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Abstract: We propose a non-exotic electromagnetic solution (within the standard model of particle
physics) to the cosmological 7Li problem based upon a narrow 2 MeV photo-emission line from
the decay of light glueballs (LGBs). These LGBs form within color superconducting quark clusters
(SQCs), which are tens of Fermi in size, in the radiation-dominated post-BBN epoch. The mono-
chromatic line from the LGB → γ + γ decay reduces Big Bang nucleosynthesis (BBN) 7Be by 2/3
without affecting other abundances or the cosmic microwave background (CMB) physics, provided
the combined mass of the SQCs is greater than the total baryonic mass in the universe. Following
the LGB emission, the in-SQC Quantum ChromoDynamics (QCD) vacuum becomes unstable and
“leaks” (via quantum tunneling) into the external space-time (trivial) vacuum, inducing a decoupling
of SQCs from hadrons. In seeking a solution to the 7Li problem, we uncovered a solution that also
addresses the Dark Energy (DE) and dark matter (DM) problem, making these critical problems
intertwined in our model. Being colorless, charge-neutral, optically thin, and transparent to hadrons,
SQCs interact only gravitationally, making them a viable cold DM (CDM) candidate. The leakage
(i.e., quantum tunneling) of the in-SQC QCD vacuum to the trivial vacuum offers an explanation of
DE in our model and allows for a cosmology that evolves into a ΛCDM universe at a low redshift
with a possible resolution of the Hubble tension. Our model distinguishes itself by proposing that the
QCD vacuum within SQCs possesses the ability to tunnel into the exterior trivial vacuum, resulting
in the generation of DE. This implies the possibility that DM and hadrons might represent distinct
phases of quark matter within the framework of QCD, characterized by different vacuum properties.
We discuss SQC formation in heavy-ion collision experiments at moderate temperatures and the
possibility of detection of MeV photons from the LGB → γ + γ decay.

Keywords: cosmology; early universe; primordial nucleosynthesis; dark matter; dark energy

1. Introduction

The primordial abundances of the light elements produced in the first few minutes of
the universe predicted by standard hot Big Bang cosmology [1–3] are in excellent agree-
ment with the abundances inferred from data (e.g., [4]). Big Bang nucleosynthesis (BBN)
starts when the deuteron (D) bottleneck is overcome at kBT ∼ 100 keV and terminates at
kBT ∼ 30 keV (redshift z ∼ 4 × 108) due to electrostatic repulsion between nuclei (e.g., [5]);
kB is the Boltzmann constant. Significant amounts of D, 3H, and 4He build up followed by
the production of much less abundant elements such as 7Be. With a half-life of ∼53 days,
7Be decays into 7Li via bound electron capture, with the emission of a neutrino (e.g., [6]).
This cannot occur, however, until recombination at z ∼1100 when 7Be becomes singly
ionized. The measured 7Li abundance is ∼1/3 of what is expected from this process [7]
defining the cosmological 7Li problem (see [8] for a review). Dimensionless quantities are
defined as fx = f /10x with quantities in cgs units unless specified otherwise.

Universe 2024, 10, 115. https://doi.org/10.3390/universe10030115 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe10030115
https://doi.org/10.3390/universe10030115
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-4814-958X
https://orcid.org/0000-0003-1677-4185
https://doi.org/10.3390/universe10030115
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe10030115?type=check_update&version=2


Universe 2024, 10, 115 2 of 23

The standard theory of electromagnetic cascades onto a photon background predicts a
quasi-universal shape for the resulting non-thermal photon spectrum (e.g., [9]). In the case
of non-thermal BBN, cosmological constraints using this quasi-universal shape make purely
electromagnetic solutions to the 7Li problem impossible (e.g., [10]) unless the injected pho-
ton energy falls below the pair-production threshold, in which case the spectral shape is
very different (see [11] and references therein). The effective pair production threshold
is Eγ,pair ≃ (mec2)2/22kBT ∼ 12 MeV × (keV/T), below which the double photon pair-
creation process receives a Boltzmann suppression ([10]; see also [12]); me is the electron
mass. If injected when BBN is over, the sub-threshold photons act to post-process the abun-
dances computed in the standard scenario. Photons injected with 1.59 MeV < Eγ < 2.22 MeV
can destroy 7Be (suppressing 7Li production) without affecting other BBN abundances, dis-
torting the CMB background, or injecting excess entropy [11,13].

In this paper, we sketch a model for the injection of sub-threshold photons (Eγ < Eγ,pair)
in the radiation-dominated post-BBN epoch, characterized by a universe temperature in the
keV range. The condition 2 MeV < Eγ,pair implies TCMB <∼ 6 keV, which corresponds to the
post-BBN era when the universe is a few hours old and has a redshift below 6 keV/TCMB,0 ∼
2.5× 107, where TCMB,0 ∼ 2.73 keV. This model focuses on the nearly instantaneous emission
(with a timescale of ∼10−17 s) of a mono-chromatic 2 MeV line by quark clusters (QCs). These
QCs are formed during the early universe’s Quantum ChromoDynamics (QCD) cross-over
phase transition at a redshift of zQCD ≃ TQCD/TCMB,0 ∼ 6.7× 1011, when the universe was a
few microseconds old and had a temperature of TQCD ∼ 150 MeV.

Our model is grounded in the fundamental principles of QCD and relies on the
properties of quark matter in a regime where quarks are deconfined and form Cooper
pairs. Prior to delving into the details of our model, we provide a didactic introduction to
the QCD phase diagram, the quark–gluon plasma (QGP), and other pertinent phases of
quark matter in Appendix A (titled “Pedagogical Framework”). Additionally, we offer a
general overview of our model and the resulting interconnectedness of the 7Li problem,
Dark Energy (DE), and dark matter (DM) enigmas.

In our study, QCs consist of collections of up and down quarks. To ensure charge
neutrality, the number density of down quarks (with a charge of −1/3) is twice that of
up quarks (with a charge of +2/3). These QCs, which are assemblies of the quark–gluon
plasma (QGP), have a radius of approximately 100 Fermi, rendering them transparent
to photons.

Being composed of quarks, QCs are classified as baryons and are thus encompassed
within the standard model of particle physics. They can be envisioned as macroscopic
nucleons (not nuclei) carrying baryon numbers entirely through the quarks. Here and
throughout the paper, baryonic matter includes all quarks, which is more general than
just protons and neutrons. The density of QCs is on the order of ∼1039 cm−3, which is
approximately ten times the nuclear saturation density. Consequently, an approximately
100 Fermi QC possesses a baryon number Aqc ∼ 106. QCs are distinct entities from
the significantly larger (A >> Aqc) cosmic strange-quark nuggets [14] and Axion quark
nuggets [15], requiring different formation mechanisms (see bullet point #7 in Section 5).

In the post-BBN era, QCs transition into a color superconducting (CSC) phase, where
their constituent quarks form Cooper pairs (see Appendix A) and give rise to what we refer
to as Superconducting Quark Clusters (SQCs). For the purposes of this paper, we select the
two-flavor color superconducting (2SC) phase as the reference phase, allowing us to convey
the essence of our idea. Within the 2SC phase, a significant fraction of gluons (3/8 of them)
do not interact with the paired quarks. Instead, they form their own condensate in the form
of light glueballs (LGBs). Unlike the confined quark matter, where GeV-scale glueballs are
anticipated, LGBs within the 2SC phase exhibit a mass (MLGB) in the MeV range.

Crucially, in the 2SC phase, it can be demonstrated that LGBs are electromagnetically
unstable and decay into photons via the process LGB → γ + γ ( by coupling with virtual
quark loops, which carry the electric charge). With a reasonable choice of QCD parameters,
the 2SC phase accommodates LGBs with a mass of approximately MLGBc2 ∼ 4 MeV.
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During the post-BBN epoch, where kTCMB << MLGBc2, the decay of these MeV-scale
LGBs generates a narrow, mono-chromatic ∼2 MeV line. This line emission presents a
promising avenue for potentially resolving the enduring 7Li problem.

The total mass of SQCs required to address the 7Li problem is comparable to the
observed value of dark matter (DM) in the universe. Furthermore, the distinctive prop-
erties of SQCs—being colorless, cold, charge-neutral, optically thin, and decoupled from
hadrons—position them as a plausible candidate for Cold Dark Matter (CDM).

We propose that the decay of LGBs within SQCs may lead to the destabilization of the
in-SQC Quantum QCD vacuum. This destabilization, in turn, causes the in-SQC vacuum to
undergo quantum tunneling into the external (trivial) vacuum of space-time, a phenomenon
we refer to as “leakage”. Notably, this leakage process involves the transition to a vacuum
state characterized by vanishing QCD (quark and gluon) condensates.

The tunneling of the in-SQC QCD vacuum, behaving as Dark Energy (DE), occurs
in the exterior space-time within our model. At low redshifts, the cosmological behavior
aligns with the ΛCDM model. Therefore, in our model, the loss of gluonic content from
SQCs due to LGB decay not only provides a potential solution to the 7Li problem but also
triggers the leakage process, leading to a cosmological scenario encompassing both Cold
Dark Matter (CDM) in the form of SQCs and Dark Energy (DE) arising from the tunneling
of the in-SQC QCD vacuum.

The paper is structured as follows: In Section 2, we provide the derivation of the equa-
tions concerning the destruction of 7Be through interaction with a 2 MeV monochromatic
line. We explore the possibility of generating such a line through a lukewarm twi-flavor
superconducting (2SC-like) quark phase, where a fraction (ηG) of the gluonic energy is
converted into 2 MeV photons. The leakage phenomenon of the in-SQC QCD vacuum,
involving a fraction ( fV) of the SQC mass, is examined in Section 3. Here, we present
the resulting cosmology and discuss how it may offer a plausible resolution to the Hub-
ble tension, a discrepancy in the measurement of the expansion rate of the universe. In
Section 4, we delve into the discussion of SQCs as a candidate for Cold Dark Matter (CDM).
We analyze their properties and explore their viability as a constituent of the cosmic dark
matter content. The limitations and predictions of our model are outlined in Section 5,
offering insights into the boundaries and potential implications of our proposed framework.
Finally, we conclude the paper in Section 6, summarizing the key findings and discussing
the broader implications of our model.

2. Post-BBN 7Be Destruction

In our model, the CSC phase produces gluon condensation (i.e., MLGBc2 ∼ 4 MeV
mass LGBs), which decays to E0 = MLGBc2/2 ∼ 2 MeV mono-energetic photons. To ensure
that the energy of the 2 MeV line remains below the pair-creation threshold, we impose
the condition 2 MeV < 12 MeV/TkeV, which translates to TG < 6 keV. In other words,
the QCs enter the color superconducting (CSC) phase and transform into SQCs during
the radiation-dominated post-BBN era. Henceforth, quantities labeled with the letter “G”
pertain to values associated with the LGB-decay/photon-burst event. This event occurs
when the age of the universe exceeds approximately 10 h, corresponding to a redshift
zG = z(tG) < 2.5 × 107.

The formation of LGBs takes place on a timescale comparable to that of hadronic
processes when QCs enter the CSC phase. Subsequently, LGBs decay into photons almost
instantaneously, with a timescale of τLGB ∼ 10−17 s, significantly shorter than the Hubble
expansion timescale (as discussed in Section 2.1).

Subscripts “sG” and “eG” refer to the start and end, respectively, of this LGB-decay
phase, denoted by tsG and teG. The duration of this phase is approximately equal to
the LGB decay timescale, i.e., teG − tsG ∼ τLGB. Consequently, we have zsG = zeG + δz,
where δz is much smaller than zG. Effectively, this implies that z(tsG) = z(tG) = z(teG),
indicating that the redshifts at the start of, during, and at the end of the LGB-decay phase
are approximately equal.
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The photon production is a delta function, δ(t − tG), which in our model is at time
t = tG. As shown in Appendix B, the destruction rates for 7Be nuclei due to such a sudden
release of mono-energetic E0 photons is

ln
(

YBe,eG

YBe,sG

)
∼ −

nγ(E0, tG)

nB(tG)
× σBe(E0)

σCS(E0)
, (1)

where Y is the abundance. Here, nB(tG) is the universe’s co-moving baryon number density
at tG, while nγ(E0, tG) is the co-moving number density of photons from the LGB decay.
The 7Be photo-dissociation cross-section is σBe(E0) and σCS(E0) is the Compton scattering
cross-section. A reduction in 7Be by 2/3 imposes that the RHS in Equation (1) is unity (i.e.,
∼−1.1).

Let us define ηDM,sG as the initial total amount in mass of SQCs (the DM in our model)
compared to baryons, i.e., before LGB decay. The corresponding SQC co-moving number
density is

ncom.
sqc (tG) =

ηDM,sGnB(tG)

Asqc
, (2)

with Asqc the cluster’s baryon number. The emitted photons co-moving number density
is then

nγ(E0, tG) = ncom.
sqc (tG)× NE0 =

ηDM,sGnB(tG)

Asqc
× NE0 , (3)

with NE0 ∼ Asqc × (ηGmpc2/E0) as the total number of E0 photons emitted per SQC. Here,
ηG is the fraction of the gluonic energy per equivalent proton rest mass converted to the
mono-chromatic line at energy E0; mp is the proton mass.

Equation (1) becomes

ln
(

YBe,eG

YBe,sG

)
∼ −ηDM,sG

ηGmpc2

E0
× σBe(E0)

σCS(E0)
(4)

∼ − ηG

1 − ηG
×

ηDM,eGmpc2

E0
× σBe(E0)

σCS(E0)
,

where, in order to obtain the last expression, we made use of the fact that the SQC total mass
after conversion of gluonic energy to photons is ηDM,eG = (1 − ηG)ηDM,sG or ηDM,sG =
ηDM,eG/(1 − ηG).

The 7Be photo-dissociation cross-section, σBe(E0), is given by Equation (III.8) in Ishida
et al. [16]. The ratio of σBe(E0) to Compton scattering cross-section, σBe(E0)/σCS(E0),
varies widely, as shown in Figure 1. We see that for 2 MeV < E0 < 2.2 MeV, we have
3 × 10−4 < σBe/σCS < 8 × 10−4. If the SQC total mass after the conversion of gluonic
energy to photons is the observed CDM amount, ηDM,eG ∼ 5, then 5mpc2/E0 ∼ 2.4 × 103.
In this case, the 7Li problem is solved if 0.65 < ηG

1−ηG
< 1.56, meaning

0.4 < ηG < 0.6 , (5)

which requires that on average ∼50% (i.e., ηG ∼ 0.5) of the SQCs gluonic energy is
converted to ∼ 2 MeV photons.

As explained later in Section 5, the value of ηG can be lower (less gluonic energy shed
by SQCs) while still solving the 7Li puzzle. This is because, in addition to losing gluonic
energy via LGB decay, SQCs will lose more during the leakage of its QCD vacuum so that
if ηDM,0 ∼ 5 in today’s universe (the subscript “0” refers to values at redshift z = 0), then
ηDM,eG must have been higher due to leakage (see first bullet point in Section 5).
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Figure 1. The σBe/σCS ratio versus photon energy. The 7Be photo-dissociation cross-section σBe is
from Equation III.8 in [16]. The Compton scattering cross-section is given in Appendix (IV) in [10].

It is crucial to emphasize the requirement for a narrow band emission, preferably a
mono-energetic photon source, in order to maximize the number of photo-dissociated 7Be
nuclei (as described by Equation (1)). Without such a narrow emission, there would not be
sufficient gluonic energy available from the SQCs—which serve as the dark matter (DM)
in our model—to achieve the desired 2/3 reduction. In this context, the decay channel
of LGBs presents an appealing mechanism for generating such a narrow emission (see
Appendix C). The feasibility of this mechanism can be tested in ongoing experiments (as
indicated in bullet point #5 in Section 5).

2.1. The Mono-Chromatic ∼2 MeV Line

The QCD phase diagram is complex (e.g., [17–19]), and in principle, one cannot exclude
the existence of a CSC phase where gluon condensation would yield electromagnetically
unstable X “particles” (here LGBs), as required in our model. Figure 2 shows a hypothetical
phase diagram with the dashed line depicting a possible trajectory leading a quark cluster
from its state at birth (in an unpaired phase) to the CSC phase. We require an unpaired
phase at chemical potential µ < µcsc, which bridges the hadronic phase and the CSC phase.
That is, the CSC phase is accessed, at low T, from a low-density unpaired phase with a
first-order line separating the two phases. Once in the CSC phase, a cluster becomes a SQC
and produces LGBs in the radiation-dominated post-BBN epoch at keV temperatures.

In this paper, we will use the neutral 2SC phase as a reference CSC phase. It has
the interesting property of converting a percentage (ηG = 3/8) of its gluonic energy to
LGBs (i.e., gluonic condensation) at low temperature with a subsequent decay to a mono-
chromatic line via the LGB → γ + γ channel (see Appendix C for details). In the 2SC phase,
an LGB with mass MLGBc2 ∼ 4 MeV would decay to two E0 = (MLGBc2/2) ∼ 2 MeV
photons on timescales of τLGB ∼ 10−17 s. We set the CSC quark chemical potential at
µcsc = 500 MeV with a corresponding number density ncsc = µ3

csc/π2 ∼ 1039 cm−3. Thus,
the density inside an SQC is nsqc = ncsc, which is about ten times nuclear saturation density
when it enters the CSC phase at time tG; nsqc should not to be confused with the SQC
co-moving density given in Equation (2).

Once the cluster crosses into the CSC phase, the first-order transition proceeds on
hadronic timescales. During the transition, and because of latent heat released, an SQC
is heated to a temperature kBTsqc ∼ ∆2

csc/µcsc, where ∆csc is the CSC superconducting
gap; here, ∆csc and µcsc are in units of MeV (see Equation (A7)). LGBs cannot form at
temperatures exceeding the melting temperature, which is on the order of the LGB’s rest-
mass energy; kBTLGB,m ∼ MLGBc2. Thus we must ensure that Tsqc < TLGB,m in addition to
E0 = ELGB/2 < 2.2 MeV, where the 2.2 MeV upper limit keeps the line below the deuteron
photo-ionization threshold (see Section 1). In general, for ∆2

csc/µcsc < 2 MeV, or ∆csc <
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31.6 MeV × (µcsc/500 MeV)1/2, these conditions are satisfied. ELGB ≃ MLGBc2 ∼ 4 MeV is
achieved for a reasonable range in µ, as shown in Figure 3. The width of the ∼2 MeV line is
given in Equation (A8) in Appendix C, and for typical values, it is expected to be <0.1 MeV.

Figure 2. A possible QCD phase diagram; temperature versus quark chemical potential. The dashed
curve (“1 to 2”) depicts the cooling path of the quark cluster (formed at “1” with TQCD ∼ 150 MeV)
traversing the unpaired phase and entering the CSC phase, at a keV temperature, from the low
density phase (“2”). A first-order line separates the unpaired phase from the CSC phase releasing
heat (the vertical “2 to 3” arrow). A SQC is heated to a temperature not exceeding the LGB melting
temperature kBTsqc,m ∼ MLGBc2 (see Section 2.1). The ∼4 MeV LGBs decay to the 2 MeV narrow
photon line via LGB → γ + γ. “1′” shows the initial state of a NS core making its way to “2” via
cooling and compression (see Section 5 and Appendix C).

300 350 400 450 500 550 600

2

3

4

5

6

7

8

μ (MeV)

M
L
G
B
c
2
(M
eV

)

Figure 3. LGB mass versus quark chemical potential (µ) for ΛQCD = 245 MeV (the scalar parameter
of QCD; see Section 2.1 and Appendix C for details). The curves from top to bottom are for ∆/µ = 0.1,
0.09, 0.08, respectively. The two dashed lines show the 4.0 ≤ MLGBc2(MeV) ≤ 4.4 range yielding a
mono-chromatic photon line in the 2.0 ≤ E0(MeV) ≤ 2.2 range. Using ΛQCD ∼ 340 MeV, expected using
the usual renormalization scheme with 3 quark flavors, we obtain MLGB ∼ 4 MeV for ∆ ∼ 0.05µ (see
Equation (A6)).



Universe 2024, 10, 115 7 of 23

2.2. The SQC Size and Baryon Number

To the first order, the SQC’s photon mean-free-path is λcsc,γ = 1/(ncscσqγ) ∼ 102 fm/ncsc,39
with σqγ ∼ 10−28 cm2 as the Thomson cross-section for photon scattering off up and down
quarks. By setting a typical SQC radius to be Rsqc,thin ∼ λcsc,γ, the SQC is optically thin to
all photons, including the 2 MeV photons. Being transparent to electromagnetic radiation
of all energies, the SQC makes a good DM candidate (which is still within the standard
model of particle physics) with a corresponding baryon number Asqc ∼ 106.

3. SQCs and Dark Energy (DE)

Both hadrons and SQCs exist as states within QCD, but they exhibit different sym-
metries associated with their respective vacuum states. Hadrons, as discussed in [20], are
characterized by confinement in their vacuum state, while SQCs are influenced by the
formation and decay of LGBs to photons, leading to distinct symmetries. In Appendix C.1,
we discuss the confinement of the SUc(2) phase within SQCs, where the vacuum state
is speculated to undergo a tunneling process, referred to as “leakage”, into the external
trivial vacuum. This tunneling phenomenon is triggered by instabilities resulting from
various mechanisms, including electromagnetic gluonic decay, such as the formation and
subsequent decay of light gluonic bound states into photons in the CSC phase.

Although we chose to focus on the 2SC phase due to its simplicity, it is important to note
that any CSC quark phase capable of converting gluonic energy into approximately 2 MeV
photons and initiating a transition to the trivial vacuum could be equally effective in our
proposed framework. This innovative concept offers an intriguing explanation for DE and
establishes a cosmological framework that has the potential to address the Hubble tension
while still yielding a universe consistent with the ΛCDM model at low redshifts.

The total amount of confined SUc(2) QCD vacuum energy stored in the SQCs is
ρvac.

QCDVtot.
sqc with ρvac.

QCD as the density of the QCD condensates and Vtot.
sqc as the total volume

occupied by the SQCs, which is constant in time (and assumed to not change on LGB
decay). “Leakage” means that the density inside the SQC decreases from

ρsqc,eG = (1 − ηG)ρcsc , (6)

at t = tG (at the end of the LGB phase denoted by “eG”) to

ρsqc,0 = (1 − ηG)ρcsc − ρvac.
QCD (7)

= ρcsc × (1 − ηG − fV)

= ρsqc,eG ×
(

1 − fV

1 − ηG

)
,

at redshift z = 0 with the assumption that the leakage timescale is a fraction of the age of
the universe t0 ∼ 13.5 Gyrs (see below). The parameter fV = ρvac.

QCD/ρcsc is a measure of the
contribution of the QCD condensates to the SQC rest-mass energy; naturally, fV < 1 − ηG.
At the start of the LGB phase (denoted by “sG”), we have ρsqc,sG = ρcsc.

We can obtain a rough estimate of the time ttun. (the e-folding time) it would take the
in-SQC QCD vacuum to leak into the exterior space-time trivial QCD vacuum. A rigorous
calculation would follow, for example Coleman [21], and is beyond the scope of this paper.
We consider instead a simple tunnelling problem across a square barrier with height given
by the expectation value of the QCD vacuum and width L ∼ Rsqc. The corresponding
tunneling probability is then Ptun. ∼ e−Rsqc/δ ,where δ is the penetration depth (e.g., [22]).
The tunneling timescale is ttun. ≃ (Rsqc/c)× (1/Ptun.) giving us

ttun. ∼
δ

c
× xex , (8)

where x = Rsqc/δ; the tunneling timescale is highly sensitive to x. With δ on of the order
of a Fermi (which is not unrealistic), solutions with tunneling timescales on the order of a
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billion years (ttun. ∼ Gyr) require Rsqc to be approximately 88 fm. If Rsqc exceeds 90 fm,
the tunneling timescale ttun. becomes longer than the age of the universe, t0. Furthermore,
the size of the SQC cannot be too small for leakage to occur on astrophysical timescales,
ensuring that tG << ttun.. Therefore, an optimal range for the SQC radius is found to
be 85 < Rsqc(fm) < 88, which is consistent with our model. It is worth noting that, in
our model, optically thin SQCs with Rsqc < 102/ncsc,39 fm are required to address the
cosmological 7Li problem.

We can then write the time evolution of the density inside the SQC as

ρsqc(t) = (1 − ηG)ρcsc − ρvac.
QCD(1 − e−(t−tG)/ttun.) (9)

= ρcsc

(
1 − ηG − fV(1 − e−(t−tG)/ttun.)

)
= ρsqc,eG

(
1 − fV

1 − ηG
(1 − e−(t−tG)/ttun.)

)
.

The equation above incorporates the key parameters in our cosmology, namely,
ρcsc, ηG, fV, and ttun. which are all fundamentally related to QCD.

The DM density in our model is the SQC density ρsqc(t) averaged over the volume of
the universe. Its time evolution, with Vuniv.(t) being the Hubble volume at time t, is

ρDM(t) =


ρsqc(t)Vtot.

sqc
Vuniv.(t)

if t > tG (or z < zG)
ρcscVtot.

sqc
Vuniv.(t)

if t ≤ tG (or z ≥ zG) ,
(10)

with the resulting cosmology analyzed in Appendix D.
Our model offers a resolution to the Hubble tension (see [23] for a recent review and

references therein) and can be understood as a consequence of a CDM universe converting
into a ΛCDM universe at ztun.. Figure 4 shows that H0 ∼ 73 km s−1 Mpc−1 can be
obtained for a range in ηG and fV values with a leakage characteristic redshift 2 < ztun. < 6
(i.e., 1 < ttun.(Gyr) < 3.3). It is both noteworthy and encouraging that the timescale ttun.,
which is tightly constrained by the size of the SQC at approximately 100 Fermi, coincides
with the timescale required to address the Hubble tension. This convergence underscores
the interconnection of these two phenomena.

ηG: .10, fV: 0.10, ztun,73: 5.35,  age: 13.23 Gyr
ηG: .10, fV: 0.20, ztun,73: 3.32,  age: 13.09 Gyr
ηG: .10, fV: 0.30, ztun,73: 2.77,  age: 12.90 Gyr
ηG: .15, fV: 0.10, ztun,73: 3.32,  age: 13.19 Gyr
ηG: .15, fV: 0.20, ztun,73: 2.70,  age: 13.03 Gyr
ηG: .15, fV: 0.30, ztun,73: 2.46,  age: 12.83 Gyr
ηG: .20, fV: 0.10, ztun,73: 2.15,  age: 13.14 Gyr
ηG: .20, fV: 0.20, ztun,73: 2.23,  age: 12.96 Gyr
ηG: .20, fV: 0.30, ztun,73: 2.15,  age: 12.73 Gyr
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Figure 4. The Hubble constant H0 as a function of ztun. (the leakage characteristic redshift) in our
model for different values of ηG and fV. The H0 = 73 km s−1 Mpc−1 value is shown as the horizontal
line. The resulting age of the universe is shown for each case and is younger than the ΛCDM universe.
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Our cosmology yields a universe that is younger than the ΛCDM universe with an
age of ∼13 Gyrs with ηG and fV with percentages each on the order of tens. It remains
to be shown whether our cosmology is in agreement with other cosmological data and
measurements, which the flat ΛCDM model explains extremely well (see e.g., metrics and
tests suggested in [24]). Furthermore, we caution that the details of how the QCD vacuum
mixes with the space-time vacuum and how it evolves while preserving flatness remain to
be understood. Nevertheless, being a vacuum, the “DE” component in our model should
obey an equation-of-state with parameter w = −1.

4. SQCs as Cold Dark Matter (CDM)

Evidence for CDM is abundant, but its nature remains unknown despite many theo-
retical investigations and dedicated experiments, which have yet to detect any associated
particle (e.g., [25–30]). In our model, the 7Li problem is solvable if the total mass in SQCs is
on the order of the measured CDM value. In addition, SQCs are colorless, cold, optically
thin, and electrically neutral and would make an ideal CDM candidate if they decouple
from the strong force (or interact minimally with baryons) following leakage.

We have put forward the argument that SQCs that have undergone tunneling would
decouple from hadrons, resulting in their interaction being solely gravitational in nature.
Consequently, these tunneled SQCs would elude detection in current dark matter (DM)
experiments. In the pre-LGB era, QCs should possess a sufficiently extended lifespan, allowing
them to persist into the post-BBN era at zG without experiencing any growth in size due
to interactions with hadrons. The rate at which non-tunnelled SQCs interact with hadrons
depends on the fraction of SQCs that have survived until the present time. For instance, for a
tunneling timescale of ttun. ∼ 1 Gyr, this survival fraction is e−t0/ttun. ∼ 10−6, and it drops
significantly to e−t0/ttun. ∼ 10−12 for ttun. ∼ 0.5 Gyr. Below, we employ the term “baryon”
specifically to refer to non-QC baryons (e.g., protons), allowing us to examine the interactions
of QCs and SQCs with hadrons during these two distinct epochs.

4.1. The Pre-LGB Era

In the pre-LGB (i.e., pre-SQC at z > zG ∼ 2.5 × 107) epoch, QCs should interact
with baryons. The QC-baryon reaction rate is σqc−BnBvqc−B, with nB(T) = ηBnγ(T) as
the baryon’s number density and nγ(T) ∼ 6.2 × 1032 cm−3 × T3

MeV; ηB ≃ 6.1 × 10−10 is
the baryon-to-photon ratio. The QC-baryon interaction cross-section is σqc−B, while the
QC-baryon relative velocity vqc−B =

√
kBT/mp ≃ 10−3/2c × T1/2

MeV is dominated by that of
baryons; c is the speed of light, and mp the proton mass. For the QC not to grow in size in the

pre-LGB era (i.e., up to zG), we impose
∫ hours

µs σqc−BnBvqc−Bdt < Aqc. With t = 1 s × T−2
MeV,

we have d(t/1 s) = −2T−3
MeVdTMeV so that 7.2 × 1032σqc−B ×

∫ TQCD,MeV
TBBN,keV

T1/2
MeVdTMeV < Aqc

gives
σqc−B < 10−36 cm2 × Aqc . (11)

i.e., σqc−B/Mqc < 10−12 cm2/g with Mqc = Aqcmp.
The above ensures that the QC will neither grow in size in the pre-LGB era nor interact

with baryons in the subsequent periods where baryons are more diffuse. We can express
the effective cross-section in terms of the geometric one as σqc−B = πR2

qc × (τcrossing/τconv.).
Here, τcrossing = Rqc/vsqc−B is the baryon QC crossing time, and τconv. is the conversion
timescale of a baryon to the CSC phase (i.e., for a baryon to be absorbed by the QC).
The ratio τcrossing/τB−qc,conv. accounts for the fraction of time the baryon spends inside the
QC. With Aqc =

4π
3 R3

qcnqc, the condition in Equation (11) translates to τB−qc,conv. > 10−13 s;
here nqc ∼ 1039 cm−3 is the QC’s density.

The fact that the conversion timescale τconv.,B−qc exceeds the timescales associated
with strong interactions provides support for the notion that the QC state is distinct from
the hadronic phase. Alternatively, it suggests that the conversion process may involve two
steps, where the baryon first undergoes deconfinement, possibly requiring an injection of
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energy, before transitioning into the unpaired quark phase characteristic of QCs. Another
interpretation is that quarks within a hadron, where chiral symmetry is broken, perceive
the QC as a distinct and separate phase of quark matter even before it becomes an SQC.
This intriguing aspect highlights the complexity and richness of the underlying physics
involved in the conversion process and the distinct properties of QC and SQC phases.

4.2. The Post-LGB Era

From this point forward, when we refer to SQCs, we are referring to the clusters
that did not undergo tunneling. The SQCs that have undergone tunneling, on the other
hand, constitute the dark matter (DM) component within our proposed model. To impose a
constraint on the SQC–baryon interaction cross-section σSQC−B, we will utilize the measured
lower limit on the proton lifetime (τp > 3.6× 1033 years; [31]). This lower limit on the proton
lifetime provides valuable information about the strength of the SQC–baryon interaction
and allows us to further refine our model.

The SQC reaction rate per baryon is σsqc−Bnsqcvsqc−B, and vsqc−B is the SQC–baryon
relative velocity. The SQC co-moving number density (not to be confused with the SQC
density ncsc ∼ 1039 cm−3) is

nsqc ∼
ρDM

Asqcmp
× e−t0/ttun. , (12)

where ρDM ∼ 0.36 GeV cm−3 is the local DM density [32], which is that of the tunnelled
SQCs in our model. Imposing σsqc−Bnsqcvsqc−B < 1/τp and using vsqc−B ∼ 240 km s−1, we
arrive at

σsqc−B < 10−48 cm2 × Asqc × et0/ttun. . (13)

i.e., σsqc−B/Msqc < (10−24 cm2/g)× e−t0/ttun. with Msqc = Asqcmp.
Consistent with expectations, the aforementioned analysis reveals that the efficiency

of tunneling, indicated by the presence of fewer remaining SQCs today, directly correlates
with the permissible range for the SQC–baryon interaction cross-section σsqc−B. Specifically,
a more efficient tunnelling process allows for a higher allowable value of σsqc−B. This
relationship underscores the significance of the tunneling mechanism in influencing the
interaction dynamics between SQCs and baryons within our model. In terms of the
baryon-to-SQC conversion timescale τB−sqc,conv. (to be differentiated from the conversion
of a baryon to a QC above), and with σsqc−B = πR2

sqc × (τcrossing/τB−sqc,conv.), we obtain
τB−sqc,conv. >

12.5 s
ncsc,39

× e−t0/ttun. .
In Section 3, we have established that a cosmological model capable of resolving

the Hubble tension and simultaneously yielding the observed age of the universe ne-
cessitates a tunneling timescale of approximately one gigayear (Gyr), corresponding to
an exponential suppression factor of e−t0/ttun. ∼ 10−6. Consequently, this implies that
σsqc−B < 10−42 cm2 × Asqc, or equivalently, that the conversion timescale τB−sqc,conv. ex-
ceeds 10−5 s.

Intuitively, assume σsqc−B < σqc−B would imply e−t0/ttun. > 10−12 or ttun. > 0.4 Gyr,
which is also consistent with our cosmology. We caution, though, that making direct compar-
isons between the QC and SQC states may not be justified. We should add that if SQC vacuum
leakage is not a simple tunneling process, then it can deviate from a pure exponential process
(e.g., [33]), which could affect our findings here. This is left as an avenue for future research.

Furthermore, we can employ neutron stars (NSs) to impose even more stringent constraints
on the SQC–baryon cross-section by studying the interactions between SQCs and baryonic
matter within an NS. If σsqc−BnNSRNS > ASQC, the SQC slows down inside the neutron star and
is captured. For typical neutron star parameters, such as nNS ∼ 1038 cm−3 and RNS = 106 cm,
the condition for no capture implies that σsqc−B < 10−44 cm2 × Asqc. Referring to Equation (13),
this condition is always satisfied if e−t0/ttun. > 10−4, indicating that neutron stars will not
be converted through SQC capture. For an NS formed at time tNS, the mass of SQCs that
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accumulate over the Hubble time can be estimated as
(∫ t0

tNS
πR2

NS
ρDM

Asqcmp
e−t/ttun.vsqc−NSdt

)
×

Asqcmp ∼ 1011 g × ttun.,Gyr × (e−tNS/ttun. − e−t0/ttun.). Here, we assume a SQC–neutron star
relative velocity of vsqc−NS ∼ 107 cm s−1 and a representative local DM density of ρDM ∼
0.1 GeV cm−3. Thus, even if a certain amount of SQC is captured, it is not evident whether it
would be sufficient to convert a neutron star.

Due to the likelihood that the leakage timescale exceeds the typical timescale for the
formation and subsequent collapse of structures during the early universe, we anticipate
that primordial halos will be predominantly composed of non-leaked SQCs that formed
after the light glueball (LGB) era. Baryonic matter will gravitationally accrete onto these
halos, but as demonstrated earlier, the diffuse baryons will not interact with either leaked
or non-leaked SQCs. However, we anticipate a critical change or “phase transition” in
the growth of structures after the time t = ttun. This is because (i) a significant fraction
of the SQCs’ mass is converted into Dark Energy (DE), and (ii) the SQCs would have
decoupled from hadrons. Understanding the precise impact of these effects on subsequent
structure growth requires more advanced investigations beyond the scope of this paper.
Only state-of-the-art Cold Dark Matter (CDM) simulations, which incorporate the leakage
of SQC mass as detailed in Appendix D, can provide insights into this aspect of our model.

To summarize, SQCs present a viable candidate for Cold Dark Matter (CDM) and
may play a role in the formation of both mini-halos and larger structures in the universe,
as indicated in previous studies [34,35]. Once halos form and reach a state of virialization,
SQCs are expected to interact most strongly with stars, particularly with matter at high
densities, such as neutron stars (NSs). However, if the tunneling timescale ttun. is a small
fraction of the age of the universe, as suggested earlier, then SQCs would have decoupled
from hadrons by the time compact stars begin to form (as discussed in Section 3). In other
words, even the densest stars, such as neutron stars, are unlikely to undergo conversion
through the capture of SQCs. However, if the cores of neutron stars can access the Color
Superconducting Quark matter (CSC) phase through phenomena like cooling and mass
accretion, it could have intriguing implications for astrophysics (as shown in Equation (18)).
This possibility opens up new avenues for research in understanding the behavior and
properties of neutron stars within the framework of our model.

5. Discussion

Here, we briefly discuss some limitations and distinctive features of our model and
leave these as avenues for future investigations.

1. The evolution of the SQC and of the DM densities: We first recall, from Equation (9),
that the density inside an SQC evolves from ρcsc to (1 − ηG)ρcsc after the LGB phase.
Leakage further decreases the SQC density to an asymptotic value of (1− ηG − fV)ρcsc
at t >> ttun. (which we associate with z = 0). The minimum possible value of an SQC
would be given by the bare quarks masses, or ∼ 90% of their original mass. However,
we find ηG and ηV to be on the order of tens of percent each (see Section 3), and an
SQC would lose a fraction of its mass to DE over the age of the universe. Meaning that
the DM content in today’s universe is a fraction of that in the pre-BBN era according
to our model.
Averaging the total SQC mass over the Hubble volume gives us the DM density in our
model. The ratio of the total amount of DM to that of the baryonic matter evolves from
a maximum value of ηDM,sG before LGB decay to ηDM,eG = (1 − ηG)ηDM,sG after the
LGB decay to photons just before leakage starts. At full leakage, which we associate
with z = 0, the ratio is

ηDM,0 = (1 − ηG − fV)ηDM,sG = (1 − fV

1 − ηG
)ηDM,eG . (14)
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Assuming ηDM,0 ∼ 5 as measured today and extrapolating back to the LGB era, it
means that the amount of DM content is larger than what we used in Section 2, where
we set ηDM,eG = ηDM,0 ∼ 5 (i.e., when taking fV = 0).

2. The 7Li problem revisited: The solution to the cosmological 7Li problem presented
in Section 2 did not take into account the further loss of gluonic energy due to in-
SQC vacuum leakage following LGB decay as discussed above. From Equation (14),
ηDM,sG = 5/(1 − ηG − fV) and when plugged into Equation (4), we obtain

0.65 <
ηG

(1 − ηG − fV)
< 1.56 . (15)

Equation (5) becomes

0.4 × (1 − fV) < ηG < 0.6 × (1 − fV) . (16)

That is, a smaller percentage of the gluonic energy of the SQCs converted to LGBs
could resolve the 7Li problem. For fV = 0, we recover the ηG values we arrived at in
Section 2, while for fV > 2/5, we obtain ηG < 3/8, which is less than the maximum
ηG ∼ 3/8 expected from the 2SC-phase.
The ratio between the DE density and the DM energy density at z = 0 is (from
Equation (7)),

ρDE

ρDM
=

ρvac.
QCD

ρsqc,0
=

ρvac.
QCD

(1 − ηG)ρcsc − ρvac.
QCD

=
fV

1 − ηG − fV
. (17)

To have ρDE ∼ 2ρDM as measured in today’s universe requires fV ∼ 2
3 (1 − ηG), in

which case Equation (14) gives 0.18 < ηG < 0.34 and 0.44 < fV < 0.55. On the other
hand, the resolution of the Hubble tension suggests that a favored parameter com-
bination lies around (ηG, fV) ∼ (0.1, 0.1), as illustrated in Figure 4. This discrepancy
could potentially be mitigated by relaxing some of the approximations made in our
cosmological model or by adopting a more realistic approach to the tunneling process,
moving beyond the simple assumption of exponential decay.

3. The CSC phase and neutron stars: Figure 2 shows a suggested pathway, starting at
point “1′”, an NS core could take to enter the CSC phase since conversion following
SQC capture is suppressed (see Section 4). An NS born with (or which acquiring
through evolution) a core in the unpaired phase could transition to the CSC phase
by a sequence of cooling (to keV temperature via the URCA process, e.g., [36]) and
compression (to µcsc = 500 MeV via mass accretion). Take an NS with a core making
up a fraction ηc of the total mass. The energy released from the conversion of glu-
onic condensation (e.g., LGBs) to photons is (ηcMNS/mp)× (ηGmpc2) = ηcηGMNSc2.
Comparing this to the NS binding energy 3

5 GM2
NS/RNS, we conclude that NSs with

compactness parameter

MNS,⊙
RNS,6

< 0.11 × ηc

0.1
× ηG

0.1
, (18)

may be completely obliterated in the process; the NS mass and radius are in units
of solar mass, M⊙, and 106 cm, respectively. NSs with higher compactness pa-
rameters would lose mass, leaving behind a pure CSC core. In this latter case,
the conversion to a CSC star puts a constraint on ρcsc due to the black hole limit
2 GMNS/c2 < Rcsc with Rcsc as the radius of the CSC star. With ρcscR3

csc ∼ ρNSR3
NS,

this gives ρcsc < 1016 g cm−3/M2
NS,⊙ which is consistent with the µcsc ∼ 500 MeV

(i.e., a 2SC-like phase) adopted in our model. Thus, if some NSs follow a path as
suggested in Figure 2, the resulting photon fireball may have interesting implications
for explosive astrophysics.
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4. SQC–hadron decoupling: Following the leakage and loss of more gluonic energy, it
is not unreasonable to assume that the quarks within the SQC become undressed and
should in principle decouple (or at least experience some level of decoupling) from the
strong interaction. They would still rely on gluons to remain bound while exhibiting
minimal interaction with hadrons. We speculate that DM and hadrons may represent
separate phases of quark matter within the framework of QCD, characterized by
distinct vacuum properties. If our model is correct, it allows a unique connection
between cosmology and the properties of the QCD vacuum in the CSC quark phase.
An estimate of the parameter fV from cosmological observations may be an indication
of the contribution of the QCD condensates in CSC to the SQC mass, which may
have implications, albeit indirect, to the mass of hadrons. The exact details of the
SQC–hadron decoupling remain to be worked out.

5. SQCs and LGBs in today’s detectors: SQCs (the DM in our model; see Section 4)
would interact only gravitationally and would thus evade detection in current DM
experiments. Instead, we propose that our model can be tested by experiments that
can access the 2SC phase at temperatures below the LGB melting temperature; i.e., at
< MLGBc2 ∼ 4 MeV (see Appendix C). The Compressed Baryonic Matter experiment
(CBM) at FAIR explores the QCD phase diagram in the region of high baryon densities
(representative of neutron star densities) and moderate temperatures using high-
energy nucleus–nucleus collisions (e.g., [37,38]). We note that the 2SC phase carries
MLGBc2 ∼ 4 MeV LGBs (i.e., can solve the cosmological 7Li problem) at a baryonic
density as low as a few times that of nuclear matter (see Figure 3) and that LGBs form
on strong interaction timescales and decay to MeV photons on timescales of ∼10−17 s.
Thus, experiments such as the CBM at FAIR could potentially be used to detect the
photons from the LGB decay.
The width of the line can be found in Equation (A8) in Appendix C, and for typical
values, it is expected to be <0.1 MeV. If this width were to be measured, it would
provide a direct estimation of the 2SC dielectric constant, which could then be used to
infer the ∆/µ ratio and consequently determine ∆ (as per Equation (A8)). However, it
remains unclear whether and how the CBM experiment could explore the temperature
regime relevant to our study. More significantly, the 2 MeV line may be overshadowed
by the anticipated high low-energy electromagnetic background in high-energy ion–
ion collisions. Even if the background were to diminish as the QGP transitions into
the 2SC phase and subsequently cools down to the LGB phase (T < 4 MeV), detecting
the 2 MeV line would likely prove challenging. Calculating the strength of the LGB
2 MeV line is beyond the scope of this paper.

6. The stability of the CSC phase: Our findings seem to hint at the standard neutral 2SC
phase (adopted in our theoretical framework) as the unspecified CSC phase. However,
the 2SC phase may be unstable at small superconducting gap (∆) values due to the
mismatch in the up and down quarks chemical potential [39]. It suggests that either
the 2SC phase is stable in the regime of chemical potential (µ) and ∆ values we used
or that another stable 2SC-like phase exists in nature and remains to be identified. A
2SCus phase, which has u-s pairs instead of u-d pairs, is also a candidate. This phase,
however, faces a similar challenge in that the u and s Fermi momenta are split apart
by the strange-quark mass (combined with electrical neutrality; e.g., [40]). The color-
flavor-locked phase may be one candidate if the strange-quark effective mass is small
or alternatively a crystalline quark phase if strange-quark mass is heavier (e.g., [41]).
However, these phases do not possess properties that allow for the conversion of
gluonic energy to photons. Despite its limitations, the u-d 2SC phase remains one of
the candidate phases for dense quark matter (adopted in our model), pending the
determination of its exact phase structure.
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Another possibility is collective excitations (i.e., phonons) of SQCs, which would decay
directly to photons via phonon-to-photon conversion channels. Mono-chromatic
photons of energy 1.59 MeV < Eγ < 22.2 MeV would result if the SQC radius were
544.6 fm < Rsqc ∼ hc/Eγ ∼ 753.6 fm. Physically, the decaying particle is not an
LGB but is instead a long-wavelength mode that is resonant with the quark cluster
containing it. In this scenario, higher resonant modes should also be excited, and these
could affect the very sensitive D abundance, which is not desired. Superconducting
strings [42] are an interesting avenue to explore in this context. If such domain walls
could form during the cosmic QCD phase, one could imagine a scenario where they
would evolve into 2SC-dominated strings in the post-BBN era. It remains to be shown
that LGBs as described in our model could form in this case.

7. Matter–antimatter annihilation and SQC size: We hypothesize that each quark
cluster is born with an anti-matter deficit of ηB ≃ 6.1 × 10−10, meaning that there
is one extra baryon per η−1

B quark–antiquark pair; ηB is the baryon-to-photon ratio.
After annihilation (on timescales of 1/ncscσannih. ∼ 10−13 s with σannih. ∼ mbarn), a
cluster has only baryons left in it; this assumes that annihilation does not destroy the
cluster, and instead it reduces it into a pure baryon cluster of radius Rsqc,f ∼ Rsqc,thin

where “f” stands for final. Here, Rsqc,thin ∼ 102 fm is the typical size of an SQC set
by the photon mean-free-path in the 2SC phase. In other words, we claim that the
maximum size of the “shrapnel” of the annihilated much bigger parent cluster is
on the order of Rsqc,thin (see Section 2.2). In this case, a cluster’s birth radius can
be obtained from ncscR3

sqc,thin/ncscR3
sqc,b = ηB, which gives Rsqc,b ∼ 105 fm/ncsc,39.

Some constraints and implications to consider in the future include the following.
(i) Annihilation should also yield pions. These would decay on weak-interaction
timescales, and if their mean-free-path turns out to be much smaller than that of
photons, they may affect the ∼102 fm SQCs. (ii) While cluster formation (when
the universe has aged such that its temperature is in the tens of MeV) is followed
rapidly by annihilation, we must avoid the re-creation of matter–antimatter pairs, i.e.,
ensure that pair-creation timescales exceed the Hubble expansion timescale. (iii) In
the framework we outline here, SQCs would require a formation mechanism that is
different from that of the much larger A >> Aqc cosmic strange-quark nuggets [14]
(which require a first-order QCD phase transition) and Axion quark nuggets [15]
(which require their co-existence with Axions). Additionally, the mechanism by which
these nuggets can convert their stored gluonic energy into ∼ 2 MeV photons is a
serious limitation.

6. Conclusions

We have proposed that a color superconducting (CSC) phase of lukewarm QCD matter
could offer a non-exotic solution to the cosmological 7Li, the CDM, and the Dark Energy
enigmas. We attribute the narrow 2 MeV photon line that destroys 7Be in the radiation-
dominated post-BBN epoch to gluonic condensation (i.e., light glueballs or LGBs) in the CSC
phase and its electro-magnetic decay modes (Section 2). The detailed properties of the CSC
phase remain to be scrutinized, although a neutral 2SC-like phase with a superconducting
gap ∆ < 0.1µ is hinted at.

CDM, according to our model, consists of colorless, charge-neutral, optically thin
cosmic quark clusters in the CSC phase (SQCs) with Rsqc ∼ 100 fm in size and baryon
number Asqc ∼ 106. They decouple from hadrons and interact only gravitationally, thus
evading detection in current DM experiments. If SQCs could be produced in experiments
such as the Compressed Baryon Experiment at FAIR (see bullet point #5 in Section 5),
they could be detected via the MeV photons from LGB → γ + γ decay, giving support to
our model.
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The decoupling of SQCs from hadrons is due to the leakage of the in-SQCs vacuum
into the trivial vacuum of the exterior space-time, which yields DE. As leakage proceeds,
our cosmology gradually transitions from a non-DE to a DE (ΛCDM-like) universe at a
moderate redshift while allowing for a possible resolution of the Hubble tension (Section 3).
It is crucial to recognize the significance of having optically thin SQCs with a size on
the order of 100 Fermi in resolving the 7Li problem. This requirement directly sets the
timescale for the tunneling process to be on the order of a Giga-year. The connection
between the Fermi scales, which govern particle interactions, and the astrophysical scales
suggests a fundamental connection between the 7Li problem and Dark Energy (DE) unique
to our model.

Our model does not introduce new physics to solve the 7Li, DM, and DE problems but
instead makes use of still uncertain properties of QCD phases and their vacuum properties.
We are not the first to discuss a connection between QCD vacuum and cosmology. It has
been argued based on the empirical properties of hadrons that confinement is a prerequisite
for retaining condensates inside hadrons, which then largely eliminates the problem of
the smallness of the cosmological constant. On the other hand, our model introduces the
concept of the tunneling of the in-SQC vacuum into the exterior trivial vacuum and the
decoupling of SQCs from hadrons (see Section 3). This distinctive proposition raises the
intriguing possibility that DM and hadrons could represent separate phases of quark matter
within the framework of QCD, characterized by distinct vacuum properties that may turn
out to have other useful physical applications.
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Appendix A. Pedagogical Framework

Appendix A.1. A Quantum Chromodynamics (QCD) Phase Diagram

QCD is the theory governing the strong nuclear force. Figure A1 shows a simplified
QCD phase diagram in the T-µq (temperature vs. quark chemical potential) plane featuring
three distinct phases. The chemical potential is related to the number density by n = µ3/π2.
At low temperatures and densities is the confined phase, where quarks and gluons are
bound within color-neutral hadrons, such as protons and neutrons. In this phase, quarks are
unable to exist freely as individual particles. As the temperature and/or density increases,
the QCD phase diagram exhibits a transition to a deconfined phase called the quark–gluon
plasma (QGP). In the QGP phase, quarks and gluons move more freely and are not confined
within hadrons. Lattice simulations have shown that there is a smooth transition (a cross-
over) between the confined hadronic phase and the deconfined quark–gluon plasma phase
(see [43] for a recent review). Unlike a first-order phase transition, where there is a distinct
jump in thermodynamic quantities at a critical point, a cross-over is characterized by a
gradual change in the system’s behavior. This means that there is no precise temperature
at which the transition occurs, but rather a temperature range over which the transition
takes place.
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At higher densities (or chemical potential) and lower temperatures is the color su-
perconductivity (CSC) phase. This phase is characterized by the condensation of Cooper
pairs of quarks, similar to how electrons form pairs in traditional superconductors. A CSC
is characterized by its superconducting gap (∆csc in the tens of MeV range), which is the
energy required to break a Cooper pair. The vacuum ground state energies in the CSC and
hadronic phases are drastically different. The formation of Cooper pairs alters the QGP,
leading to changes in the gluon spectrum and dispersion relations. It has been demon-
strated that the CSC is the ground state of quark matter at asymptotically large densities
(e.g., [18]).

The simplest form of CSC is known as two-flavor color superconductivity (2SC), which
arises in QCD when quarks of two different flavors (usually up and down quarks) form
Cooper pairs due to the attractive interaction mediated by the strong force. The Cooper
pairs in the 2SC phase are made of the red and green quarks only, and the blue quarks
do not participate in pairing. Only five out of a total of eight gluons become massive,
while the other three gluons remain massless and do not interact with the paired red
and green quarks nor with the gapless blue quarks. These three gluons obey their own
gluon dynamics and form their own condensate made of bound states of pure gluons,
similar to how mesons are bound states of quarks and antiquarks. This gluon condensate
is unstable electromagnetically and emits photons. The decay process of the electrically
neutral condensate into photons occurs through its interaction with virtual quark loops,
which carry the electric charge (see Appendix C). This electromagnetic decay plays a crucial
role in resolving the cosmological Lithium-7 problem within our model, as explained in the
following description.

Figure A1. A simplified QCD phase diagram in the density–temperature plane; the density is
represented by the quark chemical potential µq. The hadronic phase exists at a temperature of
T < TQCD ∼ 150 MeV and chemical potential µq < µh ∼ 350 MeV. The dashed line in the dia-
gram represents unexplored phases that could potentially exist within the QGP phase before reaching
the CSC phase.

Appendix A.2. Our Model in a Nutshell

The cosmological lithium-7 (7Li) problem relates to a significant discrepancy on a
factor of 3 between the predicted abundance of cosmological beryllium-7 (7Be) and the
lower measured abundance of 7Li in the universe. In this context, we present a proposal
for a non-exotic electromagnetic solution within the standard model of particle physics
to address the cosmological 7Li problem, a crucial element in the theory of Big Bang
nucleosynthesis (BBN). Our model utilizes properties of deconfined quark matter to offer a
potential solution to the enigma of 7Li. Additionally, we explore the interconnectedness of
this solution with the problems of Dark Energy (DE) and dark matter (DM), all of which
highlight our limited understanding of the quark–gluon plasma (QGP) and the phases of
quark matter as described in QCD.
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At the core of our model lies the conversion of the gluonic energy (i.e., of the gluons) of
superconducting deconfined quark matter into a narrow 2 MeV line, capable of selectively
destroying primordial 7Be without impacting other products or the physics of the cosmic
microwave background (CMB). One key assumption in our model posits that, in addition
to the known hadrons (protons, neutrons, and mesons) formed during the QCD phase
transition in the early universe, assemblies of deconfined quark matter, referred to as
quark clusters (QCs), can also form. These QGP clusters have a size of approximately
100 Fermi (and are thus optically thin to photons) and are composed of up and down
quarks and gluons in proportions that make them charge-neutral. Inside a QC, the density
reaches approximately ten times the nuclear saturation density, which is on the order of
1039 cm−3 (equivalently, µq ∼ 500 MeV). This high-density environment corresponds to a
baryon number, with Aqc ∼ 106.

The second key assumption in our model is that these QCs transition into a color
superconducting state (CSC) in the post-BBN era, when the universe is a few hours old, at a
redshift of z <∼ 2.5 × 107. The two-flavor color superconductivity (2SC) phase specifically
involves two flavors of quarks, typically up and down quarks, as seen in QCs. When QCs
reach this phase and become superconducting (referred to as SQCs), a percentage of their
gluons form light glueballs (LGBs). Glueballs are bound states of gluons, analogous to how
mesons are bound states of quarks and antiquarks. LGBs are considered to be relatively
light, with a mass in the MeV range, compared to other possible glueball states with masses
in the GeV range. LGBs are electromagnetically unstable, and by appropriately selecting
2SC parameters, they can decay into a monochromatic ∼2 MeV line, capable of selectively
destroying primordial 7Be while leaving other BBN products and CMB physics unaffected.

To resolve the 7Li problem, approximately 20–30% of the gluonic energy in SQCs
needs to be converted into a monochromatic 2 MeV line. Interestingly, the total mass of
SQCs required for this solution corresponds to the observed DM in the universe. SQCs,
being cold, colorless, charge-neutral, and optically thin to all photon energies, present an
attractive DM candidate that is deeply intertwined with the enigma of 7Li. We would
like to emphasize the necessity of a narrow band emission (preferably a mono-energetic
photon source) to optimize the number of photo-dissociated 7Be nuclei (see Equation (1)).
Otherwise, there will not be enough gluonic energy from the SQCs (the DM in our model)
for the 2/3 reduction. The LGB decay channel is an attractive mechanism for such a line
(see Appendix C) and may be tested in current heavy-ion collision experiments (see bullet
point #5 in Section 5).

The nature of the QCD ground state continues to be a topic of active research and
debate. There are many possible forms of the ground state wavefunction (in a many-
body variational approach). Even when comparing the many ground states using free
energies, one can never be certain that the true ground state is found (see discussion
in [44]). In principle, the vacuum state within SQCs after the formation and decay of LGBs
can potentially exhibit different symmetries compared to the vacuum state of confined
quark matter in hadrons; see Appendix C.1. This brings us to the third assumption in
our model, which has implications for DE. By assuming that the in-SQC QCD vacuum
becomes unstable following LGB decay, we allow it to “leak” into the trivial vacuum of the
surrounding space-time via quantum tunneling (Appendix C.1). This “leakage” process
behaves as a cosmological constant and occurs late in the evolution of the universe (at
a redshift ztun. of a few units), leading to a transition to a ΛCDM-dominated era (see
Figure 4). This “leakage” effectively separates the pre-ΛCDM and ΛCDM phases and offers
a potential resolution to the Hubble tension (see Section 3).

Through our efforts to resolve the 7Li problem, we have uncovered a solution that
effectively tackles the challenges of DE and DM, thus revealing the intrinsic connection of
these critical cosmological issues within our proposed model. For example, the in-SQC
vacuum would be stable to decay if its gluonic sector were stable (as in hadrons). The cos-
mological 7Be nuclei act as absorbers of LGB decay products (with the 2 MeV photons ideal
in this scenario) and avoid affecting BBN and CMB properties. Without addressing the 7Li,
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DM, and DE problems simultaneously, our model would not hold together. Despite its
assumptions and limitations, it is important to reiterate that our framework operates within
the standard model of particle physics but in an unexplored regime of QCD, emphasizing
the need for further investigation and empirical validation.

Appendix B. Post-BBN 7Be Destruction

In Poulin & Serpico [11] (and references therein), the photon-generating particle X decays
exponentially on timescale τX and forms at an early time in the universe at t (<< τX). In our
model, the X particle (i.e., the LGB) forms and decays to a narrow E0 ∼ 2 MeV photons nearly
instantaneously in the radiation-dominated post-BBN era at time tG when the quark cluster
enters the CSC phase; here, “G” stands for gluons as a reference to the LGB era (see Section 2).
Thus, we have a delta function production at time tG; δ(t − tG). The source injection term
(e.g., Equation (2) in Poulin & Serpico [11] and Section IV in Kawasaki & Moroi [10]) becomes

S(Eγ, t) = nγ(Eγ, t)× δ(t − tG)× δ(Eγ − E0) , (A1)

with nγ(Eγ, t) as the co-moving photon density at time t; δ(Eγ − E0) is the spectral shape
factor for a monochromatic line at E0.

Making use of Equations (4) and (5) in Poulin & Serpico [11] with the destruction of
element A only (i.e., γ + A → P) gives the abundance

dYA(t)
dt

= −YA(t)
∫

dEγσγ+A→P(Eγ)×
S(Eγ, t)
Γ(Eγ, t)

, (A2)

where Γ(Eγ, t) and σγ+A→P(Eγ) are the photon interaction rate and the photo-dissociation
cross-section, respectively. The interaction rate is for all processes, including the Bethe–
Heitler pair-creation on nuclei, double photon pair-creation, scattering off thermal back-
ground photons, and Compton scattering. Red-shifting is negligible because the rates of
electromagnetic interactions are faster than the cosmic expansion rate.

Inserting Equation (A1) into Equation (A2) and integrating over energy gives

d ln YA(t)
dt

= −nγ(E0, t)× δ(t − tG)
σγ+A→P(E0)

Γ(E0, t)
. (A3)

This assumes a single scattering (Nscat = 1, as in our model) is enough to make the E0
photon no longer dissociate a 7Be nucleus. Otherwise, Γ(E0, t) should be divided by Nscat.

Dissociation starts at redshift zsG and ends abruptly at redshift zsG = zeG + δz with
δz << zsG; subscripts “eG” and “sG” stand for end and start, respectively, of the photon
burst from LGB decay in the post-BBN era. After integration over a very small time t with
tsG < tG and teG > tG but z(tsG) = z(teG) = z(tG), one obtains

log
(

YBe,eG

YBe,sG

)
= −nγ(E0, tG)

σBe(E0)

Γ(E0, tG)
, (A4)

where nγ(E0, tG) is the co-moving number density of E0 photons from LGB decay. Here,
σBe(E0) ≡ σγ+A→P(E0) while YBe,sG ≡ YA(tsG) and YBe,eG ≡ YA(teG) are the corresponding
7Be abundances.

With E0 < 2.2 MeV, the Bethe–Heitler pair-creation on nuclei (see Equations (4–356)
in [5]) is negligible, and so is pair creation off the CMB background photons when TCMB
is a few keV or less; the interaction rate is dominated by Compton scattering (CS). Thus,
Γ(E0, tG) ≃ ΓCS(E0, tG) = ne(tG)σCS(E0) with the CS cross-section given in Appendix (IV)
in Kawasaki & Moroi [10]. Furthermore, because at TCMB < 20 keV, positrons are negligible
(e.g., Appendix C in [45]), the total electron density is on the order of the baryon number
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density, ne(tG) ∼ nB(tG). The destruction rates for 7Be nuclei due to a sudden release of
mono-energetic E0 photons at tG becomes

ln
(

YBe,eG

YBe,sG

)
∼ −

nγ(E0, tG)

nB(tG)
× σBe(E0)

σCS(E0)
. (A5)

Appendix C. Light Glueballs (LGBs) in the 2SC Phase

The spectrum in the 2SC state is made of five massive gluons with a mass of the order
of the gap ∆, three massless gluons, and gapless up and down quarks in the direction 3
(blue) of color; in this appendix, we use QCD natural units with h̄ = c = 1. The three
massless gluons in the 2SC phase do not interact with the gapless blue quasi-particles and
the quasiparticles from the green and red paired quarks decouple from the low-energy
confined SUc(2) phase. The three massless gluons in the 2SC phase bind, or are confined,
into LGBs when the temperature is below the melting temperature TLGB,m ∼ MLGB ([46]
and references therein). That is, LGBs melt when the temperature exceeds the confinement
value [47].

The LGB mass at T ≤ TLGB,m is MLGB ∼ Λ̂c with Λ̄c the intrinsic scale associated with
the SUc(2) theory. It is the confining scale of the SUc(2) gluon-dynamics in 2SC, and when
∆ << µ, the one loop relation gives [48]

Λ̄c = ∆ exp

(
−2

√
2π

11
× µ

gs∆

)
, (A6)

with gs =
√

4παs and αs = 12π
(33−2nf) ln (µ2/Λ2

QCD)
the SUc(3) coupling constant evaluated

at µ; ΛQCD is the scalar parameter of QCD and nf the number of relevant quark flavors.
For ∆ ∼ 0.1 µ and for ΛQCD = 245 MeV (expected from a pure gluonic theory), we obtain
MLGB ∼ 4 MeV for a range in quark chemical potential as shown in Figure 3. Using
ΛQCD ∼ 340 MeV expected using the usual renormalization scheme with three quark
flavors, we obtain MLGB ∼ 4 MeV when ∆ ∼ 0.05 µ.

Once created, LGBs are stable against strong interactions but not with respect to
electromagnetic processes. The two-photon decay mechanism of the electrically neutral
LGB was estimated in [46] based on the saturation of the electromagnetic trace anomaly
at the effective Lagrangian level. In other words, the coupling between the LGBs, which
dominate the energy-momentum tensor at low energies, and two photons occurs through
virtual quark loops which carry the electric charge. The decay occurs on timescale of
τLGB ∼ 5.5 × 10−14 s × (MLGB/MeV)−5 [46].

The pairing energy density released during the unpaired-to-2SC phase transition is
Qpairing = µ2∆2/π2 (e.g., [49,50]). Thus, during the transition, to a first approximation, an
SQC is heated to a temperature

Tsqc =
Qpairing

ncsc
∼ ∆2

µ
. (A7)

LGBs would not melt during the unpaired-to-CSC heating phase if ∆2/µ < MLGB,
allowing for the LGB → γ + γ to occur (see Section 2.1).

The LGBs within an SQC move with the same velocity, denoted as v, as the underlying
gluons. The broadening of the E0 = MLGB/2 line can then be expressed as

∆E0

E0
=

1
2 MLGBv2

E0
= v2 =

1
ϵ

. (A8)
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The last equality in the equation above means that the velocity is determined by the

dielectric constant ϵ of the 2SC medium given as ϵ = 1 + g2
s

18π2 ×
( µ

∆
)2 [48]. We see that

∆ << µ yields ϵ >> 1 (or v << 1), which ensures a narrow line. The v << 1 regime is
also the reason that the LGBs are not dynamically important in the 2SC phase because their
mass scale is v−3/2 relative to the in-vacuum case.

When ∆ < 0.1 µ, ϵ > 10 and ∆E0/E0 < 0.1. For instance, for ΛQCD ∼ 340 MeV, where
∆ ∼ 0.05 µ is required to obtain MLGB ∼ 4 MeV, we have ϵ ∼ 30 or ∆E0 ∼ 0.067 MeV. It also
implies that the range of E0 falls between 2.0 MeV and 2.2 MeV, which aligns remarkably
well with the range necessary to address the 7Li problem (see Section 2).

Appendix C.1. The Confined SUc(2) Phase and Its Vacuum

At temperatures below TLGB,m is the SUc(2) phase, which effectively constitutes
partial confinement within the 2SC phase. The deconfined-to-confined SUc(2) phase
transition, as the temperature decreases within the 2SC phase is of the second order (i.e.,
symmetry breaking has occurred; see [46] and references therein). The 2SC without LGB
decay belongs to a different global symmetry, while after LGB decay, one is left with
the confined SUc(2), which breaks the Z2-symmetry (see e.g., [51] for phase transitions
in QCD). While the flavor symmetries and other (e.g., Poincaré) symmetries remain the
same during the transition from deconfined-to-confined SUc(2), the vacuum loses the Z2-
symmetry associated with the center of the SUc(2) group and “chooses” a specific direction
or configuration. The vacuum of the confined SUc(2) is in principle different from that of
the unconfined SUc(2), and it is not unreasonable to assume that it may be metastable.

Z2-symmetry breaking and false vacuum metastability and tunneling into the true
vacuum with consequences for cosmology have been discussed in the literature (e.g., [52]
and references therein). In our case, the phenomenon of tunneling or leaking could be
attributed to two potential factors: (i) the zero-momentum loop at the origin of zero-point
energy at zero temperature; (ii) the gluon condensate if we allow for a small temperature
that is insignificant compared to any other scale in the problem. Which mechanism is
exactly at play is currently uncertain within the scope of our model, and what is presented
here serves as preliminary outlines for potential future research directions. The main point
is that the leakage suggests a mechanism to explain Λ-CDM cosmology in our model.

Appendix D. Our Cosmology

Let us write again the time evolution of the density inside an SQC as given in Equation (9):

ρsqc(t) = (1 − ηG)ρcsc − ρvac.
QCD(1 − e−(t−tG)/ttun.) (A9)

= ρsqc,eG

(
1 − fV

1 − ηG
(1 − e−(t−tG)/ttun.)

)
,

with ρsqc,eG = (1 − ηG)ρcsc, the SQC density at the end of the LGB/photon-burst phase.
As noted earlier, the equation above incorporates the key parameters in our cosmology,
namely, ρcsc, ηG, fV, and ttun. which are all fundamentally related to QCD.

The time evolution of the DM density given in Equation (10) can be expanded as

ρDM(t) =



ρsqc(t)Vtot.
sqc

Vuniv.(t)
=

ρsqc(t)
ρsqc,0

× ρsqc,0Vtot.
sqc

Vuniv.,0
× Vuniv.,0

Vuniv.(t)

if t > tG (or z < zG)
ρcscVtot.

sqc
Vuniv.(t)

= ρcsc
ρsqc,0

× ρsqc,0Vtot.
sqc

Vuniv.,0
× Vuniv.,0

Vuniv.(t)

if t ≤ tG (or z ≥ zG)

(A10)

where the subscript “0” refers to the current age of the universe at z = 0 (i.e., at t = t0);
recall that ttun. is a fraction of t0, which simplifies our equations. Vtot.

sqc is the total volume
occupied by SQCs, which is constant in time, and Vuniv.(t) is the Hubble volume at time t.
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Putting Equation (A9) into Equation (A10), we obtain

ρDM(t) =



ρDM,0
Vuniv.,0

Vuniv.(t)
×
(

1− fV
1−ηG

(
1−e−(t−tG)/ttun.

))
(

1− fV
1−ηG

)
if t > tG (or z < zG)

ρDM,0
Vuniv.,0

Vuniv.(t)
× 1

(1−ηG)− fV

if t ≤ tG (or z ≥ zG)

(A11)

with ρsqc,0 = (1 − ηG)ρcsc − ρvac.
QVD, ρsqc,eG/ρsqc,0 = (1 − fV

1−ηG
)−1, and ρcsc/ρsqc,0 = ((1 −

ηG)− fV)
−1; see Section 3. Also, ρDM,0 = ρsqc,0Vtot.

sqc /Vuniv.,0 is the DM density at z = 0.
The jump in the value of ρDM at t = tG in the equation above is due to the fact that a fraction
(1 − ηG) of the DM is lost to the 2 MeV radiation before the start of the leakage era at teG
(see Section 2).

Equation (A11) can be expressed in terms of redshift as

ρDM(z, ztun.) =



ρDM,0(1 + z)3 ×

1− fV
1−ηG

1−e
− (1+ztun.)

3/2

(1+z)3/2




(
1− fV

1−ηG

)
if z < zG ∼ zeq.

ρDM,0(1 + z)3 × 1
(1−ηG)− fV

if z ≥ zG ∼ zeq.

(A12)

where we emphasize the dependency of ρDM on the leakage characteristic redshift ztun.
to help differentiate our model from the ΛCDM cosmology. Because tG << ttun. (or
zG >> ztun.) and most of the time between tG and ttun. is in the matter-dominated era,
we approximate t/ttun. ∼ (1 + ztun.)3/2/(1 + z)3/2 and Vuniv.,0/Vuniv.(t) ∼ (1 + z)3. Our
model does not depend critically on zG, and by setting zG ∼ zeq., where zeq. is the redshift at
matter–radiation equality, we can simplify the equations without changing the final results.

The redshift of matter-radiation equality in our model is estimated by writing
ρDM(zeq., ztun.) = ρr,0(1 + zeq.)4, with t << ttun. (i.e., z >> ztun.) so that ρDM(zeq., ztun.) ≃
ρDM,0(1 + zeq.)3 × (1 − fV

1−ηG
)−1. This yields

1 + zeq. ∼
ρDM,0

ρr,0
×
(

1 − fV

1 − ηG

)−1
(A13)

=
ΩDM,0

Ωr,0
×
(

1 − fV

1 − ηG

)−1

=
ωDM

ωr
×
(

1 − fV

1 − ηG

)−1
,

with ωDM = ΩDM,0h2 ≃ 0.120, ωb = Ωb,0h2 ≃ 0.0224 and ωr = Ωr,0h2 ≃ 4.18 × 10−5 as
measured by Planck [53]; h = H0/100 km s−1 Mpc−1 is the dimensionless Hubble constant
in today’s universe. As expected, zeq. in our model is larger (i.e., requires an increase in
the radiation to compensate for larger DM in the past) than in the case of the pure ΛCDM
cosmology, which does not capture the converted (by LGB decay and vacuum leakage)
component of the DM.

Finally, our cosmology can be described by

H(z, ztun.) = H0× (A14)

×
√

Ωr,0(1 + z)4 + Ωb,0(1 + z)3 + ΩDM(z, ztun.) + ΩΛ
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with ΩDM(z, ztun.) = ρDM(z, ztun.)/ρ0
c and H2

0 = 8πGρ0
c/3 where ρ0

c is today’s critical
density; ΩΛ = 1 − Ωr,0 − Ωb,0 − ΩDM,0.

The co-moving sound horizon and the co-moving angular-diameter distance to the
surface of the last scatter are [54]

rs(ztun.) =
∫ ∞

zls

cs(z)dz
H(z, ztun.)

; DA(ztun.) =
∫ zls

0

cdz
H(z, ztun.)

. (A15)

The sound speed of the photon-baryon fluid at z ≥ zls is cs(z) = c/
√

3(1 + R(z))
with R(z) = (3/4)(ωb/ωγ)/(1 + z) and ωγ = 2.47 × 10−5.

The Hubble constant H0 is found by solving θsDA(ztun.) − rs(ztun.) = 0 with
θs = 1.041 × 10−2 the angle subtended by the sound horizon [53]. For the ΛCDM, one
finds H0 ∼ 67.3 km s−1 Mpc−1 (h ∼ 0.673; by solving θsDA − rs = 0 using standard
ΛCDM cosmology). In our case, H0 ∼ 73 km s−1 Mpc−1 (h = 0.73) can be obtained for a
range in ηG and fV values (see examples in Figure 4) with a leakage characteristic redshift
2 < ztun. < 6 (i.e., 1 < ttun.(Gyr) < 4); see Section 3.
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