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Abstract: Redshift drift is the phenomenon whereby the observed redshift between an emitter and
observer comoving with the Hubble flow in an expanding FLRW universe will slowly evolve—on a
timescale comparable to the Hubble time. In a previous article, three of the current authors performed
a cosmographic analysis of the redshift drift in an FLRW universe, temporarily putting aside the issue
of dynamics (the Friedmann equations). In the current article, we add dynamics while still remaining
within the framework of an exact FLRW universe. We developed a suitable generic matter model
and applied it to both standard FLRW and various dark energy models. Furthermore, we present an
analysis of the utility of alternative cosmographic variables to describe the redshift drift data.

Keywords: redshift drift; dark energy models; cosmography; cosmodynamics; astrophysics;
cosmology

1. Introduction

The concept of “redshift drift” (RD) dates back (at least) some 60 years, to 1962,
arising in coupled papers by Sandage [1] and McVittie [2]. Relatively little direct follow-up
work took place in the 20th century, with Loeb’s 1998 article [3] as a stand-out exception.
However, with technological advances and new observational surveys on the horizon,
the possibilities of measuring RDs have become much more concrete [4–18]. The basic
idea is this: If in any FLRW universe emitter and observer are comoving with the Hubble
flow, then the null curve connecting them slowly evolves on a timescale set by the Hubble
parameter; this implies that the redshift is slowly evolving. In any FLRW universe, the key
result is [1–4]:

ż = (1 + z)H0 − H(z). (1)

Measuring this effect will certainly be a challenging enterprise, with typical estimates
suggesting the need for a decade-long observational window. Starting from an estimated
detection time of a couple of decades—using the first observational feasibility study of the
Extremely Large Telescope (ELT) [7]—recent experimental proposals suggest a detection
time as low as 6 years [19] (though the constraints provided on cosmological parameters
could potentially be greatly diminished by the time-reduction [20]). Furthermore, other
future prospects from RD measurements are proposed to test the cosmological principle
(i.e., isotropy and homogeneity) by taking into account large-scale structures and distin-
guishing between non-FLRW cosmological models [21–29]. More boldly, some authors
have recently speculated on what might be do-able with millennia-long observational
windows [30].
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In [31], three of the current authors performed a general cosmographic analysis (for
additional background, see [32–44]), both in terms of the regular z-redshift and in terms of
the y-redshift, defined by

1 − y =
a
a0

=
1

1 + z
, (2)

so that for z ∈ [0, ∞), one has y ∈ [0, 1). There we have proved the closely related
exact result:

ẏ = (1 − y){H0 − (1 − y)H(y)}. (3)

We shall now analyze and extend these and related results by using the dynamical Fried-
mann equations of general relativistic cosmology.

Without choosing the exact composition of the universe, one can rewrite the RD in
terms of a suitably defined density parameter, Ω(z) (one that includes the effect of spatial
curvature), as

ż =

{
(1 + z)−

√
Ω(z)

}
H0; (Ω0 ≡ 1). (4)

Similarly, for the y redshift, we have

ẏ = (1 − y)
{

1 − (1 − y)
√

Ω(y)
}

H0; (Ω0 ≡ 1). (5)

From this, we can proceed by building a physically plausible matter model for Ω(z)
(or equivalently Ω(y)) and investigate its properties. We will allow for an arbitrary admix-
ture of non-interacting components, all individually satisfying linear equations of state
pi = wi ρi. Such a model is general enough to include Λ-CDM and many variants thereof
but is simple enough to allow explicit calculations of Ω(z) or, equivalently, Ω(y) and its
various approximations.

We also present an RD analysis applied to different dark energy (DE) models, such
as w0CDM, the linear model, BAZS equation of state, CPL, logarithmic evolution, and a
couple of interactive models. This is followed by a discussion on whether RD data have
the power to distinguish distinct equations of state for dark energy or not.

The article is outlined as follows: In Section 2, we develop the notation, set the stage,
and subsequently develop a dynamical analysis in terms of the usual z-redshift. We also
present the relations between the RD signal peak, zpeak, and zequality, and the turning point
of the acceleration rate of the universe, q = 0, for the ΛCDM case. In Section 3, we start by
introducing the dark energy models discussed in this work, followed by the predicted RD
signal of each model for different values of the relevant free parameters. We then proceed
in Section 3 to discuss the power of redshift data in distinguishing different DE models
from each other. In Section 4.1, we move towards a cosmographic analysis, presenting
the general results in terms of the y-redshift defined by y = z/(1 + z). Other auxiliary
variables for describing the redshift are then presented in a table in Section 4.2. Finally, we
conclude in Section 5.

2. Dynamics of the RD in Terms of z

As is well known, the dynamical behavior of the Friedmann (FLRW) cosmological
models is determined by two equations:

(i) The second-order Raychaudhuri equation (or second Friedmann equation):

ä
a
= −κ2(ρ + 3p)

6
, (6)

where κ2 = 8πGN and c = 1. Here, ρ and p are the energy density and the pressure of
the matter content of the universe, respectively, described by an isotropic perfect fluid.
Note that we have adopted the simplification of absorbing the cosmological constant,
if present, into the stress-energy tensor.
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(ii) The first Friedmann equation: (
ȧ
a

)2
= − k

a2 +
κ2ρ

3
. (7)

The latter equation acts as a first integral of Equation (6) and constrains the solutions
in connection with the possible spatial curvature cases set by k = 0,±1.

Furthermore, it is useful to absorb the spatial curvature term into the density by defining

ρk = − 3k
8πa2 ; ρeffective = ρ + ρk. (8)

Similarly, it is useful to define

pk =
k

8πa2 ; peffective = p + pk. (9)

In this way, we have

H2 =

(
ȧ
a

)2
=

κ2ρeffective
3

and
ä
a
= −κ2(ρeffective + 3peffective)

6
, (10)

where the Raychaudhuri equation can be rewritten in terms of H and ωeffective = peffective/
ρeffective as

Ḣ + H2 = −κ2
(

1 + 3ωeffective
6

)
ρeffective , (11)

giving us

Ḣ = −κ2
(

1 + ωeffective
2

)
ρeffective (12)

Now, making use of Equation (10), one can rewrite H(z) as

H = H0

√
ρeffective

ρeffective,0
, (13)

where ρeffective and ρeffective,0 represent the energy density at redshift z and at the present
time, respectively. Introducing the appropriate notion of critical density (sometimes called
Hubble density) and Omega (or density) parameter

ρcrit =
3H2

0
κ2 = ρeffective,0; Ω =

ρeffective
ρcrit

; (14)

respectively, we see that these definitions automatically imply Ω0 ≡ 1, and hence, H(z) =
H0
√

Ω(z). Thence, for the RD, even before choosing a specific cosmological model, we
have the quite general exact (FLRW) result:

ż =

{
(1 + z)−

√
Ω(z)

}
H0; (Ω0 ≡ 1). (15)

The RD will exhibit a zero whenever

Ω(z∗) = (1 + z∗)2. (16)

One obvious (trivial) root occurs at z∗ = 0. We shall soon see that, typically, there will be
at least one other nontrivial root. Again, we emphasize that, up to this point, all quoted
results are exact, at least within the context of FLRW spacetime.
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2.1. Choosing a Specific Cosmological Model

If we can approximate the cosmological fluid by a collection of N non-interacting fluid
components with individual, strictly linear equations of state (EOS) pi = wi ρi, then

Ω(z) =
N

∑
i=1

Ω0i(1 + z)3(1+wi);
N

∑
i=1

Ω0i = 1; (17)

and so

H(z) = H0

√√√√ N

∑
i=1

Ω0i(1 + z)3(1+wi);
N

∑
i=1

Ω0i = 1. (18)

Note that we are explicitly allowing possible spatial curvature, so both k and Ωk are allowed
to be nonzero, with the corresponding value of w being wk = −1/3. Once you allow
nonzero Ωk, then the sum of all the Ω0i is, by definition, set to unity. We can characterize
the components of this cosmological model as follows:

wi


> −1/3 matter-like (dust, radiation, etc.);
= −1/3 spatial curvature (the marginal case);
< −1/3 dark-energy-like (quintessence, cosmological constant, etc.).

(19)

Typically, one has wi ∈ [−1,+1] or even wi ∈ [−1,+1/3], but such a restriction is not
absolutely necessary. Note that the “matter-like” components (wi > −1/3) dominate at
early times (small a), while the “dark-energy-like” components (wi < −1/3) dominate
at later times (large a). We shall now investigate the implications of this model for Ω(z)
in some detail. We shall find it advantageous to work with weighted moments of the
w-parameters (for an akin definition of an averaged adiabatic index γ = 1 + w, see [45]).
Specifically, at the current epoch, we define

⟨wn⟩0 =
∑N

i=1 Ωi0 wn
i

∑N
i=1 Ωi0

=
N

∑
i=1

Ωi0 wn
i , (20)

while at redshift z, we define

⟨wn⟩z =
∑N

i=1 Ωi(z) wn
i

∑N
i=1 Ωi(z)

=
∑N

i=1 Ωi0(1 + z)3(1+wi) wn
i

∑N
i=1 Ωi0(1 + z)3(1+wi)

. (21)

Note that Taylor series expansions of Ω(z) will mathematically converge only for |z| < 1
and will be astrophysically most useful only for 0 ≤ z ≪ 1. Furthermore, within the context
of our {Ω0i, wi} matter model, for ωeffective = peffective/ρeffective, we have

ωeffective =
∑N

i=1 Ωi(z) wi

∑N
i=1 Ωi(z)

= ⟨w⟩z . (22)

The dominance of some individual component, j∗, with regard to the others can be charac-
terized by Ωj∗(z) > 1/2 (this follows trivially from Ωj∗(z) > ∑i ̸=j∗ Ωi(z) = (1 − Ωj∗(z))).
Furthermore, the emergence of late-time accelerated expansion happens, of course, for
⟨w⟩z < −1/3 (for some z < zcrit and, in particular, for z → 0). We shall have more to say
on these issues later on.

Given the convergence issue with the z-redshift expansions for z > 1—namely all the
regions of interest for RD experiments—one can resort, for example, to the y-redshift:

Ω(y) =
N

∑
i=1

Ω0i(1 − y)−3(1+wi);
N

∑
i=1

Ω0i = 1; (23)
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whence

H(y) = H0

√√√√ N

∑
i=1

Ω0i(1 − y)−3(1+wi);
N

∑
i=1

Ω0i = 1. (24)

Again, the Taylor series expansions of Ω(y) will mathematically converge only for |y| < 1
and will be astrophysically most useful only for 0 ≤ y ≪ 1. Fortunately, 0 ≤ y < 1 covers
the entire physically relevant region 0 ≤ z < ∞. Again, it is important to highlight this is
the reason why so much effort is put into working with the y-redshift (or its variants).

2.1.1. Generic Model

By inserting (18) into (15) (this is still exact in FLRW with this particular model for the
cosmological EOS), we obtain the generic result:

ż = H0

(1 + z)−

√√√√ N

∑
i=1

Ω0i(1 + z)3(1+wi)

;
N

∑
i=1

Ω0i = 1. (25)

Observationally, one now merely needs to fit the {Ω0i, wi} to the empirical data. In contrast,
a theorist need only fit the {Ω0i, wi} to their preferred toy model.

2.1.2. Λ-CDM

For a general four-component Λ-CDM model, when explicitly allowing the inclusion
of both spatial curvature Ωk and radiation Ωr components, one has

H = H0

√
ΩΛ + Ωk(1 + z)2 + Ωm(1 + z)3 + Ωr(1 + z)4, (26)

with
ΩΛ + Ωk + Ωm + Ωr = 1. (27)

This particular model is commonly believed to be an accurate representation of the evolu-
tion of our own universe from the current epoch to at least as far back as the surface of last
scattering (the CMB) at z ≈ 1100. Thence, by eliminating Ωk, one has

H = H0

√
ΩΛ + (1 − ΩΛ − Ωm − Ωr)(1 + z)2 + Ωm(1 + z)3 + Ωr(1 + z)4 , (28)

which leads to the RD equation in terms of the cosmological parameters:

ż = H0

{
(1 + z)−

√
ΩΛ + (1 − ΩΛ − Ωm − Ωr)(1 + z)2 + Ωm(1 + z)3 + Ωr(1 + z)4

}
. (29)

Using the latest PDG 2022 data, the density parameters at the current epoch are estimated
to be [46,47]

ΩΛ = 0.685(7), Ωm = 0.315(7), Ωr = 5.38(15)× 10−5, Ωk = 0.0007(19).

By using those data to plot the RD vs. z, we can see (Figure 1) that the RD has a maximum
at z ≈ 0.875, where ż ≈ 0.213H0, which then, subsequently, has a zero at z ≈ 1.918, beyond
which the RD becomes negative—a well-known result due to the fact that the universe is
matter-dominated for z ≳ 2. While the existence of this peak in the RD is tolerably well
known [23,25], we will have considerably more to say on this point later.
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Figure 1. Redshift drift (per H0) for four-component Λ-CDM, estimated from the PDG data.

2.1.3. Λ-CDM (Simplified Two-Component Version)

One can also further simplify the discussion above by making the plausible approx-
imations of setting Ωk −→ 0 and Ωr −→ 0, obtaining the simplified two-component
model:

H(z) = H0

√
ΩΛ + Ωm(1 + z)3; ΩΛ + Ωm = 1. (30)

Thence

ż = H0

{
(1 + z)−

√
ΩΛ + Ωm(1 + z)3

}
; ΩΛ + Ωm = 1.

= H0

{
(1 + z)−

√
ΩΛ + (1 − ΩΛ)(1 + z)3

}
. (31)

Setting Ωk −→ 0, that is, k/a2
0 −→ 0, is a common simplifying assumption within the

framework of cosmological inflation. Setting Ωr −→ 0 is a reasonable approximation for
the relatively recent universe (say z < 100), as long as one does not try to extrapolate all
the way back to the CMB.

Just like before, one finds that ż has a zero and switches sign when z = zcritical,
analytically given by

zcritical =

3
2 ΩΛ − 1 +

√
ΩΛ
(
1 − 3

4 ΩΛ
)

1 − ΩΛ
. (32)

Equivalently, in terms of Ωm, we have

zcritical =
1 − 3Ωm +

√
(1 − Ωm)(1 + 3Ωm)

2Ωm
. (33)

As one can see, the location where the RD vanishes depends only on the amount of dark
energy versus matter present in the universe for a two-component dust-based flat ΛCDM.

Similarly, one can find the position zpeak of the maximum signal of the redshift-drift
by solving d[ż(z)]/dz = 0. From (31), the condition for finding the peak is

1 −
3(1 − ΩΛ)(1 + zpeak)

2

2
√

ΩΛ + (1 − ΩΛ)(1 + zpeak)3
= 0. (34)
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This can be rearranged to yield a quartic polynomial:

9(1 − ΩΛ)
2(1 + zpeak)

4 − 4(1 − ΩΛ)(1 + zpeak)
3 − 4ΩΛ = 0. (35)

While the exact roots can certainly be found algebraically, they are too complicated to be
worth writing down explicitly. However, a numerical evaluation of the physically relevant
root is trivial.

As an example, in Figure 2, we see that for ΩΛ = 0.685, one finds zcritical ≈ 1.92, with
the peak at zpeak ≈ 0.876, while for ΩΛ = 0.662, one finds zcritical ≈ 1.69, with the peak at
zpeak ≈ 0.775. This is qualitatively compatible with what we saw happening in Figure 1 for
the four-component model based on the PDG data.

Figure 2. Redshift drift magnitude (per H0) for two-component Λ-CDM for different values of ΩΛ.
Here, we have taken the values for Ωm = 0.315 ± 0.007 given by the Planck2018 data release [48]
(blue curve) and Ωm = 0.338 ± 0.018 from Pantheon+ [49] (orange curve) plus the values previously
given by the PDG data (green curve). Note that since both Planck (assuming Ωk = Ωr = 0) and PDG
have exactly the same value for ΩΛ, the two curves appear to exactly coincide.

The importance of these observations lies in the fact that, apart from being able to
probe the various matter components of the universe, one should devote some care when
selecting celestial objects for potential investigation. Note, for example, that collecting data
in the region z ∈ (1.7, 2.0) is contra-indicated since the RD is approximately zero in this
region. Moreover, while the region z ∈ (0.5, 1.3) allows for a possible local maximum of
the RD, going for redshifts higher than z ≈ 2.3 will certainly guarantee better results in
terms of the strength of the signal. Besides the experimental difficulties in measuring such
a weak signal, unlike a large portion of the cosmological data available, which depends on
some sort of calibration of the distance ladder, and the RD measurements are not directly
affected by this problem.

2.1.4. The Relation between zpeak, zequality, and q = 0

One interesting exercise is to understand the relation between the position, zpeak, of
the peak signal in the RD curve and the composition of the universe when this occurs.
Moreover, one may consider that the position of the peak occurs at a time when the universe
was still matter-dominated. In order to see this in the simplified two-component model,
note that

ΩΛ(z) = ΩΛ; Ωm(z) = Ωm (1 + z)3. (36)
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Thus, matter dominates over the cosmological constant for

z > zequality =

(
ΩΛ

Ωm

)1/3
− 1 =

(
ΩΛ

1 − ΩΛ

)1/3
− 1, (37)

which, when using the PDG data, gives us zequality ≈ 0.296. Given that zpeak ≈ 1.88, it is
clear that this happened at values of z higher than when the universe became cosmolog-
ically constant dominated. Perhaps counter-intuitively, although the universe has to be
dominated by a cosmological constant now in order for the redshift peak to exist, the light
that comes to us at the peak of the RD curve was emitted before this transition happened.

As a way to visualize the relation between zequality and zpeak, one can substitute (37)
into (35), obtaining the following relation:

4 Zeq
6 +

(
4 Zpeak

3 + 4
)

Zeq
3 − 9 Zpeak

4 + 4 Zpeak
3 = 0 , (38)

where Zeq = 1 + zequality and Zpeak = 1 + zpeak. Note, again, that this relation is only valid
assuming the simplified two-component model of flat ΛCDM. In Figure 3, is possible to
see that, even if equality was only reached today, we would still see a peak in the RD at
zpeak ≈ 0.297.

(a) (b)
Figure 3. (a) Relation between zpeak and zequality. Note how a peak would still be present in the RD
data even if equality between ΩΛ and Ωm has not yet been reached. (b) Comparison between zpeak
and zq=0 for a two-component flat ΛCDM model.

We could also try to estimate the epoch at the end of matter domination in a different
way by considering the redshift at which the deceleration parameter q(z) crosses zero.
From the Friedmann equations, we know that ä ∝ ρ + 3p; so, the condition for the zero
deceleration parameter q(z) = 0 is ρ + 3p = 0. However, for our general matter model,

[ρ + 3p](z) = ρ0

N

∑
i=1

(1 + 3wi)Ωi(z) = ρ0

N

∑
i=1

(1 + 3wi)Ω0,i(1 + z)3(1+wi). (39)

So, for the two-component case,

[ρ + 3p](z) = ρ0

{
−2ΩΛ + (1 − ΩΛ)(1 + z)3

}
. (40)

This is zero when
2ΩΛ = (1 − ΩΛ)(1 + z)3. (41)



Universe 2024, 10, 162 9 of 23

Thence

zq=0 =

(
2ΩΛ

1 − ΩΛ

)1/3
− 1 (42)

= 21/3zequality − (1 − 21/3) ≈ 21/3zequality − 0.666

For ΩΛ ≈ 0.685, one has zq=0 ≈ 0.6323. Furthermore, we can investigate the relation
between zq=0 and zpeak. This can be carried out by replacing (42) into (35), which gives us
the following:

4Z6
q + (8Z3

peak + 8)Z3
q − 36Z4

peak + 16Z3
peak = 0 (43)

where Zq = 1 + zq=0 and Zpeak = 1 + zpeak. As can be seen in Figure 3b, the offset existing
between zequality and zpeak doesn’t exist between zq=0 and zpeak. Putting it bluntly, if q < 0,
then we must undoubtedly see a peak somewhere in the RD data.

All three calculations have a slightly different physical meaning but are still intrin-
sically correlated. Regardless of the method, however, the switchover from matter to (a
cosmological constant form of) dark energy is certainly at z < 1.

2.1.5. Clarifying a Potential Mis-Application to the CMB

As an interesting exercise, one could very naively try to apply the RD reasoning to the
CMB. This would be a terrible misapplication, resulting in extremely wrong results. It is
important, however, to understand why the correct result cannot be reproduced via an RD
analysis and, of course, how to do it properly.

As is well known, the CMB originated at z ≈ 1100. If one insisted on applying (31) to
this case, they would roughly (and again, very naively) obtain something around

ż|CMB ≈ −18, 900 H0 ≈ 10−6/year. (44)

However, this estimate is grossly misleading. The basic problem is that, as presented above,
this calculation would only be relevant to an emitter that was comoving with the Hubble
flow at the time of last scattering.

However, the surface of last scattering does not comove with the Hubble flow; certainly,
the surface of last scattering is not a physical object locally at rest in the FLRW spacetime.
Instead, the surface of last scattering is a space-like hypersurface that occurs at some specific
epoch of cosmic time when the ionization fraction drops to some suitable threshold level.

If we want to estimate ṪCMB, the temperature drift of the CMB, then we need to think
very differently. A more careful analysis of the surface of last scattering requires working
with the Saha equation to estimate the free electron fraction xe (see, for example, [50]):

x2
e

1 − xe
=

1
nH + np

(
mekBT
2πh̄2

)3/2
exp(−E1/[kBT]). (45)

Now, nH + np = n0(1 + z)3, and T = T0(1 + z), where n0 and T0 are measurable. (Here,
E1 is the ionization energy of the hydrogen atom.) By picking some specific free electron
fraction, x0, to characterize the surface of last scattering, one can then solve for zlast scattering:

(1 + zlast scattering)
−3/2 exp

(
− E1

kBT0

1
1 + zlast scattering

)
= n0

x2
0

1 − x0

(
mekBT0

2πh̄2

)−3/2
. (46)

Thence

1 + zlast scattering =

2E1
3kBT0

W

(
− 2E1

3kBT0
2πh̄2

mekBT0
n2/3

0

(
x2

0
1−x0

)2/3
) . (47)
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Here, W(x) is the Lambert W function, defined by W(x) eW(x) = x, which is a spe-
cial function that is becoming increasingly important in both theoretical physics and
mathematics [51–57].

The physics point here is that last scattering is a specific epoch in the evolution of
the universe, a space-like hypersurface, with specific values for zlast scattering, Tlast scattering, and
nlast scattering, not a physical time-like surface at a specific comoving position in the universe
(that is, not a time-like hypersurface). The present-day value of the CMB temperature is,
therefore, simply

TCMB,0 =
Tlast scattering

1 + zlast scattering
= T0. (48)

If we now project this into the future (or into the past), the CMB temperature will be

TCMB(t) = T0
a0

a(t)
. (49)

This is, of course, a very well-known result. What might not be so well understood is the
physical understanding of why this result cannot be reproduced via an RD analysis, which
we hoped to have clarified. If we now differentiate around the present epoch, then

ṪCMB,0 = −H0 TCMB,0. (50)

That is, there is a drift in the temperature of the CMB, but it is appallingly small—one part
in 1010 per year. For the near future, however, this effect is completely ruled out of being
measured. Besides the quality in the CMB data available, we are still extremely far from
the 10 significant digits. Indeed, if one were to find a detectable drift in the temperature of
the CMB, then this would be very difficult to reconcile with standard FLRW cosmology.

2.1.6. Higher-Order RD

Based simply on dimensional analysis, all higher-order RDs are of the form:

z(n)0 =
dnz
dtn

∣∣∣∣
0
= (dimensionless number) × Hn

0 . (51)

The point is that the extra factors of H0 will suppress all of these higher-order RD effects by
an extra factor [1/(Hubble time)]n, making them unobservably small—unless you commit
to multi-millennia-long observational programs of the Loeb variety [30]. So, while the
higher-order RDs may be theoretically important, their observational relevance is much
less clear.

2.2. Summary

We have seen (above) a number of exact and perturbative results for the RD ż(z).
Perhaps the central point to take from this discussion is that for plausible cosmological
models, the RD exhibits a local maximum at z ≈ 1 and an “accidental” zero for z ≈ 2. (The
zero is “accidental” in that its location and very existence depend on the precise value of the
Ω0i parameters. For the hypothetical case ⟨w⟩0 > −1/3, which is not a good model for our
observed universe, for which ⟨w⟩0 ≈ −0.685, this zero would not exist.) This observation
is central when selecting possible candidates for observational study.

3. Redshift Drift for Different Dark Energy Models

Another important question regarding the future of precision cosmology is, "Will RD
data be able to differentiate dark energy models from each other?" Following the lines of [58] (see
also [59]), here, we present an analysis of different dark energy models, including w0CDM,
the linear model, CPL, BAZS, and a couple of interactive possibilities. Given the redshift
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evolution of the Hubble parameter H(z) for each model, we are able to calculate the RD
using the following relation (1):

ż = H0

(
1 + z − H(z)

H0

)
. (52)

Before presenting the results, let us first introduce each one of the models discussed here:

w0CDM: (or simply wCDM): It is the simplest dark energy model, where the barotropic
equation of state is given by p = w0ρ, with w0 being a constant. In this case, as presented
above, the Hubble parameter evolves as(

H(z)
H0

)2

= Ωr(1 + z)4 + Ωm(1 + z)3 + ΩDE(1 + z)3(1+w). (53)

Figure 4a shows the results of the theoretically predicted RD signal (52) for different values
of w0.
BAZS EoS: The Barboza–Alcaniz–Zhu–Silva [60] equation of state is a three-parameter
model for dark energy given by

w = w0 − wb
(1 + z)−b − 1

b
. (54)

This model includes the linear model as the limit of b → −1 and CPL as the limit of
b → 1. Furthermore, taking the limit of b → 0 gives us the logarithmic model. The Hubble
parameter evolution, assuming Ωr = Ωk = 0, is then given by [60](

H(z)
H0

)2

= Ωm(1 + z)3 + ΩDE (1 + z)3(1+w0+
wb
b ) exp

[
3wb
b2

(
1

(1 + z)b − 1
)]

(55)

The results for a fixed w0 = −1 and wb = −1 for different values of the parameter b are
presented in Figure 4b.
Linear model: In this model, the barotropic equation of state is allowed to vary along the
evolution of the universe in a linear way:

w = w0 + wb z . (56)

The two free variables w0 and wb are constants, and the Hubble parameter evolution is
given by (

H(z)
H0

)2

= Ωm(1 + z)3 + ΩDE (1 + z)3(1+w0−wb) exp(3wb z) (57)

Figures 4c,d show how the RD data changes when keeping, respectively, w0 and wb fixed
while varying the other variable.
CPL: Named after Chevallier, Polarski, and Linder [61,62], this two-parameter equation of
state guarantees, when compared to the linear model, a bound on how much w can grow
as we go back in time.

w = w0 + wb
z

1 + z
(58)

Here, w0 represents the value of w at the present moment, while w0 + wb represents its
value at the asymptotic past. In this case, we have(

H(z)
H0

)2

= Ωr(1 + z)4 + Ωm(1 + z)3 + ΩDE(1 + z)3(1+w0+wb) exp
(
−3wb z

1 + z

)
. (59)

The results for the expected RD signal for distinct values of wb and w0 can be found in
Figures 4e,f, respectively.
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(a) w0CDM for distinct values of w0. (b) BAZS EoS with fixed w0 = wb = −1.

(c) Linear model with fixed wb = −0.3. (d) Linear model with fixed w0 = −1.

(e) CPL model with fixed wb = −0.2. (f) CPL model with fixed w0 = −1.

Figure 4. Redshift drift for different dark energy models.

Logarithmic evolution: This was first introduced by Efstathiou [63], who suggested a
logarithmic evolution of w(z) into the asymptotic past:

w = w0 + wb ln(1 + z) . (60)
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The results for different values of wb and w0 are presented in Figures 5a,b, and the Hubble
parameter evolution is given by(

H(z)
H0

)2

= Ωm(1 + z)3 + ΩDE (1 + z)3(1+w0+
wb
2 ln(1+z)) . (61)

(a) Logarithmic model with fixed wb = −0.2. (b) Logarithmic model with fixed wb = −0.2.

Figure 5. Redshift drift for the logarithmic model.

Interactive dark energy models: Another possible scenario is to consider interactive
models, where dark energy and dark matter exchange energy via an interaction term, Q. In
this case, the energy conservation equations in FLRW give us

ρ̇c + 3Hρc = Q , (62)

ρ̇DE + 3H(ρDE + pDE) = −Q . (63)

Here, ρc and ρDE stand for the energy density of cold dark matter and dark energy, respectively.
There are a few common possibilities for the interaction term. Here, we will present

the RD results for Q1 = 3bHρDE and Q2 = 3bHρc, where b represents a dimensionless
coupling parameter. The Hubble parameter evolution for Q1 is given by [64,65](

H(z)
H0

)2

= Ωm(1 + z)3 +
ΩDE

(w0 + b)
[
b(1 + z)3 + w0(1 + z)3(1+b+w0)

]
(64)

and the redshift results can be found in Figure 6a. For Q2, on the other hand, the Hubble
parameter behaves as [64,65](

H(z)
H0

)2

= ΩDE(1 + z)3(1+w0) + Ωb(1 + z)3 +
Ωc

(w0 + b)
[
b(1 + z)3(1+w0) + w0(1 + z)3(1−b)] . (65)

Note that Ωm = Ωb + Ωc, with this separation being necessary, given that baryons clearly
do not interact with either dark energy or cold dark matter. The results for the different
values of b can be found for Q2 in Figure 6b.
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(a) Interactive Q1 model for varying coupling parameters. (b) Interactive Q2 model for varying coupling parameters.

Figure 6. Redshift drift for interactive dark energy models Q1 and Q2.

Can RD Data Distinguish Different Models?

In view of the last decade, with the increasing flow of new data and different dark
energy models being proposed, a natural question to ask is whether different models can
be discerned from each other and which data can be useful in this challenging task [64–70].

As must now be a full consensus, no particular data alone can resolve that question.
Our goal here is to emphasize that, as great as the future RD data might be, the result is
still the same—RD data alone cannot separate one model from another.

Our approach to show this will be to compare the theoretically predicted signals for
distinct models. Given that different models may have from one to three free variables
to fit the data, it may not come as a surprise that very different models might present
curves that—including future error bars—will be simply indistinguishable from each other.
Furthermore, given how clearly this can be shown analytically, we have refrained from
performing an MCMC analysis due to the lack of need.

In all of the comparative analysis presented here, the results are shown for z ≤ 2.5 and
higher redshifts separately in order to present the curves with greater detail. Additionally,
given that real RD data are not yet available, we have not included any error bars. These
have been included in previous works using the results from Monte Carlo simulations [71],
where the error on the spectroscopic velocity shift of CODEX was predicted. We have decided,
however, to keep those out, given that our point can be proven even without their inclusion.
The curves were obtained with optimization algorithms in Python.

Let us start by looking at the results of a comparison between the interactive models Q1
and Q2 presented in Figure 7. In this graph, we input three curves for the interactive model
Q1 and found the best-fit parameters for the model Q2 in order to reproduce the same curves.
The bounds assumed for the fitting parameters of Q2 were given by ΩDE ∈ [0.65, 0.73]
and Ωc ∈ [0.24, 0.29], while w0 ∈ [−2, 0] and b ∈ [−1, 1]. Furthermore, we have applied
the following constraints: i) ΩDE + Ωc ≈ 0.9545, in order to place a bound on the amount
of baryonic matter; ii) b ̸= 0, so as to guarantee that we have an interactive model. Both
constraints had a tolerance of 10−3. As it is clear from the figure, some of these lines almost
perfectly superpose to each other.

Figure 8 presents a similar analysis comparing the logarithmic and CPL models. Here,
the curves of CPL were fit to a generated logarithmic model curve with fixed ΩDE = 0.685
and fixed w0 = −1, while allowing wb ∈ [−1, 1] to vary. Finally, in Figure 9, we present
a similar analysis fitting the BAZS, Q1, and Q2 models to a generated logarithmic curve.
The bounds on ΩDE, w0, and wb were the same as those applied in Figure 7. The input
logarithmic curve and the best-fit parameters obtained can be seen in the following
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log: ΩDE = 0.685, w0 = −1, wb = −0.4
BAZS: ΩDE = 0.6816, b = 0.0139, w0 = −1.1099

Q1: ΩDE = 0.6850, b = 0.01, w0 = −0.9996, wb = −0.4019
Q2: ΩDE = 0.6894, Ωc = 0.2565, b = 0.001, w0 = −1.0989

The point to be taken from these analyses should be very clear: independently of
how precise future redshift drift data might be, different dark energy models cannot be
distinguished from this type of data alone. The scenario improves (meaning that no good
fits between different models are available) when the bounds on the free parameters are
tightly constrained by other data sources, especially when higher redshift (z > 10) points
are included in the analysis.

Figure 7. Comparison between the interactive models Q1 = 3bHρDE and Q2 = 3bHρc.

Figure 8. Comparison between the logarithmic and CPL models. Here, we have kept w0 = −1 for
both models. The results for different values of wb are presented.



Universe 2024, 10, 162 16 of 23

Figure 9. Generated logarithmic curve and the best-fit curves found for the BAZS and interactive
models Q1 and Q2.

4. Redshift Drift for Other Auxiliary Variables

The current status of cosmography is quite subtle [31,32,36,40–44]. While it is certainly
well appreciated that the luminosity distance expansion in terms of z does not converge,
there is still considerable debate on which auxiliary function is the best replacement for it.
The discussions regarding this subject seem to not have a final conclusion, and debates from
auxiliary functions that “produce” (or display) tensions with ΛCDM data have been raised
in the past [40,41,43]. However, since discussing this topic could lead to a manuscript in
its own right, we will focus on simply enumerating the most well-known of the so-called
auxiliary variables, including the pioneer, y, followed by their respective RDs—for which
we shall perform both cosmographic and cosmodynamic analyses. We will present a more
detailed discussion of the y redshift case, followed by a table with the main results for the
other variables.

For some background, recall the standard cosmographic result

H(z) = H0

{
1 + (1 + q0)z +

1
2
(j0 − q2

0)z
2 +O(z3)

}
, (66)

which we shall subsequently rephrase in terms of the new auxiliary variables.

4.1. Redshift Drift in Terms of y

In reference [31], working in terms of the y-redshift

1 − y =
a
a0

=
1

1 + z
, (67)

three of the current authors demonstrated that

ẏ = (1 − y)H0 − (1 − y)2H(y). (68)
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By expanding H(y) and keeping those terms only up to the second order in the cosmo-
graphic expansion, we have

H(y) = H0

{
1 + (1 + q0)y +

[
1 + q0 +

1
2
(j0 − q2

0)
]
y2 +O(y3)

}
. (69)

Thence, for the RD,

ẏ = −H0

{
q0 y − 1

2

(
2q0 + q2

0 − j0
)

y2 +O(y3)

}
. (70)

In order to proceed to a cosmodynamic analysis, we first write the general model-independent
result:

ẏ = (1 − y)
{

1 − (1 − y)
√

Ω(y)
}

H0; (Ω0 ≡ 1). (71)

This is still exact in any FLRW spacetime.
So, assuming the generic matter model {Ωoi, wi} for the EOS, we obtain the following

result:

ẏ = H0(1 − y)

1 − (1 − y)

√√√√ N

∑
i=1

Ω0i(1 − y)−3−3wi

;
N

∑
i=1

Ω0i = 1. (72)

If we now Taylor expand for a small y, that is, |y| < 1, then, for the Hubble parameter,
one has

H(y) = H0

[
1 +

1
2

(
N

∑
i=0

(3 + 3wi)Ω0i

)
y +O(y2)

]
= H0

[
1 +

3
2
(1 + ⟨w⟩0)y +O(y2)

]
. (73)

When inserted into the general expression for ẏ, one finds

ẏ = −H0y
2

{1 + 3⟨w⟩0 +O(y)}. (74)

This is compatible with our earlier lowest-order result for ż. Note, however, that since it
is now expressed in terms of y = z

1+z , the range of applicability for the Taylor expansion
is much wider than in the z-redshift case. In particular, the peak at z ≈ 1 now occurs at
y ≈ 1/2, and the zero at z ≈ 2 now occurs at y ≈ 2/3. Indeed, |y| < 1 covers the entire
physical region z ∈ [0, ∞). If we go to one order higher in y, we get

ẏ = −H0y
2

{
1 + 3⟨w⟩0 +

1
4

[
18⟨w2⟩0 − 9⟨w⟩2

0 − 1
]
y +O(y2)

}
. (75)

Let us now consider some more specific models.

One-component model:

When one component dominates over all the others, we simply have

ẏ = H0(1 − y)
{

1 − (1 − y)(1 − y)−3(1+w)/2
}

. (76)

Just as before, the y−RD is positive for w < −1/3, zero for w = −1/3, and negative for
w > −1/3. For the special case of de Sitter space, (w = −1), this further simplifies to

ẏ = H0 y(1 − y); (for w = −1) . (77)



Universe 2024, 10, 162 18 of 23

ΛCDM (general four-component version):

For the four-component ΛCDM model (Λ + curvature+ dust + radiation), the y−RD
takes the form

ẏ = H0(1 − y)
{

1 − (1 − y)
√

ΩΛ + Ωk(1 − y)−2 + Ωm(1 − y)−3 + Ωr(1 − y)−4
}

, (78)

with
ΩΛ + Ωk + Ωm + Ωr = 1. (79)

Making use, again, of the latest PDG data, we find that this curve has three zeros at
y ∈ {0, 0.657, 1}. Note that y ≈ 0.657 corresponds to z ≈ 1.918 (the same value obtained
before, as expected). See Figure 10.

Figure 10. y−Redshift drift (per H0) for four-component Λ-CDM, estimated from the PDG data.

ΛCDM (two-component version):

For the two-component ΛCDM model (Λ + dust), we then have

ẏ = H0(1 − y)
{

1 − (1 − y)
√

ΩΛ + (1 − ΩΛ)(1 − y)−3
}

. (80)

In Figure 11, we superimpose two curves based on the Planck2018 and Pantheon+ data.
Again, for ΩΛ ≈ 0.685, there are three zeros of ẏ(y) at y ∈ {0, 0.657, 1}, a maximum
ẏmax = 0.0795 at ymax = 0.307, and a minimum ẏmin = −0.0788 at ymin = 0.920. This is
qualitatively and quantitatively in agreement with what we saw happening in the z-redshift.

In summary, the y redshift maps the entire infinite range z ∈ [0, ∞) into the finite
interval y ∈ [0, 1). Because of this, the y redshift is both theoretically preferable and
pragmatically useful—in particular, yCMB ≈ 0.999—so that one can, in principle, backtrack
to decoupling without having the figures expand off the page. When working in terms of
the y redshift, the qualitative features of the RD ẏ(y) closely parallel those of ż(z).
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Figure 11. y−RD magnitude (per H0) for two-component Λ-CDM for different values of ΩΛ. As
before, we have taken the values for Ωm = 0.315 ± 0.007 given by the Planck2018 data release [48]
(blue curve) and Ωm = 0.338 ± 0.018 from Pantheon+ [49] (yellow curve) plus the values previously
given by the PDG data (purple curve). Again, since both Planck (assuming Ωk = Ωr = 0) and PDG
have exactly the same value for ΩΛ, the two curves appear to exactly coincide.

4.2. Table of Expressions for Other Auxiliary Variables

In the table below, we have exposed the relevant expressions for the RD for some of the
most well-known auxiliary variables. These results are the direct analog of Equations (68)–
(70), (72), and (75) for different variables.

Variable: H(y) = H0

{
1 + (1 + q0)y +

[
1 + q0 +

1
2 (j0 − q2

0)
]
y2
}

y = z
1+z ẏ = (1 − y)H0 − (1 − y)2H(y)

z =
y

1−y ẏ = −H0

{
q0 y − 1

2
(
2q0 + q2

0 − j0
)
y2
}

Convergence radius: ẏ = H0(1 − y)
{

1 − (1 − y)
√

∑N
i=1 Ω0i(1 − y)−3−3wi

}
|y| < 1 ẏ = − 1

2 H0

{
y + 3⟨w⟩0 +

1
4
[
18⟨w2⟩0 − 9⟨w⟩2

0 − 1
]
y2
}

Variable: H(y1) = H0

{
1 + (1 + q0)y1 +

1
2 (1 + q0 − q2

0 + j0)y2
1

}
y1 = ln(1 + z) ẏ1 = H0 − e−y1 H(y1)

z = ey1 − 1 ẏ1 = −H0

{
q0 y1 − 1

2
(
q0 + q2

0 − j0
)
y2

1

}
Convergence radius: ẏ1 = H0

{
1 − e−y1

√
∑N

i=1 Ω0i e3y1(1+wi)

}
|y1| < ∞ ẏ1 = − 1

2 H0

{
(1 + 3⟨w⟩0) y1 +

(
1+6⟨w⟩0+18⟨w2⟩0−9⟨w⟩2

0
4

)
y2

1

}
Variable: H(y2) = H0

{
1 + (1 + q0)y2 +

1
2 (j0 − q2

0)y
2
2

}
y2 = arctan(z) ẏ2 = cos2(y2){[1 + tan(y2)] H0 − H(y2)}

z = tan(y2) ẏ2 = −H0

{
q0 y2 − 1

2 (−j0 + q2
0) y2

2

}
Convergence radius: ẏ2 = H0 cos2(y2)

{
[1 + tan(y2)]−

√
∑N

i=1 Ω0i [1 + tan(y2)]3(1+wi)

}
|y2| < π

4 ẏ2 = − 1
2 H0

{
(1 + 3⟨w⟩0) y2 +

(
3+12⟨w⟩0+18⟨w2⟩0−9⟨w⟩2

0
4

)
y2

2

}
Variable: H(y3) = H0

{
1 + (1 + q0)y3 +

1
2 (2 + 2q0 − q2

0 + j0)y2
3

}
y3 = arctan( z

1+z ) ẏ3 = cos2(y3){1 − tan(y3)} H0 − {1 − sin(2y3)} H(y3)

z =
tan(y3)

1−tan(y3)
ẏ3 = −H0

{
q0 y3 +

1
2 (2q0 − q2

0 + j0) y2
3

}
Convergence radius: ẏ3 = H0

{
cos2(y3)[1 − tan(y3)]

|y3| < π
4 −[1 − sin(2y3)]

√
∑N

i=1 Ω0i [1 − tan(y3)]−3(1+wi)
}

ẏ3 = − 1
2 H0

{
(1 + 3⟨w⟩0) y3 −

(
1−18⟨w2⟩0+9⟨w⟩2

0
4

)
y2

3

}
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4.3. Summary

The key point for all of these alternate auxiliary variables is that, at low redshift,

yi = z +O(z2). (81)

Consequently, for the lowest-level cosmographic expansion, we always have

ẏi = −H0 q0

{
yi +O(y2

i )
}

. (82)

For our generic matter model {Ω0i, wi}, for the lowest-level cosmodynamic expansion, we
always have

ẏi = −1
2

H0(1 + 3⟨w⟩0)
{

yi +O(y2
i )
}

. (83)

So, while the choice of auxiliary redshift variable yi might affect the specific range of physi-
cal interest and the precise location of any peaks or zeros in the RD, there are, nevertheless,
strong qualitative similarities.

Note the RD peak at z ≈ 1 corresponds to y ≈ 1/2, y1 ≈ ln(2) ≈ 0.693, y2 ≈
arctan(1) ≈ 0.785, y3 ≈ arctan(1/2) ≈ 0.464, all of which are safely less than 1. The
zero at the RD occurs at z ≈ 2, which corresponds to y ≈ 2/3, y1 ≈ ln(3) ≈ 1.099,
y2 ≈ arctan(2) ≈ 1.107, y3 ≈ arctan(2/3) ≈ 0.588, all of which are inside their respec-
tive convergence radii. Observe that the appropriate radii of convergence are 1, ∞, and
π/4 ≈ 0.78539.

5. Discussion and Conclusions

In this article, we have extensively discussed the RD at both the cosmographic and
cosmodynamic levels, focusing primarily on the cosmodynamic aspects. At the purely
cosmographic level, in terms of suitable redshift variables {z, y, y1},

a/a0 =
1

1 + z
= 1 − y = e−y1 , (84)

and the key formulae can be written as

ż = (1 + z)H0 − H(z). (85)

ẏ = (1 − y){H0 − (1 − y)H(y)}. (86)

ẏ1 = H0 − e−y1 H(y1) . (87)

At the cosmodynamic level, when using the Friedmann equations only and when suitably
defining the Ω parameter to include the effects of spatial curvature, one has H = H0

√
Ω. By

assuming, initially, a generical model, which is then replaced by the specific cosmological
scenario for which

Ω =
N

∑
i=1

Ω0i (1 + z)3(1+wi), (88)

we have presented the fully explicit formulae:

ż = H0

(1 + z)−

√√√√ N

∑
i=1

Ω0i (1 + z)3(1+wi)

; (89)

ẏ = H0(1 − y)

1 − (1 − y)

√√√√ N

∑
i=1

Ω0i (1 − y)−3(1+wi)

; (90)
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ẏ1 = H0

1 − e−y1

√√√√ N

∑
i=1

Ω0i e3y1(1+wi)

 . (91)

This was applied initially for a ΛCDM model with four and two components, followed
by an analysis with different dark energy models in Section 3. The models presented were
w0CDM, BAZS, linear model, CPL, logarithmic, and a couple of interactive cases. We have
also presented a discussion about the power of redshift data in distinguishing different
DE models from each other, concluding that, independently of how precise the future
redshift drift data might be, different dark energy models cannot be distinguished purely
from this type of data alone. On the other hand, RD data will certainly play an important
role in constraining the free parameters from DE models and, when combined with other
sources of data, might play a crucial role in helping us solve the challenging problem of
understanding the nature of dark energy in the future.
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