associated
with the extremal radius, where the inner and event horizons coincide, rext = r− = r+.
It is worth emphasizing, as mentioned earlier, that an interesting feature of our solution
is that, for a value of M slightly greater than Mmin, the behavior of the mass parameter
in our solution becomes indistinguishable from the vacuum case. Therefore, under this
condition, the event horizons of both solutions coincide. As also discussed, this implies
that the geometry of both cases becomes indistinguishable beyond the event horizon.

6.1. Temperature

The temperature is defined by

4πT =
d
dr

f (r)
∣∣∣
r=r+

= 2
r+
l2 +

(d − 2n − 1)
nr+

(
γ +

r2
+

l2

)

− 1
n!

exp
(
−
( r+

a
) d−1

n

)
(

1 − e−(
r+
a )

d−1
n n−1

∑
i=0

1
i!

( r+
a

) i
n (d−1)

)( r+
a

) n−1
n (d−2n−1)

(51)

In Equation (51), we can notice that the first two terms are independent of a, and fur-
thermore, they match the expression for the temperature found in [26,40] for the vacuum
LnFDGS AdS solution. Regarding the third term in Equation (51), we can analytically
observe that for a scenario where r+ ≫ a, the condition

lim
r+/a→∞

exp
(
−
( r+

a
) d−1

n

)
(

1 − e−(
r+
a )

d−1
n

∑n−1
i=0

1
i!
( r+

a
) i

n (d−1)
)( r+

a

) n−1
n (d−2n−1)

≈ 0 (52)

holds. Thus, we find analytically that in a regime where a ≪ r+ the temperature of the
vacuum LnFDGS AdS solution becomes indistinguishable from that of our RBH LnFDGS
AdS solution. This regime could be of physical interest in the case where a is on the order
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of the Planck scale, while r+ corresponds to a realistic radius—on the order of the radius of
the rotating black hole observed in LIGO GW150914, r+ ∼ 103, km—which is much larger
than the Planck scale.

Numerically, we can note that for the value of M = Mmin where r− = r+ = rext, the
temperature vanishes. In this sense, it is well known that the zero temperature point is
associated with a black remnant, known as what remains once evaporation stops. In this
context, in Figure 11 below we observe that a remnant indeed forms in this extremal case.

In Figure 11, the generic numerical behavior of the temperature as a function of the
event horizon r+ is displayed. We can observe that this behavior is generic for other values
of the parameters involved. In this figure, the horizontal axis can be considered to be on the
order of Planck units, ℓp. Two curves are shown. The blue curve represents the temperature
of the vacuum LnFDGS AdS solution [26,40] as a function of the event horizon. The orange
curve corresponds to the temperature of our RBH LnFDGS AdS solution. It can be observed
that there exists a finite value slightly greater than the extremal radius, r∗ > rext, where the
temperatures of both cases become indistinguishable.

It is of interest to discuss what happens for values smaller than r∗, that is, radial values
prior (from left to right) to the point where both temperatures become indistinguishable:

• The temperature of the vacuum solution increases and hypothetically diverges in the
limit r+ → 0.

• On the other hand, in the case of the regular solution, we can note that the temperature
decreases until it vanishes for the value M = Mmin, where r− = r+ = rext.

In this sense, it is well known that the point of zero temperature is associated with a
black hole remnant, what remains once evaporation ceases. In this context, in Figure 11
below we observe that a remnant indeed forms in this extremal case.

2 4 6 8
0.0

0.1

0.2

0.3

0.4

r_+

T

T - vacuum- LnFDGS-AdS

T -RBH- LnFDGS-AdS

Figure 11. This figure displays the values of the temperature corresponding to different values of the
event horizon radius for d = 6, n = 2, a = 1, and l = 10

Thus, at the small Planck scale, quantum effects would emerge. This implies that,
instead of the temperature diverging as in the vacuum case, the matter sources proposed in
this work lead the temperature to decrease until a black hole remnant is reached at T = 0
and r+ = rext.

In other words, the behavior of temperature suggests that our forms of matter in the
energy–momentum tensor play a role in eliminating divergences in LnFDGS AdS theories.
This is analogous to the role of non-commutative matter sources in general relativity
(GR), which in turn play the same role in quantum field theory and string theory [51,52].
Therefore, it would be of interest to study the role of our LnFDGS AdS energy sources in
quantum field theory in a future work. As shown, the role of our matter sources is to cool
the black hole in the final stage. Consequently, analogous to the non-commutative 4D case
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studied in GR [51], this could be interpreted as a suppression of the quantum back-reaction
of Hawking radiation once the temperature has already reached its maximum, as the
black hole emits progressively less energy. As mentioned, these effects could be tested at
Planck scales.

6.2. Heat Capacity and Radial Evolution

We use the standard definition of heat capacity:

C =

(
dT
dM

)−1
=

dM
dr+

(
dT
dr+

)−1
(53)

In this section, we are interested in identifying the regions where the heat capacity
is positive (stable), negative (unstable), and where it diverges, indicating the presence of
phase transitions. In this connection, from Figure 1 the derivative dM

dr+
is always positive,

i.e., dM
dr+

≥ 0.

Since the sign of the derivative dT
dM =

(
dT
dr+

)(
dM
dr+

)−1
depends only on the sign of the

derivative dT
dr+

, it follows that the sign of the heat capacity also depends solely on this latter
derivative. In connection with the previous paragraph, from Figure 11, we can observe
that, for our solution, the temperature exhibits three regions from left to right: (i) dT

dr+
> 0

due to the influence of matter sources at small scales; (ii) and (iii), which coincide with the
vacuum LnFDGS AdS case where dT

dr+
< 0 and dT

dr+
> 0, respectively. Thus, in our solution

there would be two phase transitions (analyzed from right to left): (i) C > 0 where dT
dM > 0;

(ii) C < 0 where dT
dM < 0 (these two coincide with the vacuum LnFDGS AdS case, where

both solutions become indistinguishable); (iii) C > 0 where dT
dM > 0.

Once both the vacuum solution and our regular black hole (RBH) become distinguish-
able, the heat capacities of the two solutions also differ at small scales. In this way, we can
observe the following: Moving from right to left, while the heat capacity of the vacuum AdS
solution remains negative, implying complete evaporation, as the parameter M decreases
toward M → 0, would cause the temperature to diverge to infinity; in our regular AdS
solution, the matter sources induce a new phase transition such that the heat capacity
changes from negative to positive. This implies that, as the mass decreases to reach the
extremal value M = Mmin, the temperature decreases until a black hole remnant is reached
at T = 0, at which point the evaporation process halts. As mentioned earlier, this could
occur at scales close to the Planck scale. That is, the nature of our matter sources, along
with the avoidance of singularity formation, would lead to the existence of a remnant.

7. Discussion and Summary
As mentioned in the Introduction, a model was recently proposed in Ref. [13] to

suppress physical singularities in pure Lovelock (PL) gravity, where the energy density
encodes the gravitational information of the vacuum solution through the Kretschmann
scalar. However, in the PL framework, the inclusion of a negative cosmological constant
is unfeasible, as its presence leads to the appearance of a curvature singularity in the
spherically symmetric case.

To address the aforementioned issue, namely, the introduction of an energy density
analogous to that in Ref. [13] within Lovelock theories under the presence of a negative
cosmological constant, in this work, instead of considering the PL action, which includes
only a single term in the Lovelock series, we adopt the definition of the coupling constants
given in Refs. [26,40]. By including all terms in the Lovelock series up to order n = [d/2],
the resulting equations of motion possess an n-fold degenerate AdS ground state. In this
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way, the inclusion of a negative cosmological constant does not lead to the emergence of
curvature singularities.

Given the structure of the equations of motion in LnFDGS theories, providing a
form for the energy density analogous to the one described earlier is not straightforward.
This is because several additional terms would appear when directly substituting the
Kretschmann scalar of the vacuum LnFDGS solution. To address this, we have defined an
appropriate gauge curvature tensor for LnFDGS, FAdS

µν , which we have called the Poincaré
AdS-like curvature. From this, we provide an alternative version of the Kretschmann
scalar associated with gravitational tension. In this way, using the structure provided for
gravitational tension, we have defined the energy density, which maintains the physical
arguments provided in reference [17] for PL.

The obtained solution is such that, for a mass parameter value slightly greater than
Mmin (associated with an extremal radius), our RBH solution LnFDGS becomes indistin-
guishable from its vacuum counterpart LnFDGS [26,40] inside the event horizon, from a
radial value r = r− < r+ up to infinity. If r∗ is on the order of the Planck scale, the geometric
differences between both solutions, particularly the suppression of the singularity, would
occur at quantum scales.

On the other hand, due to the high theoretical interest that the study of black holes
in Lovelock gravity has garnered, it is natural to explore the properties of their shadows.
However, in most solutions within this theory—such as our case of interest, the LnFDGS
AdS solution—the analytical study of these shadows becomes challenging. In this regard,
related to the study of shadows, a method has been proposed to obtain numerical graphical
relationships between the event horizon, the photon sphere radius, and the shadow size in
our case study. The case n = 2, d = 7 has been used as an example to explain our procedure.
However, it is straightforward to verify that our proposal is applicable to other values of
n and d. We have also presented the graphical behavior for the cases n = 2, d = 6, 7, 8
and n = 3, d = 8, 9, 10. We note that, when using a common event horizon value as a
reference for the same value of n, the photon sphere radius decreases as the number of
dimensions increases. Additionally, when using a common photon sphere radius value
as a reference for the same value of n, the size of the black hole shadow radius tends to
decrease as the number of dimensions increases. It is also important to mention that, in all
the cases studied numerically, the condition r+ < rsp < rsh is satisfied.

From the analysis of the temperature, it can be observed that there exists a finite value
slightly greater than the extremal radius, r∗ > rext, where the temperatures of both cases
also become indistinguishable. Thus, at the Planck scales, quantum effects would arise,
meaning that instead of the temperature evolving to infinity, as in the vacuum LnFDGS
case, the matter sources proposed in this work cause the temperature to decrease until a
black hole remnant is reached at T = 0 and r+ = rext.

Regarding radial evolution and heat capacity, once the heat capacities of both the
vacuum solution and our regular solution are distinguishable at short scales, we observe
a key difference: while the heat capacity of the vacuum AdS solution remains negative,
implying complete evaporation, the parameter M decreasing toward M → 0 would cause
the temperature to diverge to infinity. In our regular AdS solution, the matter sources
induce a new phase transition such that the heat capacity changes from negative to positive.
This implies that as the mass decreases and approaches the extremal value M = Mmin,
the temperature also decreases until a black hole remnant is reached at T = 0, at which
point the evaporation process halts. As mentioned earlier, this could occur at scales close
to the Planck scale. That is, the nature of our matter sources, along with the avoidance of
singularity formation, would lead to the existence of a remnant.
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