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Abstract: We present the first new type of solution of the pulsar equation since 1999. In it, the whole
magnetosphere is confined inside the light cylinder and an electrically charged layer wraps around
it and holds it together. The reason this new solution has never been obtained before is that all
current time-dependent simulations are initialized with a vacuum dipole configuration that extends
to infinity; thus, their final steady-state solution also extends to infinity. Under special conditions,
such a confined configuration may be attained when the neutron star first forms in the interior of
a collapsing star during a supernova explosion, or when it accretes from an external wind or disk
from a donor star. It is shown that this new maximally closed non-decelerating solution is the limit
of a continuous sequence of standard magnetospheres with open and closed field lines when the
amount of open field lines gradually drops to zero. The minimum energy solution in this sequence is
a standard magnetosphere in which the closed field line region extends up to about 80% of the light
cylinder. We estimate that the released energy when the new solution transitions to the minimum
energy one is enough to power a fast radio burst.

Keywords: pulsars; FRBs

1. The Pulsar Equation

Right after the discovery of pulsars in 1968 [1], Goldreich and Julian were the first to
sketch the general structure of the pulsar magnetosphere [2]. The detailed structure of the
axisymmetric pulsar magnetosphere was obtained much later by Contopoulos, Kazanas
and Fendt, who clearly identified the presence of a global magnetospheric poloidal electric
current sheet [3]. Since then, several authors have addressed the pulsar magnetosphere
problem with force-free electrodynamic (FFE) simulations ([4,5], etc.) magnetohydrody-
namic (MHD) simulations ([6], etc.) ‘ab initio’ particle-in-cell (PIC) simulations ([7–9], etc.)
and most recently with Machine Learning [10,11]. Several inconsistencies in recent state-
of-the-art numerical simulations (e.g., the extent of the co-rotating closed-line region, the
microscopic treatment and the thickness of the current sheet, magnetospheric dissipation,
etc.) led us to believe that one can only trust them qualitatively (not quantitatively) to make
meaningful comparisons with observations. This is why, in [11], we proposed to return to
the basics and obtain the reference ideal steady-state force-free magnetosphere in a novel
independent way, namely with Machine Learning.

The magnetospheres of neutron stars are dominated by the electric and magnetic
fields. The physical conditions allow us to neglect gravity, thermal pressure and particle
inertia because they are several orders of magnitude smaller than the electromagnetic forces.
Therefore, force balance in the bulk of the pulsar magnetosphere is reduced to

ρeE + J × B/c ≈ 0 , (1)

where E and B are the electric and magnetic fields, respectively, ρe = ∇ · E/(4π) is
the electric charge density, and J is the electric current density. Under axisymmetric
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conditions, one may define the magnetic flux function Ψ such that Br = ∂Ψ/∂θ/(r2 sin θ)
and Bθ = −∂Ψ/∂r/(r sin θ), which automatically satisfies the condition ∇ · B = 0. Under
steady-state axisymmetric force-free ideal conditions, Equation (1) becomes the well-known
pulsar equation, namely(

1 − r2 sin2 θ

R2
LC

)[
∂2Ψ
∂r2 − ∂Ψ

∂θ

cos θ

r2 sin θ
+

1
r2

∂2Ψ
∂θ2

]
− 2r sin θ

R2
LC

[
∂Ψ
∂θ

cos θ

r
+

∂Ψ
∂r

sin θ

]
+ I I′(Ψ) = 0 (2)

in spherical coordinates r, θ [12]. Here, I = I(Ψ) is the distribution of poloidal electric cur-
rent from which one obtains the azimuthal component of the magnetic field Bϕ = I/(r sin θ),
and I′ ≡ dI/dΨ. Equation (2) is an elliptical partial differential equation with a singularity
along the light cylinder, the nominal distance where the co-rotational velocity becomes
equal to the speed of light (RLC ≡ c/Ω, where Ω is the angular velocity of stellar rotation).
This equation was first solved with a special numerical technique developed by [3] that
was used again since then by several others (e.g., [13–15]).

In Section 2, we present a new type of solution of Equation (2) that is very different
from the canonical solutions found in the literature. In Section 3, we obtain new solutions
of the ideal force-free pulsar magnetosphere for various amounts of open magnetic flux
using the novel Machine Learning methodology of [11] (hereafter Paper I; see description in
Appendix A). We show that the new type of solution is the limit of a continuous sequence
of standard magnetospheres with open and closed field lines in which the closed line
region approaches closer and closer to the light cylinder and the amount of open field lines
gradually drops to zero. In Section 4 we discuss the possibility that an abrupt transition
from our new magnetospheric solution to a standard magnetosphere with open and closed
field lines may generate a fast radio burst. We conclude in Section 5 with a discussion of
our results. We consider only axisymmetric magnetospheres, and in future work, we will
investigate whether our results apply also to an oblique rotator.

2. A Confined Magnetosphere

Let us consider here a theoretical limit that has never been considered before, namely
one with no open field lines and no poloidal electric current (I = 0). In that limit, the whole
magnetosphere of the central dipole is contained within the light cylinder, with boundary
conditions Ψ(r, θ = 0) = Ψ(r, θ = π) = 0, a dipole field Ψ(r∗, θ) = Ψmax sin2 θ along the
surface of the central star (Ψmax is the total dipolar magnetic flux that emanates from each
stellar hemisphere), and Ψ(r = RLC/ sin θ, θ) = 0 along the light cylinder. The solution
of Equation (2) with these boundary conditions is obtained with the method described
in [16] and is shown in Figure 1. This configuration co-rotates with the central star and is
wrapped around by an electrically charged layer at the light cylinder. It is a unique feature
of special relativity that allows such a spatially confined electromagnetic field solution,
namely the presence of electric charges and electric fields that are generated by the rigid
co-rotation of the magnetosphere. In the region next to the light cylinder in particular, the
electric charge density is positive/negative and generates (via its co-rotation) an azimuthal
electric current along/opposite to the direction of rotation for an aligned/counter-aligned
rotator, respectively. The magnetic field points downwards/upwards and the electric field
outwards/inwards, respectively, so it is obvious that the inward Lorentz force J × B/c is
balanced by the outward electrostatic force ρeE.

It is, however, interesting that such a confined solution with a vacuum outside is
not possible without a light cylinder, as is the case in non-relativistic MHD. In particular,
pressure balance across the electrically charged current sheet along the light cylinder may
be written as

(B2 − E2)
∣∣∣
IN

= (B2 − E2)
∣∣∣
OUT

= 0 , (3)

or equivalently
B2

z(1 − x2)
∣∣∣
IN

= 0 . (4)
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The requirement for the continuity of B2 − E2 across an infinitely thin relativis-
tic current sheet, Equation (3), stems from the integration of the force-free equation
ρeE + J × B/c = 0 across it [17,18]. Here, x ≡ R/RLC is the cylindrical radius in units
of the light cylinder radius RLC, and x|IN → 1−. It is assumed that the whole magneto-
sphere is confined inside the light cylinder, it remains untwisted (i.e., Bϕ = 0), it co-rotates
with the central star, and there is nothing outside. Obviously, in the limit x|IN = 1−,
pressure balance (i.e., Equation (4)) is satisfied; thus, solutions spatially confined inside
the light cylinder are possible. In this new solution, the value of Bz|IN is non-zero and can
be determined numerically. We emphasize once again that such spatially self-confined
solutions with a vacuum outside are possible only along the light cylinder, not inside
or outside.

Figure 1. New co-rotating confined magnetospheric solution. Ψ = 0 along the axis θ = 0, π, z = ±∞,
and the light cylinder R = RLC. Ψ contour levels: integer multiples of 0.1Ψdipole LC with Ψ = 0 along
the z-axis. Thick vertical line: charged current sheet along the light cylinder.

We propose that this singular configuration may be realized in nature under special
conditions during the stellar collapse that led to the formation of a spinning neutron star
in a supernova explosion. The initial neutron star magnetosphere will be squeezed to
a thin layer above the surface of the neutron star and will rotate with the neutron star.
The solutions of the pulsar equation shown in Figure 2 were obtained with the same
method by setting Ψ = 0 along a sphere of radius rejecta, and along the light cylinder
wherever rejecta sin θ > RLC. Thus, the whole magnetosphere is confined between the
neutron star surface and a spherical shell of supernova ejecta. As the supernova explosion
proceeds and the ejecta expand, the size rejecta of the magnetosphere will increase. During
that stage, the whole magnetosphere co-rotates with the central neutron star; thus, it
will be confined inside the light cylinder wherever rejecta sin θ > RLC. It is implied here
that, during the supernova explosion, as rejecta grows slowly at subluminal velocities, the
magnetosphere evolves fast into a sequence of steady-state solutions. When rejecta grows
beyond rejecta = RLC, any part of the magnetosphere that crosses the light cylinder cannot
open up to infinity as in the magnetosphere of an isolated pulsar. Therefore, it will be
wound very fast by the stellar rotation, the Lorentz force will squeeze it vertically, and it
will eventually detach from the rest of the magnetosphere that remains confined inside the
light cylinder as in the solutions shown in Figure 2. It is obvious that this is an idealized
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situation in which a neutron star and its magnetosphere formed and remained at the center
of the collapse (in general, the crust of a young neutron star may not have formed/solidified
yet, and the neutron star would also potentially experience a kick that will move it away
from the center of the collapse). It is also conceivable that such a confined configuration is
attained when a neutron star accretes from a surrounding disk or from external winds from
a donor star (e.g., [19,20]). It is also obvious that the solutions shown in Figures 1 and 2 are
force-free approximations since they were obtained without taking into consideration the
baryon-rich and dense environment of a newborn neutron star.

Figure 2. Sequence of co-rotating magnetospheric solutions confined by an expanding shell of plasma
material (grey region). As the ejecta expand to infinity, the solution approaches the solution shown in
Figure 1.

The idealized solution shown in Figure 1 is most probably unstable. We have not
performed a formal stability analysis of the light cylinder boundary, but we understand
this instability as follows: Whenever a part of the confined magnetosphere extends beyond
the light cylinder, it cannot keep co-rotating with the central star without an azimuthal
component of the magnetic field. In other words, when an initially poloidal magnetic field
line crosses the light cylinder, it is swept back so that the particle drift velocity

vD ≡ |E × B|
B2 c =

|Ep × Bp + Ep × Bϕϕ̂|
B2

p + B2
ϕ

c

=

√
B4

px2 + B2
pB2

ϕx2

B2
p + B2

ϕ

c =
Bpx√

B2
p + B2

ϕ

c < c (5)

always remains subluminal. Without the azimuthal component Bϕ, vD > c outside the
light cylinder, where x > 1. Therefore, any part of the confined magnetosphere that crosses
the light cylinder will develop an azimuthal magnetic field component that will push it
outwards toward infinity. Thus, the magnetosphere will transition to a standard solution
with open and closed field lines, emitting an electromagnetic pulse of azimuthal magnetic
field along the way. A similar effect is seen in numerical simulations during the evolution of
initially poloidal magnetic field configurations when the stellar rotation is initiated (e.g., [4]).
We will return to a further discussion of this burst in Section 3 below. Notice that using
Equation (5) with Bϕ = 0, the drift velocity is exactly equal to c at the light cylinder, and the
neglect of inertial terms is more questionable for the confined solution than for the standard
one near the light cylinder. Inertial effects are even more pronounced near the light cylinder
because, due to the (1− x2) term in the denominator of the Goldreich–Julian charge density
ρe = −Bz/[2πRLC(1 − x2)] [14], the volume integral of ρe and the corresponding mass
content of the idealized confined magnetosphere diverge. This suggests that, if realized
in nature, the confined solution will be limited to within some short distance from the
light cylinder.
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3. A Spectrum of Solutions

We will now show that the new solution obtained in the previous section is the limit
of a continuous spectrum of solutions of the standard type, namely solutions that consist of
a co-rotating closed-line region and an open-line region that extends to infinity. Figure 1
is the mathematical limit of a sequence of independent standard solutions, and does not
imply a physical evolution of standard solutions. Nevertheless, each solution contains a
different amount of electromagnetic energy, so magnetospheric transitions from a higher to
a lower energy solution are possible (see below).

We obtain here magnetospheric solutions with the methodology of Paper I (see
Appendix A) in which the separatrix between open and closed field lines is considered
to be a mathematical contact discontinuity, namely a surface of zero thickness. The tip of
the closed-line region is called the Y-point. We consider in particular Y-point positions
from xY ≈ r∗/RLC ≪ 1 to xY ≈ 1 very close to the light cylinder. For reasons of com-
putational convenience, we chose a rather large star with radius r∗ = 0.25RLC (PINN
methods cannot handle well large scale differences in their domain of application). We
have also tried different (smaller) values of r∗ and obtained similar results. As is de-
scribed in Appendix A, we first choose the angular opening of the polar cap θpc from
which a certain amount of magnetic flux Ψopen ≡ ΨS = Ψmax sin2 θpc emanates and ex-
tends to infinity. This forms the so-called open-line region. In the solutions shown in
Figure 3, one particular value of θpc, namely θpc = 1.176(r∗/RLC)

1/2, was specially chosen
with the following in mind: it is straightforward to calculate that, in a dipolar magnetic
field configuration, the magnetic field line that crosses the light cylinder corresponds to
Ψdipole LC = Ψmaxr∗/RLC = B∗r3

∗Ω/(2c) (here, B∗ is the polar value of the surface magnetic
field), and θdipole pc = sin−1[(r∗/RLC)

1/2] ≈ (r∗/RLC)
1/2. In previous high-resolution so-

lutions of the pulsar equation (e.g., [14]), the magnetic field line that crosses the light
cylinder corresponds to ΨLC Timokhin = 1.23Ψdipole LC and θpc Timokhin ≈ 1.176(r∗/RLC)

1/2.
Therefore, this particular value of θpc was chosen so that the Y-point lies very close to
the light cylinder. Instead, in Paper I, it was found that RY = 0.88RLC, which is closer to
Rdipole(ΨS) = r∗/ sin2 θpc = 0.81RLC. This unexpected result is due to our clear treatment
of the separatrix surface as a surface of zero thickness which allows the manifestation of the
T-point at its tip (see Appendix B). This is not the case in all previous MHD, FFE, and PIC
simulations where the separatrix surface has an unphysically large finite thickness which
at its tip leads to an exterior Y-point, and a T-point some distance inside it (see Figure 3
of [21] for details).

We also obtained the solution for Ψopen = 0.866Ψdipole LC that corresponds to θpc =

0.97(r∗/RLC)
1/2 and RY = 0.94RLC. The reader can check that this value of Ψopen yields

a pulsar spindown rate equal to Ė = 0.75Ėvacuum(90◦). Here, Ėvacuum(λ) is the spin-
down rate of a vacuum dipole rotator with inclination angle λ, and Ėvacuum(90◦) =
B2
∗r6

∗Ω4/(6c3) ≡ 2Ψ2
dipole LCΩ2/(3c). One may tentatively generalize our result for non-

zero pulsar inclination angles according to [4] as Ė(λ) ≈ 0.75Ėvacuum(90◦)(1 + sin2 λ), and
since Ėvacuum(λ) = Ėvacuum(90◦) sin2 λ, we obtain that

Ė(λ)
Ėvacuum(λ)

≈ 0.75
1 + sin2 λ

sin2 λ
≥ 1.5 . (6)

It is interesting that in all previous solutions of the FFE pulsar magnetosphere, the
above ratio was found to be greater than 3 (e.g., [22]). This value is significantly larger than
the ratio of spindown rates ĖON/ĖOFF observed in the intermittent pulsars PSR B1931+24,
PSR J1832+0029 and PSR J1841-0500 for their corresponding ‘ON’ and ‘OFF’ states (1.5,
1.7 and 2.5, respectively, e.g., [23,24]). The inability to account for observed values lower
than 3 was the reason that led to the development of resistive magnetospheric solutions
(e.g., [22,25]). With our new solutions, it seems that there is no need for magnetospheric
resistivity anymore. This result certainly merits further investigation.
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Figure 3. Intermediate solutions for θpc = π/2 and θpc = 2/1.176/0.9/0.7/0 × (r∗/RLC)
1/2 (top

left/top right/middle left/middle right/bottom left/bottom right, respectively), or equivalently
Ψopen = Ψmax and Ψopen ≡ ΨS = Ψmax sin2 θpc = 2.256/1.228/0.756/0.468/0 × Ψdipole LC, respec-
tively. Ψ contour levels: integer multiples of 0.1Ψdipole LC with Ψ = 0 along the z-axis. Red dotted
lines: initial dipolar shape of the separatrix between open and closed field lines. Thin vertical line:
line cylinder. Thick lines: current sheets along the separatrix and equator (and along the light cylinder
in the bottom right solution).

We were able to apply our method to even smaller values of Ψopen and θpc. These
solutions are very hard to obtain with the methodology of Paper I because in these, the
Y-point approaches very close to the light cylinder and the convergence of the solution
in the open-line region between the Y-point and the light cylinder is very difficult. In the
limit Ψopen = θpc = 0, one reaches the solution shown in Figure 1, which was obtained
independently as a solution of the pulsar equation (Equation (2)) with standard methods
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(see [16]). This spectrum of solutions with smaller and smaller spindown rates is new and
has never been obtained before in previous MHD, FFE, nor PIC simulations. Our results
are summarized in Table 1.

Table 1. Summary of solutions. Ψopen in units of Ψdipole LC. Ė in units of Ėvacuum(90◦).

Solution θpc Ψopen xYΨopen xY Ė

1 π/2 Ψmax
Ψdipole LC

r∗Ψmax
RLCΨdipole LC

r∗
RLC

(
Ψmax

Ψdipole LC

)2
Split monopole

2 1.7( r∗
RLC

)
1
2 2.26 1.10 0.47 5.1

3 1.318( r∗
RLC

)
1
2 1.5 1.10 0.71 2.2 H&B 2022

4 1.176( r∗
RLC

)
1
2 1.23 1.10 0.88 1.5 Paper I

5 0.9( r∗
RLC

)
1
2 0.76 0.72 0.96 0.6

6 0.7( r∗
RLC

)
1
2 0.47 0.46 0.98 0.2

7 0 0 0 1 0 Figure 1

In Figure 4, the distribution of Bz is plotted along the equator inside the light cylinder
and shows its clear increase right inside the Y-point at its tip, as is needed in order to satisfy
Equation (A2). Although this effect was known, it has never been observed so clearly before,
and Figure 4 improves Figure 11 of [14]. It is now seen clearly that, with the improved
methodology of [11], the minimum Bz value of this sequence of solutions lies at around
xY ∼ 0.8, which is near the position of the Y-point in the high-resolution PIC simulations
of [26–29]. It may be that the Y-point naturally relaxes to that position (not at the light
cylinder), as this corresponds to a minimum energy solution. This result may answer an
important question in the recent literature on the pulsar magnetosphere. Note, however,
that the numerical experiments in [30] lead to a different interpretation, namely that the
Y-point can be pushed arbitrarily close to the stellar surface depending on the number of
PIC particles that are either injected or reach the dissipative region beyond the Y-point. This
is an interesting interpretation since it suggests that xY may decrease as the magnetosphere
evolves with pulsar spindown. This will lead to a value of the braking index smaller than
its canonical value of 3. Otherwise, if xY remains unchanged, all solutions obtained in
Table 1 will have braking indices equal to 3.

In Figure 5, the variation in the open magnetic flux Ψopen is plotted in units of Ψdipole LC
with the position of the Y-point. Our present result that Ψopen → 0 as xY → 1 is in tension
with all previous solutions of the pulsar magnetosphere. The dotted blue line corresponds
to the fit 1.1 Ψopen/Ψdipole LC/xY, while the grey band corresponds to the range of values
obtained from the simulations of [14]. For example, solution No 4 from Table 1 contains
the same amount of open magnetic flux as the one obtained by [27], yet their Y-point lies
at xY = 0.85, while ours lies at xY = 0.71. We believe that this pronounced difference is
mainly due to our treatment of the separatrix current sheet as a contact discontinuity. In all
previous solutions (e.g., [3,4,14,27,28]), the separatrix contains a finite amount of poloidal
magnetic flux and has a pronounced nonzero thickness. This affects the pressure balance
across it which significantly modifies the position of the magnetospheric Y-point. The
difference may also be partially due to our choice of a rather large stellar radius r∗ = RLC/4
compared to previous solutions. Finally, in Figure 6 the variation in the pulsar spindown
energy loss Ė is plotted in units of Ėvacuum(90◦) with the position of the Y-point. Our
present result that Ė → 0 as xY → 1 is also in tension with all previous solutions of the
pulsar magnetosphere. The grey band corresponds to the spindown energy losses obtained
from the simulations of [3,14,31]. As is acknowledged above, the difference between the
dotted line and the grey band may be partially due to our choice of a rather large stellar
radius. The value shown with the horizontal line corresponds to the particular value
Ė = 0.75 Ėvacuum(90◦) mentioned in Equation (6).
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Figure 4. The distribution of Bz(r, θ = π/2) inside the Y-point for the various solutions listed in
Table 1. Bz is in arbitrary units. The dotted line represents the standard 1/r3 dipolar dependence.
One clearly infers both the outward stretching of the initially dipolar field (at small r distances the
solid lines lie below the dotted one), and the inwards squeezing of the field right behind the Y-point
that is required to satisfy pressure balance. Never before has anyone seen such a large increase in Bz

inside the Y-point, even in the solutions in the literature where xY → 1. Our results improve Figure 11
of [14].

Figure 5. Open magnetic flux Ψopen as function of the position of the Y-point xY. Bullet points:
solutions listed in Table 1. Dotted blue line: Ψopen = 1.10Ψdipole xY

= 1.10 Ψdipole LC/xY. Grey band:
canonical values Ψopen = (1.23 − 1.33) Ψdipole LC/xY ([3,14,27,31], etc.). As xY → 1, Ψopen → 0.
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Figure 6. Spindown rate Ė =
∫ Ψopen

Ψ=0 I(Ψ) dΨ Ω/c in units of Ėvacuum(90◦) as function of
the position of the Y-point xY. Bullet points: solutions listed in Table 1. Dotted blue line:
Ė = (1.10)2 Ėvacuum(90◦)/x2

Y. Grey band: canonical values Ė = (1.23 − 1.33)2 Ėvacuum(90◦)/x2
Y ∼

1.5 Ėvacuum(90◦)/x2
Y according to [3,4,14], etc. Grey line: the value Ė = 0.75 Ėvacuum(90◦). As xY → 1,

Ė → 0.

4. A Possible Connection with Fast Radio Bursts

Time-dependent numerical simulations of the pulsar magnetosphere start with an
initial configuration B(r, θ, ϕ; t = 0) = Bdipole(r, θ, ϕ; t = 0) that corresponds to a mag-
netostatic dipole in vacuum, and E(r, θ, ϕ; t = 0) = 0 everywhere. At time t = 0, the
programmer introduces electric fields E(r∗, θ, ϕ; t) = −r sin θ Ω/c ϕ̂ × Bdipole(r∗, θ, ϕ; t)
along the surface of the star, thus effectively setting the central star in rotation with angular
velocity Ω along the z-axis. Here, r∗ is the radius of the star, and Bdipole(r∗, θ, ϕ; t) corre-
sponds to a dipole field that rotates with angular velocity Ω along the z-axis. This is the
procedure followed in the pioneering paper of Spitkovsky [4] and in all time-dependent
numerical simulations since then. The abrupt introduction of a non-zero electric field along
the surface of the star generates a transient blast wave of poloidal electric and azimuthal
magnetic fields that sweeps through the static magnetosphere. This is analogous to the tran-
sient blast wave of electric and magnetic fields generated when an electric charge is abruptly
set in motion [32] or an electric current is introduced [16]. The aim of such simulations
is to obtain the steady-state solution; thus, the programmer is not interested in the blast
wave and waits for it to leave the inner magnetosphere. Indeed, after that wave sweeps
through the computational grid that corresponds to the inner magnetosphere, a breathing
steady-state solution is established with closed and open magnetic field lines. That initial
artificial polarized blast wave has the characteristics of a fast radio burst (hereafter FRB).

FRBs represent one of the most intriguing enigmas in the field of astrophysics today.
First discovered in 2007 [33], FRBs are transient radio pulses that originate from distant
galaxies, characterized by their extremely high energy and incredibly short duration, typi-
cally lasting just a few milliseconds. Despite their fleeting nature, these cosmic phenomena
release more energy in a fraction of a second than the sun in an entire day. The exact
mechanisms that produce FRBs remain a subject of intense debate and speculation among
scientists. Hypotheses range from highly magnetized neutron stars, known as magnetars,
to more exotic theories involving cosmic strings or even extraterrestrial intelligence. How-
ever, despite over a decade of observation and research, no single theory has been able to
fully explain all observed properties of FRBs.

We propose here that FRBs may be related to the electromagnetic burst of the toroidal
magnetic field that follows an abrupt transition from the new solution that was obtained in
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this paper to one of the standard magnetospheric solutions of Figure 1 and Table 1. The
duration of the burst will be on the order of the light crossing time of the light cylinder,
namely RLC/c = P/(2π), where P is the spin period of the pulsar. The total energy of
the burst is estimated to be equal to the difference between the electromagnetic energy of
the new solution and the electromagnetic energy inside the light cylinder of a standard
magnetospheric solution. An estimate of the former is obtained as follows: according to
Figures 1 and 4, the dipolar magnetic flux Ψdipole LC that would have extended beyond the
light cylinder, is now confined to close within an annular region of area ∼ RLCδ where δ ∼
0.1RLC. That region has volume ∼ R2

LCδ ∼ 0.1R3
LC, and in it, B ∼ Ψdipole LC/(0.1R2

LC) ∼
10B∗r3

∗/R3
LC. Therefore,

Enew solution ∼ (10B∗r3
∗/R3

LC)
2 0.1R3

LC ∼ 10B2
∗r6

∗/R3
LC (7)

An estimate of the latter is

Estandard solution ∼ (B∗r3
∗/R3

LC)
2R3

LC = B2
∗r6

∗/R3
LC (8)

Hence, the energy of the burst will be equal to the difference between the two, namely

EFRB ∼ Enew solution − Estandard solution ∼ 10Estandard solution

∼ 1043
(

B∗
1013 G

)2( P
ms

)−1
erg (9)

Notice that in the energy estimates of this section, we use a physical neutron star
radius of r∗ ≈ 10 km.

As we will now see, this is more than enough to power an FRB. In the case of an accret-
ing recycled millisecond pulsar with a surface magnetic field on the order of B∗ ∼ 108−9 G,

EFRB ms pulsar ∼ 1035
(

B∗
109 G

)2
erg ∼ L⊙ × 100 s

(
B∗

109 G

)2
, (10)

where L⊙ is the solar luminosity. This value is below the lowest limit of the low-energy
FRBs presented by [34]; hence, it does not seem consistent with actual FRB observations.
For a newborn neutron star with a millisecond period formed via a core collapse supernova,

EFRB newly formed ns ∼ L⊙ × 100 yr
(

B∗
1013 G

)2
. (11)

Actual FRB energies lie between the above extreme limits, namely between 1037 and
1041 erg (e.g., [35,36]). Therefore, we propose that FRBs correspond to millisecond pulsars
with surface magnetic fields between 1011 and 1012 G.

5. Discussion and Conclusions

We have improved the solutions of the pulsar equation when the tip of the closed-
line region, the so-called Y-point, approaches the light cylinder. The new solutions were
obtained under the assumption that the separatrix surface between open and closed field
lines is a zero-thickness contact discontinuity. The new solutions are similar to the old
ones of [3,14,31] when the Y-point lies inside about 80% of the light cylinder radius. As
the Y-point approaches closer to the light cylinder, however, the solutions diverge from
the standard ones found in the literature, and in the extreme limit that the closed-line
region touches the light cylinder, the open-line region disappears completely. As is seen in
Equation (A1) in Appendix B and in Figure 4, the closer the Y-point to the light cylinder,
the stronger the divergence of Bp right inside the Y-point at the tip of the closed-line region
needs to be. We see no other way to implement this divergence of Bp(xY → 1−) except
with more and more field lines to enter the closed-line region and compress the magnetic
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field at its tip. This effect is clearly seen in the sequence of solutions shown in Figure 3. In
the limit where Bp → ∞ as xY = 1−, all field lines enter the closed-line region confined
inside the light cylinder, and the open line region disappears completely (Figure 1).

One may legitimately ask why these solutions were never before obtained in the
literature. There are several reasons. Firstly, in all previous solutions, the separatrix surface
along which the magnetospheric electric current circuit closes on the star had non-zero
thickness due to the finite resolution of the code. In particular, at its tip, the outer part of the
separatrix forms a Y-point that touches the light cylinder, while the inner part forms a clear
T-point some distance inside it. This is clearly explained in Figure 4 of [21]. Unfortunately,
the ideal force-free conditions of Equation (2) are not valid inside current sheets (as, e.g.,
in Figure 1b of [4]). Nevertheless, the fact that PIC simulations also form a separatrix
that contains a nonzero amount of poloidal magnetic flux (see high-resolution detail in
Figure 9 of [27]) led us to consider the possibility that this effect is indeed physical. It
is interesting that the separatrix current sheet contains a nonzero guide field and is thus
different from the equatorial current sheet which is an ordinary Harris-type current sheet
with 180◦ field inversion across it. It also seems that the width of the former type of current
sheet grows with time as is seen in Figure 1c of [4]. This effect merits further investigation
with hybrid PIC-FFE simulations (Soudais, Cerutti & Contopoulos 2024, submitted). Now
that the separatrix has zero thickness, it forms a clear T-point at its tip, which indeed lies
some distance inside the light cylinder. Secondly, time-dependent simulations always
start from a vacuum dipole configuration that extends to all space and therefore, some
fraction of it already crosses the light cylinder. After the central star is set into rotation,
the magnetosphere is divided into open and closed field lines, i.e., there is no chance to
obtain a configuration totally enclosed inside the light cylinder as the solution shown in
Figure 1. Thirdly, after the time-dependent evolution relaxes to a steady-state solution, it
is reasonable to expect that it will further relax to the lowest energy solution. Therefore,
time-dependent simulations cannot yield the full sequence of solutions up to the latter
singular solution as our Machine Learning methodology can. It is interesting that, now that
the full sequence of solutions is obtained, it is shown that the solution where xY ∼ 80% RLC
is a minimum energy solution, and this is why previous time-dependent high-resolution
PIC simulations relax to that solution. We have thus improved upon the result of [21] which
placed the minimum energy solution around xY = 92% RLC.

We argue that the confined singular solution of Figure 1 and all solutions between
that one and the minimum energy solution are unstable; thus, if the magnetospheric
configuration of Figure 1 forms during a supernova explosion or during a high accretion
event from a surrounding disk or wind from a donor star, it will transition to the minimum
energy solution by emitting a burst of energy equal to the energy difference between these
two solutions. We propose that this burst may be related to an FRB. We would like to
notice here that, as long as the surrounding material is there, the confined solution cannot
transition to a standard solution in which part of the magnetosphere extends to infinity, and
thus the accumulated electromagnetic energy of the confined solution cannot be released.
What happens when the surrounding material dissolves and how fast electromagnetic
energy is released remain to be seen in a time-dependent numerical simulation of this
transition. In case the pulsar magnetosphere undergoes a later accretion event from an
external disk or wind from a donor star that will re-confine it to the solution of Figure 1,
the FRB will repeat. We must acknowledge of course that a few FRBs have already been
observed from a magnetar, and that the cosmological sky rate of FRBs exceeds that of
core-collapse supernovae; therefore, our model may just be a rare kind of FRB, if feasible
at all. Moreover, we have not answered why would the emission of this state transition
be in the MHz to GHz radio regime, and how it would escape the very dense accretion
environment that formed the confined solution of Figure 1. Our model certainly merits
further investigation with detailed MHD numerical simulations.

What is also interesting to investigate is whether a confined solution exists for non-
aligned (oblique) pulsars in which ∂B/∂t ̸= 0. We expect that oblique rotators would
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radiate electromagnetic radiation to infinity; thus, magnetic field lines would extend to
infinity. Therefore, it seems impossible for an oblique magnetosphere to be totally confined
inside the light cylinder. It may thus be that the confined solution of the type shown in
Figure 1 is only possible in aligned pulsars.
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Appendix A

In the first paper of this series ([11], Paper I), a new methodology was presented for
solving the pulsar equation which essentially consists of the following steps:

1. The angular size θpc of the polar cap that contains the so-called open magnetic field
line is chosen a priori. The rest of the stellar surface contains closed field lines.

2. The two regions of open and closed magnetic field lines are considered independently.
An ‘infinitely thin’ physical discontinuity exists between the two regions in the form
of a separatrix current sheet. In reality, the separatrix current sheet has some finite
thickness which is orders of magnitude smaller than the characteristic dimensions of
the system such as the radius of the star and the radius of the light cylinder.

3. It is very helpful to deal with the equatorial current sheet in the open line region by
mathematically reversing the polarity of the magnetic field that emanates from the
south pole of the star. By carrying this out, the mathematical discontinuity in the equa-
torial region disappears; thus, one does not need to worry about it computationally.
At the end of the calculation, we will return to the original polarity of the magnetic
field, and the equatorial current sheet will reappear.

4. The force-free problem is solved in the open and closed line regions independently.
Our method of choice is with Neural Networks so-called Physics Inspired (PINNs).
One may also use classical grid methods in the two regions.

5. The shape rS(θ) of the separatrix is readjusted so that continuity of B2 − E2 is achieved
at all points across it. One way to carry that out is to move the separatrix radially at
each point with an amount that is proportional to the difference (B2 − E2)IN − (B2 −
E2)OUT.

6. Repeat the procedure until pressure balance is achieved over the whole separatrix
and its shape stabilizes.

In [11], Machine Learning was implemented in the PyTorch Deep Learning library.
Code development was implemented in Python on Anaconda Jupyter Notebooks running
on local GPUs, while production runs were performed in the Cloud in Google’s Colab.
Furthermore, Adam optimizers, SiLU activation functions, and ReduceLROnPlateau sched-
ulers from the PyTorch library were used. Three independent NNs were trained:
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1. One PINN with two entries (the r, θ spherical coordinates), three hidden layers with
64 nodes each, and two exits Ψ, I. This PINN solves the pulsar equation in the open
line region outside the separatrix.

2. One PINN with two entries r, θ, three hidden layers with 64 nodes each, and one exit
Ψ. This PINN solves the pulsar equation in the closed line region inside the separatrix
where I = 0.

3. A third NN with one entry θ, two hidden layers with 128 nodes each, and one exit rS
is trained to yield the shape rS(θ) of the separatrix at all angles θ.

The number of internal nodes and layers in the two PINNs that solve the pulsar equation
was chosen by trial and error to be able to reproduce known features of the solution. In
practice, the two main PINNs are initially trained for 50,000 steps after which, satisfactory
convergence is achieved in the two regions. After that initial training stage, the separatrix
is displaced based on the resulting pressure differences between the closed and open line
regions, and then the third NN is trained. The two main PINNs are re-trained for another
50,000 steps, and the process is repeated 10 times. In total, we run 500,000 training steps for
the two main PINNs. In the resulting configuration, pressure balance is achieved across the
separatrix to less than 1%.

As it is acknowledged in [11], the numerical accuracy of our method is not on par yet
with that of standard methods such as finite difference, finite volume or spectral methods.
This is also the case in the solution of [37]. On the other hand, the numerical treatment of
current sheets by standard methods it too is problematic (numerical current sheets have
unphysical thicknesses and the numerical dissipation there is questionable). In order to
improve our results in future iterations of this work, we will try to combine standard
methods outside current sheets with our methodology of moving the separatrix. This is
still a work in progress. Modulo the above disclaimers, we applied this method to obtain
the sequence of solutions shown in Figure 3.

Appendix B

We discuss here the shape of the tip of the closed-line region, the so-called Y-point. In
Paper I, it was found that

1. The Y-point is a clear T-point as predicted by [18], not a Y-point as is seen in all numer-
ical solutions of the axisymmetric pulsar magnetosphere to date, except for [21]. This
is probably due to the fact that in all previous numerical simulations, the separatrix
between closed and open field lines had an unphysically large thickness (sometimes
on the order of the light cylinder!); thus, it was not a true contact discontinuity as in
Paper I.

2. The Y-point of our first solution obtained in Paper I was found to lie closer to the star
than the corresponding Y-point of the standard FFE solution obtained previously.

Both of the above results modify our understanding of how fast pulsars spin down. In
the standard solution, the two regions are separated by a separatrix surface that contains a
charged current sheet. One very interesting point in understanding the operation of the
pulsar magnetosphere is how close to the light cylinder can the Y-point lie. According to
Equation (3), the pressure balance condition across the separatrix current sheet may be
written as

B2
p(1 − x2)

∣∣∣
IN

= B2
p(1 − x2)

∣∣∣
OUT

+
I(ΨS)

2

x2 (A1)

Here, I(ΨS) is the electric return current flowing along the separatrix, and p-indices
denote poloidal (r, θ) components of the fields. Let us first repeat the main argument why
the tip of the closed line region on the equator is a T-point. The poloidal magnetic field
Bp
∣∣
OUT in the right hand side of Equation (A1) is obviously equal to zero right above

and below the equatorial current sheet. The third term, however, is finite because of the
presence of the nonzero equatorial current 2I(ΨS) (notice that the equatorial current sheet
contains double the current of each separatrix current sheet). Therefore, the only way to
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satisfy Equation (A1) is to have Bp
∣∣
IN ̸= 0. This can only be satisfied inside a T-point, not

inside a Y-point. Nevertheless, we will continue calling the tip of the closed-line region
the Y-point because of its overall bifurcating shape, and we will denote the rescaled radial
distance of the tip of the closed-line region with xY.

Furthermore, it is obvious that Equation (A1) becomes singular when xY approaches
very close to unity. In that limit, Equation (A1) yields

Bp(xY)
∣∣
IN =

I(ΨS)

xY

√
1 − x2

Y

=
I(ΨS)√

2
√

1 − xY
→ ∞ when xY → 1 . (A2)

As is shown in this paper, contrary to what was obtained in previous works, it is not
possible to reach this limit and have a significant open-line region outside. The closer the Y-
point approaches the light cylinder, the more field lines must be squeezed inside the closed-
line region to support the growth of Bp at its tip required by Equation (A2), the fewer field
lines are left in the open-line region. As is shown with the new confined magnetospheric
solution of Figure 1, in the limit xY → 1− the open-line region disappears completely.
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